|
|
|
/**
|
|
|
|
* Marlin 3D Printer Firmware
|
|
|
|
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
|
*
|
|
|
|
* Based on Sprinter and grbl.
|
|
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
*
|
|
|
|
* This program is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* About Marlin
|
|
|
|
*
|
|
|
|
* This firmware is a mashup between Sprinter and grbl.
|
|
|
|
* - https://github.com/kliment/Sprinter
|
|
|
|
* - https://github.com/simen/grbl
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "Marlin.h"
|
|
|
|
|
|
|
|
#include "lcd/ultralcd.h"
|
|
|
|
#include "module/motion.h"
|
|
|
|
#include "module/planner.h"
|
|
|
|
#include "module/stepper.h"
|
|
|
|
#include "module/endstops.h"
|
|
|
|
#include "module/temperature.h"
|
|
|
|
#include "sd/cardreader.h"
|
|
|
|
#include "module/configuration_store.h"
|
|
|
|
#ifdef ARDUINO
|
|
|
|
#include <pins_arduino.h>
|
|
|
|
#endif
|
|
|
|
#include <math.h>
|
|
|
|
#include "libs/nozzle.h"
|
|
|
|
#include "libs/duration_t.h"
|
|
|
|
|
|
|
|
#include "gcode/gcode.h"
|
|
|
|
#include "gcode/parser.h"
|
|
|
|
#include "gcode/queue.h"
|
|
|
|
|
|
|
|
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
|
|
|
|
#include "libs/buzzer.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_ABL
|
|
|
|
#include "libs/vector_3.h"
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
|
#include "libs/least_squares_fit.h"
|
|
|
|
#endif
|
|
|
|
#elif ENABLED(MESH_BED_LEVELING)
|
|
|
|
#include "feature/mbl/mesh_bed_leveling.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH) || ENABLED(SWITCHING_NOZZLE)
|
|
|
|
#include "module/tool_change.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
|
|
#include "module/planner_bezier.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(MAX7219_DEBUG)
|
|
|
|
#include "feature/Max7219_Debug_LEDs.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_COLOR_LEDS
|
|
|
|
#include "feature/leds/leds.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_SERVOS
|
|
|
|
#include "HAL/servo.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_DIGIPOTSS
|
|
|
|
#include <SPI.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(DAC_STEPPER_CURRENT)
|
|
|
|
#include "feature/dac/stepper_dac.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
|
|
#include "feature/twibus.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
|
|
#include "feature/I2CPositionEncoder.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
|
|
|
#include "HAL/HAL_endstop_interrupts.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
|
|
|
void M100_dump_routine(const char * const title, const char *start, const char *end);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
CardReader card;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
|
|
TWIBus i2c;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(G38_PROBE_TARGET)
|
|
|
|
bool G38_move = false,
|
|
|
|
G38_endstop_hit = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
#include "feature/ubl/ubl.h"
|
|
|
|
extern bool defer_return_to_status;
|
|
|
|
unified_bed_leveling ubl;
|
|
|
|
#define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
|
|
|
|
&& ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
|
|
|
|
&& ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
|
|
|
|
&& ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
|
|
|
|
|| isnan(ubl.z_values[0][0]))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(SENSORLESS_HOMING)
|
|
|
|
#include "feature/tmc2130.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
bool Running = true;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* axis_homed
|
|
|
|
* Flags that each linear axis was homed.
|
|
|
|
* XYZ on cartesian, ABC on delta, ABZ on SCARA.
|
|
|
|
*
|
|
|
|
* axis_known_position
|
|
|
|
* Flags that the position is known in each linear axis. Set when homed.
|
|
|
|
* Cleared whenever a stepper powers off, potentially losing its position.
|
|
|
|
*/
|
|
|
|
bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
|
|
|
|
|
|
|
|
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
|
|
TempUnit input_temp_units = TEMPUNIT_C;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Feed rates are often configured with mm/m
|
|
|
|
* but the planner and stepper like mm/s units.
|
|
|
|
*/
|
|
|
|
static const float homing_feedrate_mm_s[] PROGMEM = {
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
|
|
|
|
#else
|
|
|
|
MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
|
|
|
|
#endif
|
|
|
|
MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
|
|
|
|
};
|
|
|
|
FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
|
|
|
|
|
|
|
|
static float saved_feedrate_mm_s;
|
|
|
|
int16_t feedrate_percentage = 100, saved_feedrate_percentage;
|
|
|
|
|
|
|
|
// Initialized by settings.load()
|
|
|
|
float filament_size[EXTRUDERS], volumetric_multiplier[EXTRUDERS];
|
|
|
|
|
|
|
|
#if HAS_WORKSPACE_OFFSET
|
|
|
|
#if HAS_POSITION_SHIFT
|
|
|
|
// The distance that XYZ has been offset by G92. Reset by G28.
|
|
|
|
float position_shift[XYZ] = { 0 };
|
|
|
|
#endif
|
|
|
|
#if HAS_HOME_OFFSET
|
|
|
|
// This offset is added to the configured home position.
|
|
|
|
// Set by M206, M428, or menu item. Saved to EEPROM.
|
|
|
|
float home_offset[XYZ] = { 0 };
|
|
|
|
#endif
|
|
|
|
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
|
|
|
|
// The above two are combined to save on computes
|
|
|
|
float workspace_offset[XYZ] = { 0 };
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if FAN_COUNT > 0
|
|
|
|
int16_t fanSpeeds[FAN_COUNT] = { 0 };
|
|
|
|
#if ENABLED(PROBING_FANS_OFF)
|
|
|
|
bool fans_paused = false;
|
|
|
|
int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
|
|
|
|
volatile bool wait_for_heatup = true;
|
|
|
|
|
|
|
|
// For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
|
|
|
|
#if HAS_RESUME_CONTINUE
|
|
|
|
volatile bool wait_for_user = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Inactivity shutdown
|
|
|
|
millis_t previous_cmd_ms = 0;
|
|
|
|
static millis_t max_inactive_time = 0;
|
|
|
|
static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
|
|
|
|
|
|
|
|
// Print Job Timer
|
|
|
|
#if ENABLED(PRINTCOUNTER)
|
|
|
|
PrintCounter print_job_timer = PrintCounter();
|
|
|
|
#else
|
|
|
|
Stopwatch print_job_timer = Stopwatch();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
float zprobe_zoffset; // Initialized by settings.load()
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_ABL
|
|
|
|
float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
|
|
|
|
#define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
|
|
|
|
#elif defined(XY_PROBE_SPEED)
|
|
|
|
#define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
|
|
|
|
#else
|
|
|
|
#define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
#define ADJUST_DELTA(V) \
|
|
|
|
if (planner.abl_enabled) { \
|
|
|
|
const float zadj = bilinear_z_offset(V); \
|
|
|
|
delta[A_AXIS] += zadj; \
|
|
|
|
delta[B_AXIS] += zadj; \
|
|
|
|
delta[C_AXIS] += zadj; \
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
|
|
|
|
#endif
|
|
|
|
#elif IS_KINEMATIC
|
|
|
|
#define ADJUST_DELTA(V) NOOP
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
float z_endstop_adj;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Extruder offsets
|
|
|
|
#if HOTENDS > 1
|
|
|
|
float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_Z_SERVO_ENDSTOP
|
|
|
|
const int z_servo_angle[2] = Z_SERVO_ANGLES;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(BARICUDA)
|
|
|
|
uint8_t baricuda_valve_pressure = 0,
|
|
|
|
baricuda_e_to_p_pressure = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_POWER_SWITCH
|
|
|
|
bool powersupply_on =
|
|
|
|
#if ENABLED(PS_DEFAULT_OFF)
|
|
|
|
false
|
|
|
|
#else
|
|
|
|
true
|
|
|
|
#endif
|
|
|
|
;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
|
|
|
float delta[ABC],
|
|
|
|
endstop_adj[ABC] = { 0 };
|
|
|
|
|
|
|
|
// Initialized by settings.load()
|
|
|
|
float delta_radius,
|
|
|
|
delta_tower_angle_trim[2],
|
|
|
|
delta_tower[ABC][2],
|
|
|
|
delta_diagonal_rod,
|
|
|
|
delta_calibration_radius,
|
|
|
|
delta_diagonal_rod_2_tower[ABC],
|
|
|
|
delta_segments_per_second,
|
|
|
|
delta_clip_start_height = Z_MAX_POS;
|
|
|
|
|
|
|
|
float delta_safe_distance_from_top();
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
int bilinear_grid_spacing[2], bilinear_start[2];
|
|
|
|
float bilinear_grid_factor[2],
|
|
|
|
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if IS_SCARA
|
|
|
|
// Float constants for SCARA calculations
|
|
|
|
const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
|
|
|
|
L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
|
|
|
|
L2_2 = sq(float(L2));
|
|
|
|
|
|
|
|
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
|
|
|
|
delta[ABC];
|
|
|
|
#endif
|
|
|
|
|
|
|
|
float cartes[XYZ] = { 0 };
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
|
bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
|
|
|
|
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
|
|
|
|
filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
|
|
|
|
uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
|
|
|
|
measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
|
|
|
|
int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
|
|
static bool filament_ran_out = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
|
AdvancedPauseMenuResponse advanced_pause_menu_response;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
|
|
|
|
#if MIXING_VIRTUAL_TOOLS > 1
|
|
|
|
float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_SERVOS
|
|
|
|
HAL_SERVO_LIB servo[NUM_SERVOS];
|
|
|
|
#define MOVE_SERVO(I, P) servo[I].move(P)
|
|
|
|
#if HAS_Z_SERVO_ENDSTOP
|
|
|
|
#define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
|
|
|
|
#define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef CHDK
|
|
|
|
millis_t chdkHigh = 0;
|
|
|
|
bool chdkActive = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
int lpq_len = 20;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
|
|
I2CPositionEncodersMgr I2CPEM;
|
|
|
|
uint8_t blockBufferIndexRef = 0;
|
|
|
|
millis_t lastUpdateMillis;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(CNC_WORKSPACE_PLANES)
|
|
|
|
static WorkspacePlane workspace_plane = PLANE_XY;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ***************************************************************************
|
|
|
|
* ******************************** FUNCTIONS ********************************
|
|
|
|
* ***************************************************************************
|
|
|
|
*/
|
|
|
|
|
|
|
|
void stop();
|
|
|
|
|
|
|
|
void get_cartesian_from_steppers();
|
|
|
|
void set_current_from_steppers_for_axis(const AxisEnum axis);
|
|
|
|
|
|
|
|
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
|
|
void plan_cubic_move(const float offset[4]);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void report_current_position();
|
|
|
|
|
|
|
|
#if ENABLED(DIGIPOT_I2C)
|
|
|
|
extern void digipot_i2c_set_current(uint8_t channel, float current);
|
|
|
|
extern void digipot_i2c_init();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void setup_killpin() {
|
|
|
|
#if HAS_KILL
|
|
|
|
SET_INPUT_PULLUP(KILL_PIN);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
|
|
|
|
|
|
void setup_filrunoutpin() {
|
|
|
|
#if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
|
|
|
|
SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
|
|
|
|
#else
|
|
|
|
SET_INPUT(FIL_RUNOUT_PIN);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void setup_powerhold() {
|
|
|
|
#if HAS_SUICIDE
|
|
|
|
OUT_WRITE(SUICIDE_PIN, HIGH);
|
|
|
|
#endif
|
|
|
|
#if HAS_POWER_SWITCH
|
|
|
|
#if ENABLED(PS_DEFAULT_OFF)
|
|
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
|
|
#else
|
|
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void suicide() {
|
|
|
|
#if HAS_SUICIDE
|
|
|
|
OUT_WRITE(SUICIDE_PIN, LOW);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void servo_init() {
|
|
|
|
#if NUM_SERVOS >= 1 && HAS_SERVO_0
|
|
|
|
servo[0].attach(SERVO0_PIN);
|
|
|
|
servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
|
|
|
|
#endif
|
|
|
|
#if NUM_SERVOS >= 2 && HAS_SERVO_1
|
|
|
|
servo[1].attach(SERVO1_PIN);
|
|
|
|
servo[1].detach();
|
|
|
|
#endif
|
|
|
|
#if NUM_SERVOS >= 3 && HAS_SERVO_2
|
|
|
|
servo[2].attach(SERVO2_PIN);
|
|
|
|
servo[2].detach();
|
|
|
|
#endif
|
|
|
|
#if NUM_SERVOS >= 4 && HAS_SERVO_3
|
|
|
|
servo[3].attach(SERVO3_PIN);
|
|
|
|
servo[3].detach();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_Z_SERVO_ENDSTOP
|
|
|
|
/**
|
|
|
|
* Set position of Z Servo Endstop
|
|
|
|
*
|
|
|
|
* The servo might be deployed and positioned too low to stow
|
|
|
|
* when starting up the machine or rebooting the board.
|
|
|
|
* There's no way to know where the nozzle is positioned until
|
|
|
|
* homing has been done - no homing with z-probe without init!
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
STOW_Z_SERVO();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Stepper Reset (RigidBoard, et.al.)
|
|
|
|
*/
|
|
|
|
#if HAS_STEPPER_RESET
|
|
|
|
void disableStepperDrivers() {
|
|
|
|
OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
|
|
|
|
}
|
|
|
|
void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
|
|
|
|
|
|
|
|
void i2c_on_receive(int bytes) { // just echo all bytes received to serial
|
|
|
|
i2c.receive(bytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
void i2c_on_request() { // just send dummy data for now
|
|
|
|
i2c.reply("Hello World!\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Software endstops can be used to monitor the open end of
|
|
|
|
* an axis that has a hardware endstop on the other end. Or
|
|
|
|
* they can prevent axes from moving past endstops and grinding.
|
|
|
|
*
|
|
|
|
* To keep doing their job as the coordinate system changes,
|
|
|
|
* the software endstop positions must be refreshed to remain
|
|
|
|
* at the same positions relative to the machine.
|
|
|
|
*/
|
|
|
|
void update_software_endstops(const AxisEnum axis) {
|
|
|
|
const float offs = 0.0
|
|
|
|
#if HAS_HOME_OFFSET
|
|
|
|
+ home_offset[axis]
|
|
|
|
#endif
|
|
|
|
#if HAS_POSITION_SHIFT
|
|
|
|
+ position_shift[axis]
|
|
|
|
#endif
|
|
|
|
;
|
|
|
|
|
|
|
|
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
|
|
|
|
workspace_offset[axis] = offs;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
if (axis == X_AXIS) {
|
|
|
|
|
|
|
|
// In Dual X mode hotend_offset[X] is T1's home position
|
|
|
|
float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
|
|
|
|
|
|
|
|
if (active_extruder != 0) {
|
|
|
|
// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
|
|
|
|
soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
|
|
|
|
soft_endstop_max[X_AXIS] = dual_max_x + offs;
|
|
|
|
}
|
|
|
|
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
|
|
|
|
// In Duplication Mode, T0 can move as far left as X_MIN_POS
|
|
|
|
// but not so far to the right that T1 would move past the end
|
|
|
|
soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
|
|
|
|
soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
// In other modes, T0 can move from X_MIN_POS to X_MAX_POS
|
|
|
|
soft_endstop_min[axis] = base_min_pos(axis) + offs;
|
|
|
|
soft_endstop_max[axis] = base_max_pos(axis) + offs;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#elif ENABLED(DELTA)
|
|
|
|
soft_endstop_min[axis] = base_min_pos(axis) + (axis == Z_AXIS ? 0 : offs);
|
|
|
|
soft_endstop_max[axis] = base_max_pos(axis) + offs;
|
|
|
|
#else
|
|
|
|
soft_endstop_min[axis] = base_min_pos(axis) + offs;
|
|
|
|
soft_endstop_max[axis] = base_max_pos(axis) + offs;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
SERIAL_ECHOPAIR("For ", axis_codes[axis]);
|
|
|
|
#if HAS_HOME_OFFSET
|
|
|
|
SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
|
|
|
|
#endif
|
|
|
|
#if HAS_POSITION_SHIFT
|
|
|
|
SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
|
|
|
|
#endif
|
|
|
|
SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
|
|
|
|
SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
if (axis == Z_AXIS)
|
|
|
|
delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
|
|
|
|
|
|
|
|
#if HAS_M206_COMMAND
|
|
|
|
/**
|
|
|
|
* Change the home offset for an axis, update the current
|
|
|
|
* position and the software endstops to retain the same
|
|
|
|
* relative distance to the new home.
|
|
|
|
*
|
|
|
|
* Since this changes the current_position, code should
|
|
|
|
* call sync_plan_position soon after this.
|
|
|
|
*/
|
|
|
|
static void set_home_offset(const AxisEnum axis, const float v) {
|
|
|
|
current_position[axis] += v - home_offset[axis];
|
|
|
|
home_offset[axis] = v;
|
|
|
|
update_software_endstops(axis);
|
|
|
|
}
|
|
|
|
#endif // HAS_M206_COMMAND
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Set an axis' current position to its home position (after homing).
|
|
|
|
*
|
|
|
|
* For Core and Cartesian robots this applies one-to-one when an
|
|
|
|
* individual axis has been homed.
|
|
|
|
*
|
|
|
|
* DELTA should wait until all homing is done before setting the XYZ
|
|
|
|
* current_position to home, because homing is a single operation.
|
|
|
|
* In the case where the axis positions are already known and previously
|
|
|
|
* homed, DELTA could home to X or Y individually by moving either one
|
|
|
|
* to the center. However, homing Z always homes XY and Z.
|
|
|
|
*
|
|
|
|
* SCARA should wait until all XY homing is done before setting the XY
|
|
|
|
* current_position to home, because neither X nor Y is at home until
|
|
|
|
* both are at home. Z can however be homed individually.
|
|
|
|
*
|
|
|
|
* Callers must sync the planner position after calling this!
|
|
|
|
*/
|
|
|
|
static void set_axis_is_at_home(const AxisEnum axis) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
|
|
|
|
SERIAL_CHAR(')');
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
axis_known_position[axis] = axis_homed[axis] = true;
|
|
|
|
|
|
|
|
#if HAS_POSITION_SHIFT
|
|
|
|
position_shift[axis] = 0;
|
|
|
|
update_software_endstops(axis);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
|
|
|
|
current_position[X_AXIS] = x_home_pos(active_extruder);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(MORGAN_SCARA)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Morgan SCARA homes XY at the same time
|
|
|
|
*/
|
|
|
|
if (axis == X_AXIS || axis == Y_AXIS) {
|
|
|
|
|
|
|
|
float homeposition[XYZ];
|
|
|
|
LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
|
|
|
|
|
|
|
|
// SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
|
|
|
|
// SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Get Home position SCARA arm angles using inverse kinematics,
|
|
|
|
* and calculate homing offset using forward kinematics
|
|
|
|
*/
|
|
|
|
inverse_kinematics(homeposition);
|
|
|
|
forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
|
|
|
|
|
|
|
|
// SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
|
|
|
|
// SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
|
|
|
|
|
|
|
|
current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* SCARA home positions are based on configuration since the actual
|
|
|
|
* limits are determined by the inverse kinematic transform.
|
|
|
|
*/
|
|
|
|
soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
|
|
|
|
soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Z Probe Z Homing? Account for the probe's Z offset.
|
|
|
|
*/
|
|
|
|
#if HAS_BED_PROBE && Z_HOME_DIR < 0
|
|
|
|
if (axis == Z_AXIS) {
|
|
|
|
#if HOMING_Z_WITH_PROBE
|
|
|
|
|
|
|
|
current_position[Z_AXIS] -= zprobe_zoffset;
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
|
|
|
|
SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#elif ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
|
|
|
|
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
#if HAS_HOME_OFFSET
|
|
|
|
SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
|
|
|
|
SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
|
|
|
|
#endif
|
|
|
|
DEBUG_POS("", current_position);
|
|
|
|
SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
|
|
|
|
SERIAL_CHAR(')');
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
|
|
I2CPEM.homed(axis);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Some planner shorthand inline functions
|
|
|
|
*/
|
|
|
|
inline float get_homing_bump_feedrate(const AxisEnum axis) {
|
|
|
|
static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
|
|
|
|
uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
|
|
|
|
if (hbd < 1) {
|
|
|
|
hbd = 10;
|
|
|
|
SERIAL_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
|
|
|
|
}
|
|
|
|
return homing_feedrate(axis) / hbd;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Plan a move to (X, Y, Z) and set the current_position
|
|
|
|
* The final current_position may not be the one that was requested
|
|
|
|
*/
|
|
|
|
void do_blocking_move_to(const float &lx, const float &ly, const float &lz, const float &fr_mm_s/*=0.0*/) {
|
|
|
|
const float old_feedrate_mm_s = feedrate_mm_s;
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, lx, ly, lz);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
|
|
|
if (!position_is_reachable_xy(lx, ly)) return;
|
|
|
|
|
|
|
|
feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
|
|
|
|
|
|
|
|
set_destination_to_current(); // sync destination at the start
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// when in the danger zone
|
|
|
|
if (current_position[Z_AXIS] > delta_clip_start_height) {
|
|
|
|
if (lz > delta_clip_start_height) { // staying in the danger zone
|
|
|
|
destination[X_AXIS] = lx; // move directly (uninterpolated)
|
|
|
|
destination[Y_AXIS] = ly;
|
|
|
|
destination[Z_AXIS] = lz;
|
|
|
|
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
|
|
|
|
#endif
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
destination[Z_AXIS] = delta_clip_start_height;
|
|
|
|
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (lz > current_position[Z_AXIS]) { // raising?
|
|
|
|
destination[Z_AXIS] = lz;
|
|
|
|
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
destination[X_AXIS] = lx;
|
|
|
|
destination[Y_AXIS] = ly;
|
|
|
|
prepare_move_to_destination(); // set_current_to_destination
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (lz < current_position[Z_AXIS]) { // lowering?
|
|
|
|
destination[Z_AXIS] = lz;
|
|
|
|
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#elif IS_SCARA
|
|
|
|
|
|
|
|
if (!position_is_reachable_xy(lx, ly)) return;
|
|
|
|
|
|
|
|
set_destination_to_current();
|
|
|
|
|
|
|
|
// If Z needs to raise, do it before moving XY
|
|
|
|
if (destination[Z_AXIS] < lz) {
|
|
|
|
destination[Z_AXIS] = lz;
|
|
|
|
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
|
|
|
|
}
|
|
|
|
|
|
|
|
destination[X_AXIS] = lx;
|
|
|
|
destination[Y_AXIS] = ly;
|
|
|
|
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
|
|
|
|
|
|
|
|
// If Z needs to lower, do it after moving XY
|
|
|
|
if (destination[Z_AXIS] > lz) {
|
|
|
|
destination[Z_AXIS] = lz;
|
|
|
|
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
// If Z needs to raise, do it before moving XY
|
|
|
|
if (current_position[Z_AXIS] < lz) {
|
|
|
|
feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
|
|
|
|
current_position[Z_AXIS] = lz;
|
|
|
|
line_to_current_position();
|
|
|
|
}
|
|
|
|
|
|
|
|
feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
|
|
|
|
current_position[X_AXIS] = lx;
|
|
|
|
current_position[Y_AXIS] = ly;
|
|
|
|
line_to_current_position();
|
|
|
|
|
|
|
|
// If Z needs to lower, do it after moving XY
|
|
|
|
if (current_position[Z_AXIS] > lz) {
|
|
|
|
feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
|
|
|
|
current_position[Z_AXIS] = lz;
|
|
|
|
line_to_current_position();
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
stepper.synchronize();
|
|
|
|
|
|
|
|
feedrate_mm_s = old_feedrate_mm_s;
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
void do_blocking_move_to_x(const float &lx, const float &fr_mm_s/*=0.0*/) {
|
|
|
|
do_blocking_move_to(lx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
|
|
|
|
}
|
|
|
|
void do_blocking_move_to_z(const float &lz, const float &fr_mm_s/*=0.0*/) {
|
|
|
|
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], lz, fr_mm_s);
|
|
|
|
}
|
|
|
|
void do_blocking_move_to_xy(const float &lx, const float &ly, const float &fr_mm_s/*=0.0*/) {
|
|
|
|
do_blocking_move_to(lx, ly, current_position[Z_AXIS], fr_mm_s);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Prepare to do endstop or probe moves
|
|
|
|
// with custom feedrates.
|
|
|
|
//
|
|
|
|
// - Save current feedrates
|
|
|
|
// - Reset the rate multiplier
|
|
|
|
// - Reset the command timeout
|
|
|
|
// - Enable the endstops (for endstop moves)
|
|
|
|
//
|
|
|
|
static void setup_for_endstop_or_probe_move() {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
|
|
|
|
#endif
|
|
|
|
saved_feedrate_mm_s = feedrate_mm_s;
|
|
|
|
saved_feedrate_percentage = feedrate_percentage;
|
|
|
|
feedrate_percentage = 100;
|
|
|
|
gcode.refresh_cmd_timeout();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void clean_up_after_endstop_or_probe_move() {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
|
|
|
|
#endif
|
|
|
|
feedrate_mm_s = saved_feedrate_mm_s;
|
|
|
|
feedrate_percentage = saved_feedrate_percentage;
|
|
|
|
gcode.refresh_cmd_timeout();
|
|
|
|
}
|
|
|
|
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
/**
|
|
|
|
* Raise Z to a minimum height to make room for a probe to move
|
|
|
|
*/
|
|
|
|
inline void do_probe_raise(const float z_raise) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
|
|
|
|
SERIAL_CHAR(')');
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
float z_dest = z_raise;
|
|
|
|
if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
|
|
|
|
|
|
|
|
if (z_dest > current_position[Z_AXIS])
|
|
|
|
do_blocking_move_to_z(z_dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
|
|
|
|
#if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION)
|
|
|
|
|
|
|
|
bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
|
|
|
|
#if ENABLED(HOME_AFTER_DEACTIVATE)
|
|
|
|
const bool xx = x && !axis_known_position[X_AXIS],
|
|
|
|
yy = y && !axis_known_position[Y_AXIS],
|
|
|
|
zz = z && !axis_known_position[Z_AXIS];
|
|
|
|
#else
|
|
|
|
const bool xx = x && !axis_homed[X_AXIS],
|
|
|
|
yy = y && !axis_homed[Y_AXIS],
|
|
|
|
zz = z && !axis_homed[Z_AXIS];
|
|
|
|
#endif
|
|
|
|
if (xx || yy || zz) {
|
|
|
|
SERIAL_ECHO_START();
|
|
|
|
SERIAL_ECHOPGM(MSG_HOME " ");
|
|
|
|
if (xx) SERIAL_ECHOPGM(MSG_X);
|
|
|
|
if (yy) SERIAL_ECHOPGM(MSG_Y);
|
|
|
|
if (zz) SERIAL_ECHOPGM(MSG_Z);
|
|
|
|
SERIAL_ECHOLNPGM(" " MSG_FIRST);
|
|
|
|
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
|
|
lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
|
|
|
|
#endif
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
|
|
|
|
|
|
#ifndef SLED_DOCKING_OFFSET
|
|
|
|
#define SLED_DOCKING_OFFSET 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Method to dock/undock a sled designed by Charles Bell.
|
|
|
|
*
|
|
|
|
* stow[in] If false, move to MAX_X and engage the solenoid
|
|
|
|
* If true, move to MAX_X and release the solenoid
|
|
|
|
*/
|
|
|
|
static void dock_sled(bool stow) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
SERIAL_ECHOPAIR("dock_sled(", stow);
|
|
|
|
SERIAL_CHAR(')');
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Dock sled a bit closer to ensure proper capturing
|
|
|
|
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
|
|
|
|
|
|
|
|
#if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
|
|
|
|
WRITE(SOL1_PIN, !stow); // switch solenoid
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
|
|
|
|
|
|
|
FORCE_INLINE void do_blocking_move_to(const float logical[XYZ], const float &fr_mm_s) {
|
|
|
|
do_blocking_move_to(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], fr_mm_s);
|
|
|
|
}
|
|
|
|
|
|
|
|
void run_deploy_moves_script() {
|
|
|
|
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
|
|
|
|
#endif
|
|
|
|
const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
|
|
|
|
do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
|
|
|
|
#endif
|
|
|
|
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
|
|
|
|
#endif
|
|
|
|
const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
|
|
|
|
do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
|
|
|
|
#endif
|
|
|
|
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
|
|
|
|
#endif
|
|
|
|
const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
|
|
|
|
do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
|
|
|
|
#endif
|
|
|
|
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
|
|
|
|
#endif
|
|
|
|
const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
|
|
|
|
do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
|
|
|
|
#endif
|
|
|
|
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
|
|
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
|
|
|
|
#endif
|
|
|
|
const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
|
|
|
|
do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void run_stow_moves_script() {
|
|
|
|
#if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
|
|
|
|
#endif
|
|
|
|
const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
|
|
|
|
do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
|
|
|
|
#endif
|
|
|
|
#if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
|
|
|
|
#endif
|
|
|
|
const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
|
|
|
|
do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
|
|
|
|
#endif
|
|
|
|
#if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
|
|
|
|
#endif
|
|
|
|
const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
|
|
|
|
do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
|
|
|
|
#endif
|
|
|
|
#if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
|
|
|
|
#endif
|
|
|
|
const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
|
|
|
|
do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
|
|
|
|
#endif
|
|
|
|
#if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
|
|
|
|
#endif
|
|
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
|
|
|
|
#define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
|
|
|
|
#endif
|
|
|
|
const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
|
|
|
|
do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(PROBING_FANS_OFF)
|
|
|
|
|
|
|
|
void fans_pause(const bool p) {
|
|
|
|
if (p != fans_paused) {
|
|
|
|
fans_paused = p;
|
|
|
|
if (p)
|
|
|
|
for (uint8_t x = 0; x < FAN_COUNT; x++) {
|
|
|
|
paused_fanSpeeds[x] = fanSpeeds[x];
|
|
|
|
fanSpeeds[x] = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
for (uint8_t x = 0; x < FAN_COUNT; x++)
|
|
|
|
fanSpeeds[x] = paused_fanSpeeds[x];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // PROBING_FANS_OFF
|
|
|
|
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
|
|
|
|
// TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
|
|
|
|
#if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
|
|
|
|
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
|
|
|
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
|
|
|
|
#else
|
|
|
|
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if QUIET_PROBING
|
|
|
|
void probing_pause(const bool p) {
|
|
|
|
#if ENABLED(PROBING_HEATERS_OFF)
|
|
|
|
thermalManager.pause(p);
|
|
|
|
#endif
|
|
|
|
#if ENABLED(PROBING_FANS_OFF)
|
|
|
|
fans_pause(p);
|
|
|
|
#endif
|
|
|
|
if (p) safe_delay(
|
|
|
|
#if DELAY_BEFORE_PROBING > 25
|
|
|
|
DELAY_BEFORE_PROBING
|
|
|
|
#else
|
|
|
|
25
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
}
|
|
|
|
#endif // QUIET_PROBING
|
|
|
|
|
|
|
|
#if ENABLED(BLTOUCH)
|
|
|
|
|
|
|
|
void bltouch_command(int angle) {
|
|
|
|
MOVE_SERVO(Z_ENDSTOP_SERVO_NR, angle); // Give the BL-Touch the command and wait
|
|
|
|
safe_delay(BLTOUCH_DELAY);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool set_bltouch_deployed(const bool deploy) {
|
|
|
|
if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
|
|
|
|
bltouch_command(BLTOUCH_RESET); // try to reset it.
|
|
|
|
bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
|
|
|
|
bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
|
|
|
|
safe_delay(1500); // Wait for internal self-test to complete.
|
|
|
|
// (Measured completion time was 0.65 seconds
|
|
|
|
// after reset, deploy, and stow sequence)
|
|
|
|
if (TEST_BLTOUCH()) { // If it still claims to be triggered...
|
|
|
|
SERIAL_ERROR_START();
|
|
|
|
SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
|
|
|
|
stop(); // punt!
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
|
|
|
|
SERIAL_CHAR(')');
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // BLTOUCH
|
|
|
|
|
|
|
|
// returns false for ok and true for failure
|
|
|
|
bool set_probe_deployed(bool deploy) {
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
DEBUG_POS("set_probe_deployed", current_position);
|
|
|
|
SERIAL_ECHOLNPAIR("deploy: ", deploy);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (endstops.z_probe_enabled == deploy) return false;
|
|
|
|
|
|
|
|
// Make room for probe
|
|
|
|
do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
|
|
|
|
|
|
|
|
#if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
|
|
#define _AUE_ARGS true, false, false
|
|
|
|
#else
|
|
|
|
#define _AUE_ARGS
|
|
|
|
#endif
|
|
|
|
if (axis_unhomed_error(_AUE_ARGS)) {
|
|
|
|
SERIAL_ERROR_START();
|
|
|
|
SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
|
|
|
|
stop();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
const float oldXpos = current_position[X_AXIS],
|
|
|
|
oldYpos = current_position[Y_AXIS];
|
|
|
|
|
|
|
|
#ifdef _TRIGGERED_WHEN_STOWED_TEST
|
|
|
|
|
|
|
|
// If endstop is already false, the Z probe is deployed
|
|
|
|
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
|
|
|
|
// Would a goto be less ugly?
|
|
|
|
//while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
|
|
|
|
// for a triggered when stowed manual probe.
|
|
|
|
|
|
|
|
if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
|
|
|
|
// otherwise an Allen-Key probe can't be stowed.
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(SOLENOID_PROBE)
|
|
|
|
|
|
|
|
#if HAS_SOLENOID_1
|
|
|
|
WRITE(SOL1_PIN, deploy);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#elif ENABLED(Z_PROBE_SLED)
|
|
|
|
|
|
|
|
dock_sled(!deploy);
|
|
|
|
|
|
|
|
#elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
|
|
|
|
|
|
|
|
MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
|
|
|
|
|
|
|
|
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
|
|
|
|
|
|
|
deploy ? run_deploy_moves_script() : run_stow_moves_script();
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef _TRIGGERED_WHEN_STOWED_TEST
|
|
|
|
} // _TRIGGERED_WHEN_STOWED_TEST == deploy
|
|
|
|
|
|
|
|
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
|
|
|
|
|
|
|
|
if (IsRunning()) {
|
|
|
|
SERIAL_ERROR_START();
|
|
|
|
SERIAL_ERRORLNPGM("Z-Probe failed");
|
|
|
|
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
|
|
|
}
|
|
|
|
stop();
|
|
|
|
return true;
|
|
|
|
|
|
|
|
} // _TRIGGERED_WHEN_STOWED_TEST == deploy
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
|
|
|
|
endstops.enable_z_probe(deploy);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief Used by run_z_probe to do a single Z probe move.
|
|
|
|
*
|
|
|
|
* @param z Z destination
|
|
|
|
* @param fr_mm_s Feedrate in mm/s
|
|
|
|
* @return true to indicate an error
|
|
|
|
*/
|
|
|
|
static bool do_probe_move(const float z, const float fr_mm_m) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Deploy BLTouch at the start of any probe
|
|
|
|
#if ENABLED(BLTOUCH)
|
|
|
|
if (set_bltouch_deployed(true)) return true;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if QUIET_PROBING
|
|
|
|
probing_pause(true);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Move down until probe triggered
|
|
|
|
do_blocking_move_to_z(z, MMM_TO_MMS(fr_mm_m));
|
|
|
|
|
|
|
|
// Check to see if the probe was triggered
|
|
|
|
const bool probe_triggered = TEST(Endstops::endstop_hit_bits,
|
|
|
|
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
|
|
|
|
Z_MIN
|
|
|
|
#else
|
|
|
|
Z_MIN_PROBE
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
|
|
|
|
#if QUIET_PROBING
|
|
|
|
probing_pause(false);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Retract BLTouch immediately after a probe if it was triggered
|
|
|
|
#if ENABLED(BLTOUCH)
|
|
|
|
if (probe_triggered && set_bltouch_deployed(false)) return true;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Clear endstop flags
|
|
|
|
endstops.hit_on_purpose();
|
|
|
|
|
|
|
|
// Get Z where the steppers were interrupted
|
|
|
|
set_current_from_steppers_for_axis(Z_AXIS);
|
|
|
|
|
|
|
|
// Tell the planner where we actually are
|
|
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return !probe_triggered;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @details Used by probe_pt to do a single Z probe.
|
|
|
|
* Leaves current_position[Z_AXIS] at the height where the probe triggered.
|
|
|
|
*
|
|
|
|
* @param short_move Flag for a shorter probe move towards the bed
|
|
|
|
* @return The raw Z position where the probe was triggered
|
|
|
|
*/
|
|
|
|
static float run_z_probe(const bool short_move=true) {
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
|
|
|
|
gcode.refresh_cmd_timeout();
|
|
|
|
|
double bump probing as a feature
Why double touch probing is not a good thing.
It's widely believed we can get better __probing__ results when using a double touch when probing.
Let's compare to double touch __homing__.
Or better let's begin with single touch __homing__.
We home to find out out position, so our position is unknown.
To find the endstop we have to move into the direction of the endstop.
The maximum way we have to move is a bit longer than the axis length.
When we arrive at the endstop - when it triggers, the stepper pulses are stopped immediately.
It's a sudden stop. No smooth deacceleration is possible.
Depending on the speed and the moving mass we lose steps here.
Only if we approached slow enough (below jerk speed?) we will not lose steps.
Moving a complete axis length, that slow, takes for ever.
To speed up homing, we now make the first approach faster, get a guess about our position,
back up a bit and make a second slower approach to get a exact result without losing steps.
What we do in double touch probing is the same. But the difference here is:
a. we already know where we are
b. if the first approach is to fast we will lose steps here to.
But this time there is no second approach to set the position to 0. We are measuring only.
The lost steps are permanent until we home the next time.
So if you experienced permanently rising values in M48 you now know why. (Too fast, suddenly stopped, first approach)
What can we do to improve probing?
We can use the information about our current position.
We can make a really fast, but deaccelerated, move to a place we know it is a bit before the trigger point.
And then move the rest of the way really slow.
8 years ago
|
|
|
#if ENABLED(PROBE_DOUBLE_TOUCH)
|
|
|
|
|
|
|
|
// Do a first probe at the fast speed
|
|
|
|
if (do_probe_move(-10, Z_PROBE_SPEED_FAST)) return NAN;
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
float first_probe_z = current_position[Z_AXIS];
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// move up to make clearance for the probe
|
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
|
|
|
|
|
double bump probing as a feature
Why double touch probing is not a good thing.
It's widely believed we can get better __probing__ results when using a double touch when probing.
Let's compare to double touch __homing__.
Or better let's begin with single touch __homing__.
We home to find out out position, so our position is unknown.
To find the endstop we have to move into the direction of the endstop.
The maximum way we have to move is a bit longer than the axis length.
When we arrive at the endstop - when it triggers, the stepper pulses are stopped immediately.
It's a sudden stop. No smooth deacceleration is possible.
Depending on the speed and the moving mass we lose steps here.
Only if we approached slow enough (below jerk speed?) we will not lose steps.
Moving a complete axis length, that slow, takes for ever.
To speed up homing, we now make the first approach faster, get a guess about our position,
back up a bit and make a second slower approach to get a exact result without losing steps.
What we do in double touch probing is the same. But the difference here is:
a. we already know where we are
b. if the first approach is to fast we will lose steps here to.
But this time there is no second approach to set the position to 0. We are measuring only.
The lost steps are permanent until we home the next time.
So if you experienced permanently rising values in M48 you now know why. (Too fast, suddenly stopped, first approach)
What can we do to improve probing?
We can use the information about our current position.
We can make a really fast, but deaccelerated, move to a place we know it is a bit before the trigger point.
And then move the rest of the way really slow.
8 years ago
|
|
|
#else
|
|
|
|
|
|
|
|
// If the nozzle is above the travel height then
|
|
|
|
// move down quickly before doing the slow probe
|
|
|
|
float z = Z_CLEARANCE_DEPLOY_PROBE;
|
|
|
|
if (zprobe_zoffset < 0) z -= zprobe_zoffset;
|
|
|
|
|
|
|
|
if (z < current_position[Z_AXIS]) {
|
|
|
|
|
|
|
|
// If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
|
|
|
|
if (!do_probe_move(z, Z_PROBE_SPEED_FAST))
|
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
|
|
|
|
}
|
double bump probing as a feature
Why double touch probing is not a good thing.
It's widely believed we can get better __probing__ results when using a double touch when probing.
Let's compare to double touch __homing__.
Or better let's begin with single touch __homing__.
We home to find out out position, so our position is unknown.
To find the endstop we have to move into the direction of the endstop.
The maximum way we have to move is a bit longer than the axis length.
When we arrive at the endstop - when it triggers, the stepper pulses are stopped immediately.
It's a sudden stop. No smooth deacceleration is possible.
Depending on the speed and the moving mass we lose steps here.
Only if we approached slow enough (below jerk speed?) we will not lose steps.
Moving a complete axis length, that slow, takes for ever.
To speed up homing, we now make the first approach faster, get a guess about our position,
back up a bit and make a second slower approach to get a exact result without losing steps.
What we do in double touch probing is the same. But the difference here is:
a. we already know where we are
b. if the first approach is to fast we will lose steps here to.
But this time there is no second approach to set the position to 0. We are measuring only.
The lost steps are permanent until we home the next time.
So if you experienced permanently rising values in M48 you now know why. (Too fast, suddenly stopped, first approach)
What can we do to improve probing?
We can use the information about our current position.
We can make a really fast, but deaccelerated, move to a place we know it is a bit before the trigger point.
And then move the rest of the way really slow.
8 years ago
|
|
|
#endif
|
|
|
|
|
double bump probing as a feature
Why double touch probing is not a good thing.
It's widely believed we can get better __probing__ results when using a double touch when probing.
Let's compare to double touch __homing__.
Or better let's begin with single touch __homing__.
We home to find out out position, so our position is unknown.
To find the endstop we have to move into the direction of the endstop.
The maximum way we have to move is a bit longer than the axis length.
When we arrive at the endstop - when it triggers, the stepper pulses are stopped immediately.
It's a sudden stop. No smooth deacceleration is possible.
Depending on the speed and the moving mass we lose steps here.
Only if we approached slow enough (below jerk speed?) we will not lose steps.
Moving a complete axis length, that slow, takes for ever.
To speed up homing, we now make the first approach faster, get a guess about our position,
back up a bit and make a second slower approach to get a exact result without losing steps.
What we do in double touch probing is the same. But the difference here is:
a. we already know where we are
b. if the first approach is to fast we will lose steps here to.
But this time there is no second approach to set the position to 0. We are measuring only.
The lost steps are permanent until we home the next time.
So if you experienced permanently rising values in M48 you now know why. (Too fast, suddenly stopped, first approach)
What can we do to improve probing?
We can use the information about our current position.
We can make a really fast, but deaccelerated, move to a place we know it is a bit before the trigger point.
And then move the rest of the way really slow.
8 years ago
|
|
|
// move down slowly to find bed
|
|
|
|
if (do_probe_move(-10 + (short_move ? 0 : -(Z_MAX_LENGTH)), Z_PROBE_SPEED_SLOW)) return NAN;
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Debug: compare probe heights
|
|
|
|
#if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
|
|
|
|
SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return RAW_CURRENT_POSITION(Z) + zprobe_zoffset
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
+ home_offset[Z_AXIS] // Account for delta height adjustment
|
|
|
|
#endif
|
|
|
|
;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* - Move to the given XY
|
|
|
|
* - Deploy the probe, if not already deployed
|
|
|
|
* - Probe the bed, get the Z position
|
|
|
|
* - Depending on the 'stow' flag
|
|
|
|
* - Stow the probe, or
|
|
|
|
* - Raise to the BETWEEN height
|
|
|
|
* - Return the probed Z position
|
|
|
|
*/
|
|
|
|
float probe_pt(const float &lx, const float &ly, const bool stow, const uint8_t verbose_level, const bool printable=true) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
SERIAL_ECHOPAIR(">>> probe_pt(", lx);
|
|
|
|
SERIAL_ECHOPAIR(", ", ly);
|
|
|
|
SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
|
|
|
|
SERIAL_ECHOLNPGM("stow)");
|
|
|
|
DEBUG_POS("", current_position);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
const float nx = lx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ly - (Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
|
|
|
|
if (printable
|
|
|
|
? !position_is_reachable_xy(nx, ny)
|
|
|
|
: !position_is_reachable_by_probe_xy(lx, ly)
|
|
|
|
) return NAN;
|
|
|
|
|
|
|
|
|
|
|
|
const float old_feedrate_mm_s = feedrate_mm_s;
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
if (current_position[Z_AXIS] > delta_clip_start_height)
|
|
|
|
do_blocking_move_to_z(delta_clip_start_height);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
|
// Store the status of the soft endstops and disable if we're probing a non-printable location
|
|
|
|
static bool enable_soft_endstops = soft_endstops_enabled;
|
|
|
|
if (!printable) soft_endstops_enabled = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
|
|
|
|
|
|
|
|
// Move the probe to the given XY
|
|
|
|
do_blocking_move_to_xy(nx, ny);
|
|
|
|
|
|
|
|
float measured_z = NAN;
|
|
|
|
if (!DEPLOY_PROBE()) {
|
|
|
|
measured_z = run_z_probe(printable);
|
|
|
|
|
|
|
|
if (!stow)
|
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
|
|
|
|
else
|
|
|
|
if (STOW_PROBE()) measured_z = NAN;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
|
// Restore the soft endstop status
|
|
|
|
soft_endstops_enabled = enable_soft_endstops;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (verbose_level > 2) {
|
|
|
|
SERIAL_PROTOCOLPGM("Bed X: ");
|
|
|
|
SERIAL_PROTOCOL_F(lx, 3);
|
|
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
|
|
SERIAL_PROTOCOL_F(ly, 3);
|
|
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
|
|
SERIAL_PROTOCOL_F(measured_z, 3);
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
feedrate_mm_s = old_feedrate_mm_s;
|
|
|
|
|
|
|
|
if (isnan(measured_z)) {
|
|
|
|
LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
|
|
|
|
SERIAL_ERROR_START();
|
|
|
|
SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
|
|
|
|
}
|
|
|
|
|
|
|
|
return measured_z;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
|
|
|
|
#if HAS_LEVELING
|
|
|
|
|
|
|
|
bool leveling_is_valid() {
|
|
|
|
return
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
mbl.has_mesh()
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
!!bilinear_grid_spacing[X_AXIS]
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
true
|
|
|
|
#else // 3POINT, LINEAR
|
|
|
|
true
|
|
|
|
#endif
|
|
|
|
;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool leveling_is_active() {
|
|
|
|
return
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
mbl.active()
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
ubl.state.active
|
|
|
|
#else
|
|
|
|
planner.abl_enabled
|
|
|
|
#endif
|
|
|
|
;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Turn bed leveling on or off, fixing the current
|
|
|
|
* position as-needed.
|
|
|
|
*
|
|
|
|
* Disable: Current position = physical position
|
|
|
|
* Enable: Current position = "unleveled" physical position
|
|
|
|
*/
|
|
|
|
void set_bed_leveling_enabled(const bool enable/*=true*/) {
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
const bool can_change = (!enable || leveling_is_valid());
|
|
|
|
#else
|
|
|
|
constexpr bool can_change = true;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (can_change && enable != leveling_is_active()) {
|
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
|
|
|
if (!enable)
|
|
|
|
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
|
|
|
|
|
|
const bool enabling = enable && leveling_is_valid();
|
|
|
|
mbl.set_active(enabling);
|
|
|
|
if (enabling) planner.unapply_leveling(current_position);
|
|
|
|
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
#if PLANNER_LEVELING
|
|
|
|
if (ubl.state.active) { // leveling from on to off
|
|
|
|
// change unleveled current_position to physical current_position without moving steppers.
|
|
|
|
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
|
|
ubl.state.active = false; // disable only AFTER calling apply_leveling
|
|
|
|
}
|
|
|
|
else { // leveling from off to on
|
|
|
|
ubl.state.active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
|
|
|
|
// change physical current_position to unleveled current_position without moving steppers.
|
|
|
|
planner.unapply_leveling(current_position);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
ubl.state.active = enable; // just flip the bit, current_position will be wrong until next move.
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#else // ABL
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
// Force bilinear_z_offset to re-calculate next time
|
|
|
|
const float reset[XYZ] = { -9999.999, -9999.999, 0 };
|
|
|
|
(void)bilinear_z_offset(reset);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Enable or disable leveling compensation in the planner
|
|
|
|
planner.abl_enabled = enable;
|
|
|
|
|
|
|
|
if (!enable)
|
|
|
|
// When disabling just get the current position from the steppers.
|
|
|
|
// This will yield the smallest error when first converted back to steps.
|
|
|
|
set_current_from_steppers_for_axis(
|
|
|
|
#if ABL_PLANAR
|
|
|
|
ALL_AXES
|
|
|
|
#else
|
|
|
|
Z_AXIS
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
else
|
|
|
|
// When enabling, remove compensation from the current position,
|
|
|
|
// so compensation will give the right stepper counts.
|
|
|
|
planner.unapply_leveling(current_position);
|
|
|
|
|
|
|
|
#endif // ABL
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
|
|
|
|
|
void set_z_fade_height(const float zfh) {
|
|
|
|
|
|
|
|
const bool level_active = leveling_is_active();
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
|
|
|
|
if (level_active)
|
|
|
|
set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
|
|
|
|
planner.z_fade_height = zfh;
|
|
|
|
planner.inverse_z_fade_height = RECIPROCAL(zfh);
|
|
|
|
if (level_active)
|
|
|
|
set_bed_leveling_enabled(true); // turn back on after changing fade height
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
planner.z_fade_height = zfh;
|
|
|
|
planner.inverse_z_fade_height = RECIPROCAL(zfh);
|
|
|
|
|
|
|
|
if (level_active) {
|
|
|
|
set_current_from_steppers_for_axis(
|
|
|
|
#if ABL_PLANAR
|
|
|
|
ALL_AXES
|
|
|
|
#else
|
|
|
|
Z_AXIS
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // LEVELING_FADE_HEIGHT
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Reset calibration results to zero.
|
|
|
|
*/
|
|
|
|
void reset_bed_level() {
|
|
|
|
set_bed_leveling_enabled(false);
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
if (leveling_is_valid()) {
|
|
|
|
mbl.reset();
|
|
|
|
mbl.set_has_mesh(false);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
|
|
|
|
#endif
|
|
|
|
#if ABL_PLANAR
|
|
|
|
planner.bed_level_matrix.set_to_identity();
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
|
|
|
|
bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
|
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
|
z_values[x][y] = NAN;
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
ubl.reset();
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // HAS_LEVELING
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Enable to produce output in JSON format suitable
|
|
|
|
* for SCAD or JavaScript mesh visualizers.
|
|
|
|
*
|
|
|
|
* Visualize meshes in OpenSCAD using the included script.
|
|
|
|
*
|
|
|
|
* buildroot/shared/scripts/MarlinMesh.scad
|
|
|
|
*/
|
|
|
|
//#define SCAD_MESH_OUTPUT
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Print calibration results for plotting or manual frame adjustment.
|
|
|
|
*/
|
|
|
|
static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
|
|
|
|
#ifndef SCAD_MESH_OUTPUT
|
|
|
|
for (uint8_t x = 0; x < sx; x++) {
|
|
|
|
for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
|
|
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
|
|
SERIAL_PROTOCOL((int)x);
|
|
|
|
}
|
|
|
|
SERIAL_EOL();
|
|
|
|
#endif
|
|
|
|
#ifdef SCAD_MESH_OUTPUT
|
|
|
|
SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
|
|
|
|
#endif
|
|
|
|
for (uint8_t y = 0; y < sy; y++) {
|
|
|
|
#ifdef SCAD_MESH_OUTPUT
|
|
|
|
SERIAL_PROTOCOLPGM(" ["); // open sub-array
|
|
|
|
#else
|
|
|
|
if (y < 10) SERIAL_PROTOCOLCHAR(' ');
|
|
|
|
SERIAL_PROTOCOL((int)y);
|
|
|
|
#endif
|
|
|
|
for (uint8_t x = 0; x < sx; x++) {
|
|
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
|
|
const float offset = fn(x, y);
|
|
|
|
if (!isnan(offset)) {
|
|
|
|
if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
|
|
|
|
SERIAL_PROTOCOL_F(offset, precision);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
#ifdef SCAD_MESH_OUTPUT
|
|
|
|
for (uint8_t i = 3; i < precision + 3; i++)
|
|
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
|
|
SERIAL_PROTOCOLPGM("NAN");
|
|
|
|
#else
|
|
|
|
for (uint8_t i = 0; i < precision + 3; i++)
|
|
|
|
SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#ifdef SCAD_MESH_OUTPUT
|
|
|
|
if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#ifdef SCAD_MESH_OUTPUT
|
|
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
|
|
SERIAL_PROTOCOLCHAR(']'); // close sub-array
|
|
|
|
if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
|
|
|
|
#endif
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
#ifdef SCAD_MESH_OUTPUT
|
|
|
|
SERIAL_PROTOCOLPGM("];"); // close 2D array
|
|
|
|
#endif
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Extrapolate a single point from its neighbors
|
|
|
|
*/
|
|
|
|
static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
SERIAL_ECHOPGM("Extrapolate [");
|
|
|
|
if (x < 10) SERIAL_CHAR(' ');
|
|
|
|
SERIAL_ECHO((int)x);
|
|
|
|
SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
|
|
|
|
SERIAL_CHAR(' ');
|
|
|
|
if (y < 10) SERIAL_CHAR(' ');
|
|
|
|
SERIAL_ECHO((int)y);
|
|
|
|
SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
|
|
|
|
SERIAL_CHAR(']');
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if (!isnan(z_values[x][y])) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
|
|
|
|
#endif
|
|
|
|
return; // Don't overwrite good values.
|
|
|
|
}
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
|
|
|
// Get X neighbors, Y neighbors, and XY neighbors
|
|
|
|
const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
|
|
|
|
float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
|
|
|
|
b1 = z_values[x ][y1], b2 = z_values[x ][y2],
|
|
|
|
c1 = z_values[x1][y1], c2 = z_values[x2][y2];
|
|
|
|
|
|
|
|
// Treat far unprobed points as zero, near as equal to far
|
|
|
|
if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
|
|
|
|
if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
|
|
|
|
if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
|
|
|
|
|
|
|
|
const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
|
|
|
|
|
|
|
|
// Take the average instead of the median
|
|
|
|
z_values[x][y] = (a + b + c) / 3.0;
|
|
|
|
|
|
|
|
// Median is robust (ignores outliers).
|
|
|
|
// z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
|
|
|
|
// : ((c < b) ? b : (a < c) ? a : c);
|
|
|
|
}
|
|
|
|
|
|
|
|
//Enable this if your SCARA uses 180° of total area
|
|
|
|
//#define EXTRAPOLATE_FROM_EDGE
|
|
|
|
|
|
|
|
#if ENABLED(EXTRAPOLATE_FROM_EDGE)
|
|
|
|
#if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
|
|
|
|
#define HALF_IN_X
|
|
|
|
#elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
|
|
|
|
#define HALF_IN_Y
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Fill in the unprobed points (corners of circular print surface)
|
|
|
|
* using linear extrapolation, away from the center.
|
|
|
|
*/
|
|
|
|
static void extrapolate_unprobed_bed_level() {
|
|
|
|
#ifdef HALF_IN_X
|
|
|
|
constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
|
|
|
|
#else
|
|
|
|
constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
|
|
|
|
ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
|
|
|
|
xlen = ctrx1;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HALF_IN_Y
|
|
|
|
constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
|
|
|
|
#else
|
|
|
|
constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
|
|
|
|
ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
|
|
|
|
ylen = ctry1;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
for (uint8_t xo = 0; xo <= xlen; xo++)
|
|
|
|
for (uint8_t yo = 0; yo <= ylen; yo++) {
|
|
|
|
uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
|
|
|
|
#ifndef HALF_IN_X
|
|
|
|
const uint8_t x1 = ctrx1 - xo;
|
|
|
|
#endif
|
|
|
|
#ifndef HALF_IN_Y
|
|
|
|
const uint8_t y1 = ctry1 - yo;
|
|
|
|
#ifndef HALF_IN_X
|
|
|
|
extrapolate_one_point(x1, y1, +1, +1); // left-below + +
|
|
|
|
#endif
|
|
|
|
extrapolate_one_point(x2, y1, -1, +1); // right-below - +
|
|
|
|
#endif
|
|
|
|
#ifndef HALF_IN_X
|
|
|
|
extrapolate_one_point(x1, y2, +1, -1); // left-above + -
|
|
|
|
#endif
|
|
|
|
extrapolate_one_point(x2, y2, -1, -1); // right-above - -
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void print_bilinear_leveling_grid() {
|
|
|
|
SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
|
|
|
|
print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
|
|
|
|
[](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
|
|
|
|
|
|
#define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
|
|
|
|
#define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
|
|
|
|
#define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
|
|
|
|
#define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
|
|
|
|
float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
|
|
|
|
int bilinear_grid_spacing_virt[2] = { 0 };
|
|
|
|
float bilinear_grid_factor_virt[2] = { 0 };
|
|
|
|
|
|
|
|
static void print_bilinear_leveling_grid_virt() {
|
|
|
|
SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
|
|
|
|
print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
|
|
|
|
[](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
|
|
|
|
float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
|
|
|
|
uint8_t ep = 0, ip = 1;
|
|
|
|
if (!x || x == ABL_TEMP_POINTS_X - 1) {
|
|
|
|
if (x) {
|
|
|
|
ep = GRID_MAX_POINTS_X - 1;
|
|
|
|
ip = GRID_MAX_POINTS_X - 2;
|
|
|
|
}
|
|
|
|
if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
|
|
|
|
return LINEAR_EXTRAPOLATION(
|
|
|
|
z_values[ep][y - 1],
|
|
|
|
z_values[ip][y - 1]
|
|
|
|
);
|
|
|
|
else
|
|
|
|
return LINEAR_EXTRAPOLATION(
|
|
|
|
bed_level_virt_coord(ep + 1, y),
|
|
|
|
bed_level_virt_coord(ip + 1, y)
|
|
|
|
);
|
|
|
|
}
|
|
|
|
if (!y || y == ABL_TEMP_POINTS_Y - 1) {
|
|
|
|
if (y) {
|
|
|
|
ep = GRID_MAX_POINTS_Y - 1;
|
|
|
|
ip = GRID_MAX_POINTS_Y - 2;
|
|
|
|
}
|
|
|
|
if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
|
|
|
|
return LINEAR_EXTRAPOLATION(
|
|
|
|
z_values[x - 1][ep],
|
|
|
|
z_values[x - 1][ip]
|
|
|
|
);
|
|
|
|
else
|
|
|
|
return LINEAR_EXTRAPOLATION(
|
|
|
|
bed_level_virt_coord(x, ep + 1),
|
|
|
|
bed_level_virt_coord(x, ip + 1)
|
|
|
|
);
|
|
|
|
}
|
|
|
|
return z_values[x - 1][y - 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
|
|
|
|
return (
|
|
|
|
p[i-1] * -t * sq(1 - t)
|
|
|
|
+ p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
|
|
|
|
+ p[i+1] * t * (1 + 4 * t - 3 * sq(t))
|
|
|
|
- p[i+2] * sq(t) * (1 - t)
|
|
|
|
) * 0.5;
|
|
|
|
}
|
|
|
|
|
|
|
|
static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
|
|
|
|
float row[4], column[4];
|
|
|
|
for (uint8_t i = 0; i < 4; i++) {
|
|
|
|
for (uint8_t j = 0; j < 4; j++) {
|
|
|
|
column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
|
|
|
|
}
|
|
|
|
row[i] = bed_level_virt_cmr(column, 1, ty);
|
|
|
|
}
|
|
|
|
return bed_level_virt_cmr(row, 1, tx);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bed_level_virt_interpolate() {
|
|
|
|
bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
|
|
|
|
bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
|
|
|
|
bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
|
|
|
|
bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
|
|
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
|
for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
|
|
|
|
for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
|
|
|
|
if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
|
|
|
|
continue;
|
|
|
|
z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
|
|
|
|
bed_level_virt_2cmr(
|
|
|
|
x + 1,
|
|
|
|
y + 1,
|
|
|
|
(float)tx / (BILINEAR_SUBDIVISIONS),
|
|
|
|
(float)ty / (BILINEAR_SUBDIVISIONS)
|
|
|
|
);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif // ABL_BILINEAR_SUBDIVISION
|
|
|
|
|
|
|
|
// Refresh after other values have been updated
|
|
|
|
void refresh_bed_level() {
|
|
|
|
bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
|
|
|
|
bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
|
|
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
|
|
bed_level_virt_interpolate();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Home an individual linear axis
|
|
|
|
*/
|
|
|
|
static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
|
|
|
|
SERIAL_ECHOPAIR(", ", distance);
|
|
|
|
SERIAL_ECHOPAIR(", ", fr_mm_s);
|
|
|
|
SERIAL_CHAR(')');
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
|
|
|
|
const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
|
|
|
|
if (deploy_bltouch) set_bltouch_deployed(true);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if QUIET_PROBING
|
|
|
|
if (axis == Z_AXIS) probing_pause(true);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Tell the planner we're at Z=0
|
|
|
|
current_position[axis] = 0;
|
|
|
|
|
|
|
|
#if IS_SCARA
|
|
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
current_position[axis] = distance;
|
|
|
|
inverse_kinematics(current_position);
|
|
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
|
|
|
|
#else
|
|
|
|
sync_plan_position();
|
|
|
|
current_position[axis] = distance;
|
|
|
|
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
stepper.synchronize();
|
|
|
|
|
|
|
|
#if QUIET_PROBING
|
|
|
|
if (axis == Z_AXIS) probing_pause(false);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
|
|
|
|
if (deploy_bltouch) set_bltouch_deployed(false);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
endstops.hit_on_purpose();
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
|
|
|
|
SERIAL_CHAR(')');
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* TMC2130 specific sensorless homing using stallGuard2.
|
|
|
|
* stallGuard2 only works when in spreadCycle mode.
|
|
|
|
* spreadCycle and stealthChop are mutually exclusive.
|
|
|
|
*/
|
|
|
|
#if ENABLED(SENSORLESS_HOMING)
|
|
|
|
void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
|
|
|
|
#if ENABLED(STEALTHCHOP)
|
|
|
|
if (enable) {
|
|
|
|
st.coolstep_min_speed(1024UL * 1024UL - 1UL);
|
|
|
|
st.stealthChop(0);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
st.coolstep_min_speed(0);
|
|
|
|
st.stealthChop(1);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
st.diag1_stall(enable ? 1 : 0);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Home an individual "raw axis" to its endstop.
|
|
|
|
* This applies to XYZ on Cartesian and Core robots, and
|
|
|
|
* to the individual ABC steppers on DELTA and SCARA.
|
|
|
|
*
|
|
|
|
* At the end of the procedure the axis is marked as
|
|
|
|
* homed and the current position of that axis is updated.
|
|
|
|
* Kinematic robots should wait till all axes are homed
|
|
|
|
* before updating the current position.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
|
|
|
|
|
|
|
|
static void homeaxis(const AxisEnum axis) {
|
|
|
|
|
|
|
|
#if IS_SCARA
|
|
|
|
// Only Z homing (with probe) is permitted
|
|
|
|
if (axis != Z_AXIS) { BUZZ(100, 880); return; }
|
|
|
|
#else
|
|
|
|
#define CAN_HOME(A) \
|
|
|
|
(axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
|
|
|
|
if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
|
|
|
|
SERIAL_CHAR(')');
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
const int axis_home_dir =
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
(axis == X_AXIS) ? x_home_dir(active_extruder) :
|
|
|
|
#endif
|
|
|
|
home_dir(axis);
|
|
|
|
|
|
|
|
// Homing Z towards the bed? Deploy the Z probe or endstop.
|
|
|
|
#if HOMING_Z_WITH_PROBE
|
|
|
|
if (axis == Z_AXIS && DEPLOY_PROBE()) return;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Set a flag for Z motor locking
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
if (axis == Z_AXIS) stepper.set_homing_flag(true);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Disable stealthChop if used. Enable diag1 pin on driver.
|
|
|
|
#if ENABLED(SENSORLESS_HOMING)
|
|
|
|
#if ENABLED(X_IS_TMC2130)
|
|
|
|
if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
|
|
|
|
#endif
|
|
|
|
#if ENABLED(Y_IS_TMC2130)
|
|
|
|
if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Fast move towards endstop until triggered
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
|
|
|
|
#endif
|
|
|
|
do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
|
|
|
|
|
|
|
|
// When homing Z with probe respect probe clearance
|
|
|
|
const float bump = axis_home_dir * (
|
|
|
|
#if HOMING_Z_WITH_PROBE
|
|
|
|
(axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
|
|
|
|
#endif
|
|
|
|
home_bump_mm(axis)
|
|
|
|
);
|
|
|
|
|
|
|
|
// If a second homing move is configured...
|
|
|
|
if (bump) {
|
|
|
|
// Move away from the endstop by the axis HOME_BUMP_MM
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
|
|
|
|
#endif
|
|
|
|
do_homing_move(axis, -bump);
|
|
|
|
|
|
|
|
// Slow move towards endstop until triggered
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
|
|
|
|
#endif
|
|
|
|
do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
|
|
|
|
}
|
|
|
|
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
if (axis == Z_AXIS) {
|
|
|
|
float adj = FABS(z_endstop_adj);
|
|
|
|
bool lockZ1;
|
|
|
|
if (axis_home_dir > 0) {
|
|
|
|
adj = -adj;
|
|
|
|
lockZ1 = (z_endstop_adj > 0);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
lockZ1 = (z_endstop_adj < 0);
|
|
|
|
|
|
|
|
if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
|
|
|
|
|
|
|
|
// Move to the adjusted endstop height
|
|
|
|
do_homing_move(axis, adj);
|
|
|
|
|
|
|
|
if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
|
|
|
|
stepper.set_homing_flag(false);
|
|
|
|
} // Z_AXIS
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if IS_SCARA
|
|
|
|
|
|
|
|
set_axis_is_at_home(axis);
|
|
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
|
|
|
|
#elif ENABLED(DELTA)
|
|
|
|
|
|
|
|
// Delta has already moved all three towers up in G28
|
|
|
|
// so here it re-homes each tower in turn.
|
|
|
|
// Delta homing treats the axes as normal linear axes.
|
|
|
|
|
|
|
|
// retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
|
|
|
|
if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
|
|
|
|
#endif
|
|
|
|
do_homing_move(axis, endstop_adj[axis] - 0.1);
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
// For cartesian/core machines,
|
|
|
|
// set the axis to its home position
|
|
|
|
set_axis_is_at_home(axis);
|
|
|
|
sync_plan_position();
|
|
|
|
|
|
|
|
destination[axis] = current_position[axis];
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Re-enable stealthChop if used. Disable diag1 pin on driver.
|
|
|
|
#if ENABLED(SENSORLESS_HOMING)
|
|
|
|
#if ENABLED(X_IS_TMC2130)
|
|
|
|
if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
|
|
|
|
#endif
|
|
|
|
#if ENABLED(Y_IS_TMC2130)
|
|
|
|
if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Put away the Z probe
|
|
|
|
#if HOMING_Z_WITH_PROBE
|
|
|
|
if (axis == Z_AXIS && STOW_PROBE()) return;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
|
|
|
|
SERIAL_CHAR(')');
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
} // homeaxis()
|
|
|
|
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
|
|
|
|
void normalize_mix() {
|
|
|
|
float mix_total = 0.0;
|
|
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
|
|
|
|
// Scale all values if they don't add up to ~1.0
|
|
|
|
if (!NEAR(mix_total, 1.0)) {
|
|
|
|
SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
|
|
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#if ENABLED(DIRECT_MIXING_IN_G1)
|
|
|
|
// Get mixing parameters from the GCode
|
|
|
|
// The total "must" be 1.0 (but it will be normalized)
|
|
|
|
// If no mix factors are given, the old mix is preserved
|
|
|
|
void gcode_get_mix() {
|
|
|
|
const char* mixing_codes = "ABCDHI";
|
|
|
|
byte mix_bits = 0;
|
|
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
|
|
|
|
if (parser.seenval(mixing_codes[i])) {
|
|
|
|
SBI(mix_bits, i);
|
|
|
|
float v = parser.value_float();
|
|
|
|
NOLESS(v, 0.0);
|
|
|
|
mixing_factor[i] = RECIPROCAL(v);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// If any mixing factors were included, clear the rest
|
|
|
|
// If none were included, preserve the last mix
|
|
|
|
if (mix_bits) {
|
|
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
|
|
if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
|
|
|
|
normalize_mix();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**************************************************
|
|
|
|
***************** GCode Handlers *****************
|
|
|
|
**************************************************/
|
|
|
|
|
|
|
|
#if ENABLED(ARC_SUPPORT)
|
|
|
|
#include "gcode/motion/G2_G3.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void dwell(millis_t time) {
|
|
|
|
gcode.refresh_cmd_timeout();
|
|
|
|
time += previous_cmd_ms;
|
|
|
|
while (PENDING(millis(), time)) idle();
|
|
|
|
}
|
|
|
|
|
|
|
|
#include "gcode/motion/G4.h"
|
|
|
|
|
|
|
|
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
|
|
#include "gcode/motion/G5.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(NOZZLE_CLEAN_FEATURE)
|
|
|
|
#include "gcode/feature/clean/G12.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(CNC_WORKSPACE_PLANES)
|
|
|
|
#include "gcode/geometry/G17-G19.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(INCH_MODE_SUPPORT)
|
|
|
|
#include "gcode/units/G20_G21.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
|
|
|
#include "gcode/calibrate/G26.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(NOZZLE_PARK_FEATURE)
|
|
|
|
#include "gcode/feature/pause/G27.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
bool g29_in_progress = false;
|
|
|
|
#else
|
|
|
|
constexpr bool g29_in_progress = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/calibrate/G28.h"
|
|
|
|
|
|
|
|
void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
|
|
|
#if HAS_PROBING_PROCEDURE
|
|
|
|
|
|
|
|
void out_of_range_error(const char* p_edge) {
|
|
|
|
SERIAL_PROTOCOLPGM("?Probe ");
|
|
|
|
serialprintPGM(p_edge);
|
|
|
|
SERIAL_PROTOCOLLNPGM(" position out of range.");
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/calibrate/G29.h"
|
|
|
|
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
#include "gcode/probe/G30.h"
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
|
|
#include "gcode/probe/G31_G32.h"
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if PROBE_SELECTED && ENABLED(DELTA_AUTO_CALIBRATION)
|
|
|
|
#include "gcode/calibrate/G33.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(G38_PROBE_TARGET)
|
|
|
|
#include "gcode/probe/G38.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_MESH
|
|
|
|
#include "gcode/probe/G42.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/geometry/G92.h"
|
|
|
|
|
|
|
|
#if HAS_RESUME_CONTINUE
|
|
|
|
#include "gcode/lcd/M0_M1.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(SPINDLE_LASER_ENABLE)
|
|
|
|
#include "gcode/control/M3-M5.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/control/M17.h"
|
|
|
|
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
|
// For M125, M600, M24
|
|
|
|
#include "gcode/feature/pause/common.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
#include "gcode/sdcard/M20.h" // M20 - List SD card. (Requires SDSUPPORT)
|
|
|
|
#include "gcode/sdcard/M21.h" // M21 - Init SD card. (Requires SDSUPPORT)
|
|
|
|
#include "gcode/sdcard/M22.h" // M22 - Release SD card. (Requires SDSUPPORT)
|
|
|
|
#include "gcode/sdcard/M23.h" // M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
|
|
|
|
#include "gcode/sdcard/M24.h" // M24 - Start/resume SD print. (Requires SDSUPPORT)
|
|
|
|
#include "gcode/sdcard/M25.h" // M25 - Pause SD print. (Requires SDSUPPORT)
|
|
|
|
#include "gcode/sdcard/M26.h" // M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
|
|
|
|
#include "gcode/sdcard/M27.h" // M27 - Report SD print status. (Requires SDSUPPORT)
|
|
|
|
#include "gcode/sdcard/M28.h" // M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
|
|
|
|
#include "gcode/sdcard/M29.h" // M29 - Stop SD write. (Requires SDSUPPORT)
|
|
|
|
#include "gcode/sdcard/M30.h" // M30 - Delete file from SD: "M30 /path/file.gco"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/stats/M31.h" // M31: Get the time since the start of SD Print (or last M109)
|
|
|
|
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
#include "gcode/sdcard/M32.h"
|
|
|
|
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
|
|
|
|
#include "gcode/sdcard/M33.h"
|
|
|
|
#endif
|
|
|
|
#if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
|
|
|
|
#include "gcode/sdcard/M34.h"
|
|
|
|
#endif
|
|
|
|
#include "gcode/sdcard/M928.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Sensitive pin test for M42, M226
|
|
|
|
*/
|
|
|
|
static bool pin_is_protected(const int8_t pin) {
|
|
|
|
static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
|
|
|
|
for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
|
|
|
|
if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
#include "gcode/control/M42.h"
|
|
|
|
|
|
|
|
#if ENABLED(PINS_DEBUGGING)
|
|
|
|
#include "gcode/config/M43.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
|
|
|
|
#include "gcode/calibrate/M48.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
|
|
|
|
#include "gcode/calibrate/M49.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/stats/M75.h"
|
|
|
|
#include "gcode/stats/M76.h"
|
|
|
|
#include "gcode/stats/M77.h"
|
|
|
|
|
|
|
|
#if ENABLED(PRINTCOUNTER)
|
|
|
|
#include "gcode/stats/M78.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/temperature/M105.h"
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
|
|
|
|
|
|
|
|
static uint8_t auto_report_temp_interval;
|
|
|
|
static millis_t next_temp_report_ms;
|
|
|
|
|
|
|
|
inline void auto_report_temperatures() {
|
|
|
|
if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
|
|
|
|
next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
|
|
|
|
thermalManager.print_heaterstates();
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#include "gcode/temperature/M155.h"
|
|
|
|
|
|
|
|
#endif // AUTO_REPORT_TEMPERATURES && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
|
|
|
|
|
|
|
|
#if FAN_COUNT > 0
|
|
|
|
#include "gcode/temperature/M106.h"
|
|
|
|
#include "gcode/temperature/M107.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if DISABLED(EMERGENCY_PARSER)
|
|
|
|
#include "gcode/control/M108.h"
|
|
|
|
#include "gcode/control/M112.h"
|
|
|
|
#include "gcode/control/M410.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_TEMP_BED
|
|
|
|
#include "gcode/temperature/M190.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/host/M110.h"
|
|
|
|
|
|
|
|
#include "gcode/control/M111.h"
|
|
|
|
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
|
|
#include "gcode/host/M113.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(BARICUDA)
|
|
|
|
#if HAS_HEATER_1
|
|
|
|
#include "gcode/feature/baricuda/M126.h"
|
|
|
|
#include "gcode/feature/baricuda/M127.h"
|
|
|
|
#endif
|
|
|
|
#if HAS_HEATER_2
|
|
|
|
#include "gcode/feature/baricuda/M128.h"
|
|
|
|
#include "gcode/feature/baricuda/M129.h"
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/temperature/M140.h"
|
|
|
|
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
#include "gcode/lcd/M145.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
|
|
#include "gcode/units/M149.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_POWER_SWITCH
|
|
|
|
#include "gcode/control/M80.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/control/M81.h"
|
|
|
|
|
|
|
|
#include "gcode/units/M82_M83.h"
|
|
|
|
|
|
|
|
#include "gcode/control/M18_M84.h"
|
|
|
|
|
|
|
|
#include "gcode/control/M85.h"
|
|
|
|
|
|
|
|
#include "gcode/config/M92.h"
|
|
|
|
|
|
|
|
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
|
|
|
#include "gcode/calibrate/M100.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Output the current position to serial
|
|
|
|
*/
|
|
|
|
void report_current_position() {
|
|
|
|
SERIAL_PROTOCOLPGM("X:");
|
|
|
|
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
|
|
|
SERIAL_PROTOCOLPGM(" Y:");
|
|
|
|
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
|
|
|
SERIAL_PROTOCOLPGM(" Z:");
|
|
|
|
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
|
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
|
|
SERIAL_PROTOCOL(current_position[E_AXIS]);
|
|
|
|
|
|
|
|
stepper.report_positions();
|
|
|
|
|
|
|
|
#if IS_SCARA
|
|
|
|
SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
|
|
|
|
SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
|
|
|
|
SERIAL_EOL();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#include "gcode/host/M114.h"
|
|
|
|
#include "gcode/host/M115.h"
|
|
|
|
|
|
|
|
#include "gcode/lcd/M117.h"
|
|
|
|
|
|
|
|
#include "gcode/host/M118.h"
|
|
|
|
#include "gcode/host/M119.h"
|
|
|
|
|
|
|
|
#include "gcode/control/M120_M121.h"
|
|
|
|
|
|
|
|
#if ENABLED(PARK_HEAD_ON_PAUSE)
|
|
|
|
#include "gcode/feature/pause/M125.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_COLOR_LEDS
|
|
|
|
#include "gcode/feature/leds/M150.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/config/M201.h"
|
|
|
|
|
|
|
|
#if 0 // Not used for Sprinter/grbl gen6
|
|
|
|
#include "gcode/config/M202.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/config/M203.h"
|
|
|
|
#include "gcode/config/M204.h"
|
|
|
|
#include "gcode/config/M205.h"
|
|
|
|
|
|
|
|
#if HAS_M206_COMMAND
|
|
|
|
#include "gcode/geometry/M206.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if IS_KINEMATIC
|
|
|
|
#include "gcode/calibrate/M665.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
#include "gcode/calibrate/M666.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/control/M211.h"
|
|
|
|
|
|
|
|
#include "gcode/config/M220.h"
|
|
|
|
|
|
|
|
#include "gcode/control/M226.h"
|
|
|
|
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
|
|
#include "gcode/feature/i2c/M260_M261.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_SERVOS
|
|
|
|
#include "gcode/control/M280.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_BUZZER
|
|
|
|
#include "gcode/lcd/M300.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
#include "gcode/config/M301.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
#include "gcode/config/M304.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(CHDK) || HAS_PHOTOGRAPH
|
|
|
|
#include "gcode/feature/camera/M240.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
|
|
#include "gcode/lcd/M250.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
|
|
#include "gcode/config/M302.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(MORGAN_SCARA)
|
|
|
|
#include "gcode/scara/M360-M364.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(EXT_SOLENOID)
|
|
|
|
#include "gcode/control/M380_M381.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/control/M400.h"
|
|
|
|
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
#include "gcode/probe/M401_M402.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
|
#include "gcode/sensor/M404.h"
|
|
|
|
#include "gcode/sensor/M405.h"
|
|
|
|
#include "gcode/sensor/M406.h"
|
|
|
|
#include "gcode/sensor/M407.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void quickstop_stepper() {
|
|
|
|
stepper.quick_stop();
|
|
|
|
stepper.synchronize();
|
|
|
|
set_current_from_steppers_for_axis(ALL_AXES);
|
|
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
}
|
|
|
|
|
|
|
|
#if HAS_LEVELING
|
|
|
|
#include "gcode/calibrate/M420.h"
|
|
|
|
#include "gcode/calibrate/M421.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_M206_COMMAND
|
|
|
|
#include "gcode/geometry/M428.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/eeprom/M500.h"
|
|
|
|
#include "gcode/eeprom/M501.h"
|
|
|
|
#include "gcode/eeprom/M502.h"
|
|
|
|
#if DISABLED(DISABLE_M503)
|
|
|
|
#include "gcode/eeprom/M503.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
|
|
#include "gcode/config/M540.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
#include "gcode/probe/M851.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
|
#include "gcode/feature/pause/M600.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(MK2_MULTIPLEXER)
|
|
|
|
#include "gcode/feature/snmm/M702.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
|
|
#include "gcode/control/M605.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
#include "gcode/feature/advance/M900.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(HAVE_TMC2130)
|
|
|
|
#include "feature/tmc2130.h"
|
|
|
|
#include "gcode/feature/trinamic/M906.h"
|
|
|
|
#include "gcode/feature/trinamic/M911.h"
|
|
|
|
#include "gcode/feature/trinamic/M912.h"
|
|
|
|
#if ENABLED(HYBRID_THRESHOLD)
|
|
|
|
#include "gcode/feature/trinamic/M913.h"
|
|
|
|
#endif
|
|
|
|
#if ENABLED(SENSORLESS_HOMING)
|
|
|
|
#include "gcode/feature/trinamic/M914.h"
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/feature/digipot/M907.h"
|
|
|
|
|
|
|
|
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
|
|
|
|
#include "gcode/feature/digipot/M908.h"
|
|
|
|
#if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
|
|
|
|
#include "gcode/feature/digipot/M909.h"
|
|
|
|
#include "gcode/feature/digipot/M910.h"
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_MICROSTEPS
|
|
|
|
#include "gcode/control/M350.h"
|
|
|
|
#include "gcode/control/M351.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/feature/caselight/M355.h"
|
|
|
|
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
#include "gcode/feature/mixing/M163.h"
|
|
|
|
#if MIXING_VIRTUAL_TOOLS > 1
|
|
|
|
#include "gcode/feature/mixing/M164.h"
|
|
|
|
#endif
|
|
|
|
#if ENABLED(DIRECT_MIXING_IN_G1)
|
|
|
|
#include "gcode/feature/mixing/M165.h"
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "gcode/control/M999.h"
|
|
|
|
|
|
|
|
#include "gcode/control/T.h"
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
|
|
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
|
|
#define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
|
|
|
|
#define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
|
|
|
|
#define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
|
|
|
|
#define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
|
|
|
|
#define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
|
|
|
|
#else
|
|
|
|
#define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
|
|
|
|
#define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
|
|
|
|
#define ABL_BG_POINTS_X GRID_MAX_POINTS_X
|
|
|
|
#define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
|
|
|
|
#define ABL_BG_GRID(X,Y) z_values[X][Y]
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Get the Z adjustment for non-linear bed leveling
|
|
|
|
float bilinear_z_offset(const float logical[XYZ]) {
|
|
|
|
|
|
|
|
static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
|
|
|
|
last_x = -999.999, last_y = -999.999;
|
|
|
|
|
|
|
|
// Whole units for the grid line indices. Constrained within bounds.
|
|
|
|
static int8_t gridx, gridy, nextx, nexty,
|
|
|
|
last_gridx = -99, last_gridy = -99;
|
|
|
|
|
|
|
|
// XY relative to the probed area
|
|
|
|
const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
|
|
|
|
y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
|
|
|
|
|
|
|
|
#if ENABLED(EXTRAPOLATE_BEYOND_GRID)
|
|
|
|
// Keep using the last grid box
|
|
|
|
#define FAR_EDGE_OR_BOX 2
|
|
|
|
#else
|
|
|
|
// Just use the grid far edge
|
|
|
|
#define FAR_EDGE_OR_BOX 1
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (last_x != x) {
|
|
|
|
last_x = x;
|
|
|
|
ratio_x = x * ABL_BG_FACTOR(X_AXIS);
|
|
|
|
const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
|
|
|
|
ratio_x -= gx; // Subtract whole to get the ratio within the grid box
|
|
|
|
|
|
|
|
#if DISABLED(EXTRAPOLATE_BEYOND_GRID)
|
|
|
|
// Beyond the grid maintain height at grid edges
|
|
|
|
NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
gridx = gx;
|
|
|
|
nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (last_y != y || last_gridx != gridx) {
|
|
|
|
|
|
|
|
if (last_y != y) {
|
|
|
|
last_y = y;
|
|
|
|
ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
|
|
|
|
const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
|
|
|
|
ratio_y -= gy;
|
|
|
|
|
|
|
|
#if DISABLED(EXTRAPOLATE_BEYOND_GRID)
|
|
|
|
// Beyond the grid maintain height at grid edges
|
|
|
|
NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
gridy = gy;
|
|
|
|
nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (last_gridx != gridx || last_gridy != gridy) {
|
|
|
|
last_gridx = gridx;
|
|
|
|
last_gridy = gridy;
|
|
|
|
// Z at the box corners
|
|
|
|
z1 = ABL_BG_GRID(gridx, gridy); // left-front
|
|
|
|
d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
|
|
|
|
z3 = ABL_BG_GRID(nextx, gridy); // right-front
|
|
|
|
d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Bilinear interpolate. Needed since y or gridx has changed.
|
|
|
|
L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
|
|
|
|
const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
|
|
|
|
|
|
|
|
D = R - L;
|
|
|
|
}
|
|
|
|
|
|
|
|
const float offset = L + ratio_x * D; // the offset almost always changes
|
|
|
|
|
|
|
|
/*
|
|
|
|
static float last_offset = 0;
|
|
|
|
if (FABS(last_offset - offset) > 0.2) {
|
|
|
|
SERIAL_ECHOPGM("Sudden Shift at ");
|
|
|
|
SERIAL_ECHOPAIR("x=", x);
|
|
|
|
SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
|
|
|
|
SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
|
|
|
|
SERIAL_ECHOPAIR(" y=", y);
|
|
|
|
SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
|
|
|
|
SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
|
|
|
|
SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
|
|
|
|
SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
|
|
|
|
SERIAL_ECHOPAIR(" z1=", z1);
|
|
|
|
SERIAL_ECHOPAIR(" z2=", z2);
|
|
|
|
SERIAL_ECHOPAIR(" z3=", z3);
|
|
|
|
SERIAL_ECHOLNPAIR(" z4=", z4);
|
|
|
|
SERIAL_ECHOPAIR(" L=", L);
|
|
|
|
SERIAL_ECHOPAIR(" R=", R);
|
|
|
|
SERIAL_ECHOLNPAIR(" offset=", offset);
|
|
|
|
}
|
|
|
|
last_offset = offset;
|
|
|
|
//*/
|
|
|
|
|
|
|
|
return offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Recalculate factors used for delta kinematics whenever
|
|
|
|
* settings have been changed (e.g., by M665).
|
|
|
|
*/
|
|
|
|
void recalc_delta_settings(float radius, float diagonal_rod) {
|
|
|
|
const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
|
|
|
|
drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
|
|
|
|
delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
|
|
|
|
delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
|
|
|
|
delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
|
|
|
|
delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
|
|
|
|
delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
|
|
|
|
delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if ENABLED(DELTA_FAST_SQRT) && defined(ARDUINO_ARCH_AVR)
|
|
|
|
/**
|
|
|
|
* Fast inverse sqrt from Quake III Arena
|
|
|
|
* See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
|
|
|
|
*/
|
|
|
|
float Q_rsqrt(float number) {
|
|
|
|
long i;
|
|
|
|
float x2, y;
|
|
|
|
const float threehalfs = 1.5f;
|
|
|
|
x2 = number * 0.5f;
|
|
|
|
y = number;
|
|
|
|
i = * ( long * ) &y; // evil floating point bit level hacking
|
|
|
|
i = 0x5F3759DF - ( i >> 1 ); // what the f***?
|
|
|
|
y = * ( float * ) &i;
|
|
|
|
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
|
|
|
|
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
|
|
|
|
return y;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define _SQRT(n) (1.0f / Q_rsqrt(n))
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
#define _SQRT(n) SQRT(n)
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Delta Inverse Kinematics
|
|
|
|
*
|
|
|
|
* Calculate the tower positions for a given logical
|
|
|
|
* position, storing the result in the delta[] array.
|
|
|
|
*
|
|
|
|
* This is an expensive calculation, requiring 3 square
|
|
|
|
* roots per segmented linear move, and strains the limits
|
|
|
|
* of a Mega2560 with a Graphical Display.
|
|
|
|
*
|
|
|
|
* Suggested optimizations include:
|
|
|
|
*
|
|
|
|
* - Disable the home_offset (M206) and/or position_shift (G92)
|
|
|
|
* features to remove up to 12 float additions.
|
|
|
|
*
|
|
|
|
* - Use a fast-inverse-sqrt function and add the reciprocal.
|
|
|
|
* (see above)
|
|
|
|
*/
|
|
|
|
|
|
|
|
// Macro to obtain the Z position of an individual tower
|
|
|
|
#define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
|
|
|
|
delta_diagonal_rod_2_tower[T] - HYPOT2( \
|
|
|
|
delta_tower[T][X_AXIS] - raw[X_AXIS], \
|
|
|
|
delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
|
|
|
|
) \
|
|
|
|
)
|
|
|
|
|
|
|
|
#define DELTA_RAW_IK() do { \
|
|
|
|
delta[A_AXIS] = DELTA_Z(A_AXIS); \
|
|
|
|
delta[B_AXIS] = DELTA_Z(B_AXIS); \
|
|
|
|
delta[C_AXIS] = DELTA_Z(C_AXIS); \
|
|
|
|
}while(0)
|
|
|
|
|
|
|
|
#define DELTA_LOGICAL_IK() do { \
|
|
|
|
const float raw[XYZ] = { \
|
|
|
|
RAW_X_POSITION(logical[X_AXIS]), \
|
|
|
|
RAW_Y_POSITION(logical[Y_AXIS]), \
|
|
|
|
RAW_Z_POSITION(logical[Z_AXIS]) \
|
|
|
|
}; \
|
|
|
|
DELTA_RAW_IK(); \
|
|
|
|
}while(0)
|
|
|
|
|
|
|
|
#define DELTA_DEBUG() do { \
|
|
|
|
SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
|
|
|
|
SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
|
|
|
|
SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
|
|
|
|
SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
|
|
|
|
SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
|
|
|
|
SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
|
|
|
|
}while(0)
|
|
|
|
|
|
|
|
void inverse_kinematics(const float logical[XYZ]) {
|
|
|
|
DELTA_LOGICAL_IK();
|
|
|
|
// DELTA_DEBUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculate the highest Z position where the
|
|
|
|
* effector has the full range of XY motion.
|
|
|
|
*/
|
|
|
|
float delta_safe_distance_from_top() {
|
|
|
|
float cartesian[XYZ] = {
|
|
|
|
LOGICAL_X_POSITION(0),
|
|
|
|
LOGICAL_Y_POSITION(0),
|
|
|
|
LOGICAL_Z_POSITION(0)
|
|
|
|
};
|
|
|
|
inverse_kinematics(cartesian);
|
|
|
|
float distance = delta[A_AXIS];
|
|
|
|
cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
|
|
|
|
inverse_kinematics(cartesian);
|
|
|
|
return FABS(distance - delta[A_AXIS]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Delta Forward Kinematics
|
|
|
|
*
|
|
|
|
* See the Wikipedia article "Trilateration"
|
|
|
|
* https://en.wikipedia.org/wiki/Trilateration
|
|
|
|
*
|
|
|
|
* Establish a new coordinate system in the plane of the
|
|
|
|
* three carriage points. This system has its origin at
|
|
|
|
* tower1, with tower2 on the X axis. Tower3 is in the X-Y
|
|
|
|
* plane with a Z component of zero.
|
|
|
|
* We will define unit vectors in this coordinate system
|
|
|
|
* in our original coordinate system. Then when we calculate
|
|
|
|
* the Xnew, Ynew and Znew values, we can translate back into
|
|
|
|
* the original system by moving along those unit vectors
|
|
|
|
* by the corresponding values.
|
|
|
|
*
|
|
|
|
* Variable names matched to Marlin, c-version, and avoid the
|
|
|
|
* use of any vector library.
|
|
|
|
*
|
|
|
|
* by Andreas Hardtung 2016-06-07
|
|
|
|
* based on a Java function from "Delta Robot Kinematics V3"
|
|
|
|
* by Steve Graves
|
|
|
|
*
|
|
|
|
* The result is stored in the cartes[] array.
|
|
|
|
*/
|
|
|
|
void forward_kinematics_DELTA(float z1, float z2, float z3) {
|
|
|
|
// Create a vector in old coordinates along x axis of new coordinate
|
|
|
|
float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
|
|
|
|
|
|
|
|
// Get the Magnitude of vector.
|
|
|
|
float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
|
|
|
|
|
|
|
|
// Create unit vector by dividing by magnitude.
|
|
|
|
float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
|
|
|
|
|
|
|
|
// Get the vector from the origin of the new system to the third point.
|
|
|
|
float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
|
|
|
|
|
|
|
|
// Use the dot product to find the component of this vector on the X axis.
|
|
|
|
float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
|
|
|
|
|
|
|
|
// Create a vector along the x axis that represents the x component of p13.
|
|
|
|
float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
|
|
|
|
|
|
|
|
// Subtract the X component from the original vector leaving only Y. We use the
|
|
|
|
// variable that will be the unit vector after we scale it.
|
|
|
|
float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
|
|
|
|
|
|
|
|
// The magnitude of Y component
|
|
|
|
float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
|
|
|
|
|
|
|
|
// Convert to a unit vector
|
|
|
|
ey[0] /= j; ey[1] /= j; ey[2] /= j;
|
|
|
|
|
|
|
|
// The cross product of the unit x and y is the unit z
|
|
|
|
// float[] ez = vectorCrossProd(ex, ey);
|
|
|
|
float ez[3] = {
|
|
|
|
ex[1] * ey[2] - ex[2] * ey[1],
|
|
|
|
ex[2] * ey[0] - ex[0] * ey[2],
|
|
|
|
ex[0] * ey[1] - ex[1] * ey[0]
|
|
|
|
};
|
|
|
|
|
|
|
|
// We now have the d, i and j values defined in Wikipedia.
|
|
|
|
// Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
|
|
|
|
float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
|
|
|
|
Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
|
|
|
|
Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
|
|
|
|
|
|
|
|
// Start from the origin of the old coordinates and add vectors in the
|
|
|
|
// old coords that represent the Xnew, Ynew and Znew to find the point
|
|
|
|
// in the old system.
|
|
|
|
cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
|
|
|
|
cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
|
|
|
|
cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
|
|
|
|
}
|
|
|
|
|
|
|
|
void forward_kinematics_DELTA(float point[ABC]) {
|
|
|
|
forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // DELTA
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Get the stepper positions in the cartes[] array.
|
|
|
|
* Forward kinematics are applied for DELTA and SCARA.
|
|
|
|
*
|
|
|
|
* The result is in the current coordinate space with
|
|
|
|
* leveling applied. The coordinates need to be run through
|
|
|
|
* unapply_leveling to obtain the "ideal" coordinates
|
|
|
|
* suitable for current_position, etc.
|
|
|
|
*/
|
|
|
|
void get_cartesian_from_steppers() {
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
forward_kinematics_DELTA(
|
|
|
|
stepper.get_axis_position_mm(A_AXIS),
|
|
|
|
stepper.get_axis_position_mm(B_AXIS),
|
|
|
|
stepper.get_axis_position_mm(C_AXIS)
|
|
|
|
);
|
|
|
|
cartes[X_AXIS] += LOGICAL_X_POSITION(0);
|
|
|
|
cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
|
|
|
|
cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
|
|
|
|
#elif IS_SCARA
|
|
|
|
forward_kinematics_SCARA(
|
|
|
|
stepper.get_axis_position_degrees(A_AXIS),
|
|
|
|
stepper.get_axis_position_degrees(B_AXIS)
|
|
|
|
);
|
|
|
|
cartes[X_AXIS] += LOGICAL_X_POSITION(0);
|
|
|
|
cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
|
|
|
|
cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
|
|
|
|
#else
|
|
|
|
cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
|
|
|
|
cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
|
|
|
|
cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Set the current_position for an axis based on
|
|
|
|
* the stepper positions, removing any leveling that
|
|
|
|
* may have been applied.
|
|
|
|
*/
|
|
|
|
void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|
|
|
get_cartesian_from_steppers();
|
|
|
|
#if PLANNER_LEVELING
|
|
|
|
planner.unapply_leveling(cartes);
|
|
|
|
#endif
|
|
|
|
if (axis == ALL_AXES)
|
|
|
|
COPY(current_position, cartes);
|
|
|
|
else
|
|
|
|
current_position[axis] = cartes[axis];
|
|
|
|
}
|
|
|
|
|
|
|
|
#if ENABLED(USE_CONTROLLER_FAN)
|
|
|
|
|
|
|
|
void controllerFan() {
|
|
|
|
static millis_t lastMotorOn = 0, // Last time a motor was turned on
|
|
|
|
nextMotorCheck = 0; // Last time the state was checked
|
|
|
|
const millis_t ms = millis();
|
|
|
|
if (ELAPSED(ms, nextMotorCheck)) {
|
|
|
|
nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
|
|
|
|
if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
|
|
|
|
|| E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
|
|
|
|
#if E_STEPPERS > 1
|
|
|
|
|| E1_ENABLE_READ == E_ENABLE_ON
|
|
|
|
#if HAS_X2_ENABLE
|
|
|
|
|| X2_ENABLE_READ == X_ENABLE_ON
|
|
|
|
#endif
|
|
|
|
#if E_STEPPERS > 2
|
|
|
|
|| E2_ENABLE_READ == E_ENABLE_ON
|
|
|
|
#if E_STEPPERS > 3
|
|
|
|
|| E3_ENABLE_READ == E_ENABLE_ON
|
|
|
|
#if E_STEPPERS > 4
|
|
|
|
|| E4_ENABLE_READ == E_ENABLE_ON
|
|
|
|
#endif // E_STEPPERS > 4
|
|
|
|
#endif // E_STEPPERS > 3
|
|
|
|
#endif // E_STEPPERS > 2
|
|
|
|
#endif // E_STEPPERS > 1
|
|
|
|
) {
|
|
|
|
lastMotorOn = ms; //... set time to NOW so the fan will turn on
|
|
|
|
}
|
|
|
|
|
|
|
|
// Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
|
|
|
|
uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
|
|
|
|
|
|
|
|
// allows digital or PWM fan output to be used (see M42 handling)
|
|
|
|
WRITE(CONTROLLER_FAN_PIN, speed);
|
|
|
|
analogWrite(CONTROLLER_FAN_PIN, speed);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // USE_CONTROLLER_FAN
|
|
|
|
|
|
|
|
#if ENABLED(MORGAN_SCARA)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Morgan SCARA Forward Kinematics. Results in cartes[].
|
|
|
|
* Maths and first version by QHARLEY.
|
|
|
|
* Integrated into Marlin and slightly restructured by Joachim Cerny.
|
|
|
|
*/
|
|
|
|
void forward_kinematics_SCARA(const float &a, const float &b) {
|
|
|
|
|
|
|
|
float a_sin = sin(RADIANS(a)) * L1,
|
|
|
|
a_cos = cos(RADIANS(a)) * L1,
|
|
|
|
b_sin = sin(RADIANS(b)) * L2,
|
|
|
|
b_cos = cos(RADIANS(b)) * L2;
|
|
|
|
|
|
|
|
cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
|
|
|
|
cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
|
|
|
|
|
|
|
|
/*
|
|
|
|
SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
|
|
|
|
SERIAL_ECHOPAIR(" b=", b);
|
|
|
|
SERIAL_ECHOPAIR(" a_sin=", a_sin);
|
|
|
|
SERIAL_ECHOPAIR(" a_cos=", a_cos);
|
|
|
|
SERIAL_ECHOPAIR(" b_sin=", b_sin);
|
|
|
|
SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
|
|
|
|
SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
|
|
|
|
SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
|
|
|
|
//*/
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Morgan SCARA Inverse Kinematics. Results in delta[].
|
|
|
|
*
|
|
|
|
* See http://forums.reprap.org/read.php?185,283327
|
|
|
|
*
|
|
|
|
* Maths and first version by QHARLEY.
|
|
|
|
* Integrated into Marlin and slightly restructured by Joachim Cerny.
|
|
|
|
*/
|
|
|
|
void inverse_kinematics(const float logical[XYZ]) {
|
|
|
|
|
|
|
|
static float C2, S2, SK1, SK2, THETA, PSI;
|
|
|
|
|
|
|
|
float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
|
|
|
|
sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
|
|
|
|
|
|
|
|
if (L1 == L2)
|
|
|
|
C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
|
|
|
|
else
|
|
|
|
C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
|
|
|
|
|
|
|
|
S2 = SQRT(1 - sq(C2));
|
|
|
|
|
|
|
|
// Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
|
|
|
|
SK1 = L1 + L2 * C2;
|
|
|
|
|
|
|
|
// Rotated Arm2 gives the distance from Arm1 to Arm2
|
|
|
|
SK2 = L2 * S2;
|
|
|
|
|
|
|
|
// Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
|
|
|
|
THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
|
|
|
|
|
|
|
|
// Angle of Arm2
|
|
|
|
PSI = ATAN2(S2, C2);
|
|
|
|
|
|
|
|
delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
|
|
|
|
delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
|
|
|
|
delta[C_AXIS] = logical[Z_AXIS];
|
|
|
|
|
|
|
|
/*
|
|
|
|
DEBUG_POS("SCARA IK", logical);
|
|
|
|
DEBUG_POS("SCARA IK", delta);
|
|
|
|
SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
|
|
|
|
SERIAL_ECHOPAIR(",", sy);
|
|
|
|
SERIAL_ECHOPAIR(" C2=", C2);
|
|
|
|
SERIAL_ECHOPAIR(" S2=", S2);
|
|
|
|
SERIAL_ECHOPAIR(" Theta=", THETA);
|
|
|
|
SERIAL_ECHOLNPAIR(" Phi=", PHI);
|
|
|
|
//*/
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // MORGAN_SCARA
|
|
|
|
|
|
|
|
#if ENABLED(TEMP_STAT_LEDS)
|
|
|
|
|
|
|
|
static bool red_led = false;
|
|
|
|
static millis_t next_status_led_update_ms = 0;
|
|
|
|
|
|
|
|
void handle_status_leds(void) {
|
|
|
|
if (ELAPSED(millis(), next_status_led_update_ms)) {
|
|
|
|
next_status_led_update_ms += 500; // Update every 0.5s
|
|
|
|
float max_temp = 0.0;
|
|
|
|
#if HAS_TEMP_BED
|
|
|
|
max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
|
|
|
|
#endif
|
|
|
|
HOTEND_LOOP()
|
|
|
|
max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
|
|
|
|
const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
|
|
|
|
if (new_led != red_led) {
|
|
|
|
red_led = new_led;
|
|
|
|
#if PIN_EXISTS(STAT_LED_RED)
|
|
|
|
WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
|
|
|
|
#if PIN_EXISTS(STAT_LED_BLUE)
|
|
|
|
WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
|
|
|
|
|
|
void handle_filament_runout() {
|
|
|
|
if (!filament_ran_out) {
|
|
|
|
filament_ran_out = true;
|
|
|
|
enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
|
|
|
|
stepper.synchronize();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // FILAMENT_RUNOUT_SENSOR
|
|
|
|
|
|
|
|
float calculate_volumetric_multiplier(const float diameter) {
|
|
|
|
if (!parser.volumetric_enabled || diameter == 0) return 1.0;
|
|
|
|
return 1.0 / (M_PI * sq(diameter * 0.5));
|
|
|
|
}
|
|
|
|
|
|
|
|
void calculate_volumetric_multipliers() {
|
|
|
|
for (uint8_t i = 0; i < COUNT(filament_size); i++)
|
|
|
|
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
void enable_all_steppers() {
|
|
|
|
enable_X();
|
|
|
|
enable_Y();
|
|
|
|
enable_Z();
|
|
|
|
enable_E0();
|
|
|
|
enable_E1();
|
|
|
|
enable_E2();
|
|
|
|
enable_E3();
|
|
|
|
enable_E4();
|
|
|
|
}
|
|
|
|
|
|
|
|
void disable_e_steppers() {
|
|
|
|
disable_E0();
|
|
|
|
disable_E1();
|
|
|
|
disable_E2();
|
|
|
|
disable_E3();
|
|
|
|
disable_E4();
|
|
|
|
}
|
|
|
|
|
|
|
|
void disable_all_steppers() {
|
|
|
|
disable_X();
|
|
|
|
disable_Y();
|
|
|
|
disable_Z();
|
|
|
|
disable_e_steppers();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Manage several activities:
|
|
|
|
* - Check for Filament Runout
|
|
|
|
* - Keep the command buffer full
|
|
|
|
* - Check for maximum inactive time between commands
|
|
|
|
* - Check for maximum inactive time between stepper commands
|
|
|
|
* - Check if pin CHDK needs to go LOW
|
|
|
|
* - Check for KILL button held down
|
|
|
|
* - Check for HOME button held down
|
|
|
|
* - Check if cooling fan needs to be switched on
|
|
|
|
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
|
|
|
|
*/
|
|
|
|
void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
|
|
if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
|
|
|
|
handle_filament_runout();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (commands_in_queue < BUFSIZE) get_available_commands();
|
|
|
|
|
|
|
|
const millis_t ms = millis();
|
|
|
|
|
|
|
|
if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
|
|
|
|
SERIAL_ERROR_START();
|
|
|
|
SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
|
|
|
|
kill(PSTR(MSG_KILLED));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Prevent steppers timing-out in the middle of M600
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
|
|
|
|
#define MOVE_AWAY_TEST !move_away_flag
|
|
|
|
#else
|
|
|
|
#define MOVE_AWAY_TEST true
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
|
|
|
|
&& !ignore_stepper_queue && !planner.blocks_queued()) {
|
|
|
|
#if ENABLED(DISABLE_INACTIVE_X)
|
|
|
|
disable_X();
|
|
|
|
#endif
|
|
|
|
#if ENABLED(DISABLE_INACTIVE_Y)
|
|
|
|
disable_Y();
|
|
|
|
#endif
|
|
|
|
#if ENABLED(DISABLE_INACTIVE_Z)
|
|
|
|
disable_Z();
|
|
|
|
#endif
|
|
|
|
#if ENABLED(DISABLE_INACTIVE_E)
|
|
|
|
disable_e_steppers();
|
|
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
|
|
|
|
ubl_lcd_map_control = defer_return_to_status = false;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
|
|
|
|
if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
|
|
|
|
chdkActive = false;
|
|
|
|
WRITE(CHDK, LOW);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_KILL
|
|
|
|
|
|
|
|
// Check if the kill button was pressed and wait just in case it was an accidental
|
|
|
|
// key kill key press
|
|
|
|
// -------------------------------------------------------------------------------
|
|
|
|
static int killCount = 0; // make the inactivity button a bit less responsive
|
|
|
|
const int KILL_DELAY = 750;
|
|
|
|
if (!READ(KILL_PIN))
|
|
|
|
killCount++;
|
|
|
|
else if (killCount > 0)
|
|
|
|
killCount--;
|
|
|
|
|
|
|
|
// Exceeded threshold and we can confirm that it was not accidental
|
|
|
|
// KILL the machine
|
|
|
|
// ----------------------------------------------------------------
|
|
|
|
if (killCount >= KILL_DELAY) {
|
|
|
|
SERIAL_ERROR_START();
|
|
|
|
SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
|
|
|
|
kill(PSTR(MSG_KILLED));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_HOME
|
|
|
|
// Check to see if we have to home, use poor man's debouncer
|
|
|
|
// ---------------------------------------------------------
|
|
|
|
static int homeDebounceCount = 0; // poor man's debouncing count
|
|
|
|
const int HOME_DEBOUNCE_DELAY = 2500;
|
|
|
|
if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
|
|
|
|
if (!homeDebounceCount) {
|
|
|
|
enqueue_and_echo_commands_P(PSTR("G28"));
|
|
|
|
LCD_MESSAGEPGM(MSG_AUTO_HOME);
|
|
|
|
}
|
|
|
|
if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
|
|
|
|
homeDebounceCount++;
|
|
|
|
else
|
|
|
|
homeDebounceCount = 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(USE_CONTROLLER_FAN)
|
|
|
|
controllerFan(); // Check if fan should be turned on to cool stepper drivers down
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(EXTRUDER_RUNOUT_PREVENT)
|
|
|
|
if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
|
|
|
|
&& thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
|
|
|
|
#if ENABLED(SWITCHING_EXTRUDER)
|
|
|
|
const bool oldstatus = E0_ENABLE_READ;
|
|
|
|
enable_E0();
|
|
|
|
#else // !SWITCHING_EXTRUDER
|
|
|
|
bool oldstatus;
|
|
|
|
switch (active_extruder) {
|
|
|
|
default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
|
|
|
|
#if E_STEPPERS > 1
|
|
|
|
case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
|
|
|
|
#if E_STEPPERS > 2
|
|
|
|
case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
|
|
|
|
#if E_STEPPERS > 3
|
|
|
|
case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
|
|
|
|
#if E_STEPPERS > 4
|
|
|
|
case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
|
|
|
|
#endif // E_STEPPERS > 4
|
|
|
|
#endif // E_STEPPERS > 3
|
|
|
|
#endif // E_STEPPERS > 2
|
|
|
|
#endif // E_STEPPERS > 1
|
|
|
|
}
|
|
|
|
#endif // !SWITCHING_EXTRUDER
|
|
|
|
|
|
|
|
gcode.refresh_cmd_timeout()
|
|
|
|
|
|
|
|
const float olde = current_position[E_AXIS];
|
|
|
|
current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
|
|
|
|
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
|
|
|
|
current_position[E_AXIS] = olde;
|
|
|
|
planner.set_e_position_mm(olde);
|
|
|
|
stepper.synchronize();
|
|
|
|
#if ENABLED(SWITCHING_EXTRUDER)
|
|
|
|
E0_ENABLE_WRITE(oldstatus);
|
|
|
|
#else
|
|
|
|
switch (active_extruder) {
|
|
|
|
case 0: E0_ENABLE_WRITE(oldstatus); break;
|
|
|
|
#if E_STEPPERS > 1
|
|
|
|
case 1: E1_ENABLE_WRITE(oldstatus); break;
|
|
|
|
#if E_STEPPERS > 2
|
|
|
|
case 2: E2_ENABLE_WRITE(oldstatus); break;
|
|
|
|
#if E_STEPPERS > 3
|
|
|
|
case 3: E3_ENABLE_WRITE(oldstatus); break;
|
|
|
|
#if E_STEPPERS > 4
|
|
|
|
case 4: E4_ENABLE_WRITE(oldstatus); break;
|
|
|
|
#endif // E_STEPPERS > 4
|
|
|
|
#endif // E_STEPPERS > 3
|
|
|
|
#endif // E_STEPPERS > 2
|
|
|
|
#endif // E_STEPPERS > 1
|
|
|
|
}
|
|
|
|
#endif // !SWITCHING_EXTRUDER
|
|
|
|
}
|
|
|
|
#endif // EXTRUDER_RUNOUT_PREVENT
|
|
|
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
// handle delayed move timeout
|
|
|
|
if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
|
|
|
|
// travel moves have been received so enact them
|
|
|
|
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
|
|
|
|
set_destination_to_current();
|
|
|
|
prepare_move_to_destination();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(TEMP_STAT_LEDS)
|
|
|
|
handle_status_leds();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(HAVE_TMC2130)
|
|
|
|
tmc2130_checkOverTemp();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
planner.check_axes_activity();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Standard idle routine keeps the machine alive
|
|
|
|
*/
|
|
|
|
void idle(
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
|
bool no_stepper_sleep/*=false*/
|
|
|
|
#endif
|
|
|
|
) {
|
|
|
|
#if ENABLED(MAX7219_DEBUG)
|
|
|
|
Max7219_idle_tasks();
|
|
|
|
#endif // MAX7219_DEBUG
|
|
|
|
|
|
|
|
lcd_update();
|
|
|
|
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
|
|
gcode.host_keepalive();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
|
|
|
|
auto_report_temperatures();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
manage_inactivity(
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
|
no_stepper_sleep
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
|
|
|
|
thermalManager.manage_heater();
|
|
|
|
|
|
|
|
#if ENABLED(PRINTCOUNTER)
|
|
|
|
print_job_timer.tick();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
|
|
|
|
buzzer.tick();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
|
|
if (planner.blocks_queued() &&
|
|
|
|
( (blockBufferIndexRef != planner.block_buffer_head) ||
|
|
|
|
((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
|
|
|
|
blockBufferIndexRef = planner.block_buffer_head;
|
|
|
|
I2CPEM.update();
|
|
|
|
lastUpdateMillis = millis();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Kill all activity and lock the machine.
|
|
|
|
* After this the machine will need to be reset.
|
|
|
|
*/
|
|
|
|
void kill(const char* lcd_msg) {
|
|
|
|
SERIAL_ERROR_START();
|
|
|
|
SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
|
|
|
|
|
|
|
|
thermalManager.disable_all_heaters();
|
|
|
|
disable_all_steppers();
|
|
|
|
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
|
|
kill_screen(lcd_msg);
|
|
|
|
#else
|
|
|
|
UNUSED(lcd_msg);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
_delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
|
|
|
|
cli(); // Stop interrupts
|
|
|
|
|
|
|
|
_delay_ms(250); //Wait to ensure all interrupts routines stopped
|
|
|
|
thermalManager.disable_all_heaters(); //turn off heaters again
|
|
|
|
|
|
|
|
#ifdef ACTION_ON_KILL
|
|
|
|
SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_POWER_SWITCH
|
|
|
|
SET_INPUT(PS_ON_PIN);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
suicide();
|
|
|
|
while (1) {
|
|
|
|
#if ENABLED(USE_WATCHDOG)
|
|
|
|
watchdog_reset();
|
|
|
|
#endif
|
|
|
|
} // Wait for reset
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Turn off heaters and stop the print in progress
|
|
|
|
* After a stop the machine may be resumed with M999
|
|
|
|
*/
|
|
|
|
void stop() {
|
|
|
|
thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
|
|
|
|
|
|
|
|
#if ENABLED(PROBING_FANS_OFF)
|
|
|
|
if (fans_paused) fans_pause(false); // put things back the way they were
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (IsRunning()) {
|
|
|
|
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
|
|
|
|
SERIAL_ERROR_START();
|
|
|
|
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
|
|
|
|
LCD_MESSAGEPGM(MSG_STOPPED);
|
|
|
|
safe_delay(350); // allow enough time for messages to get out before stopping
|
|
|
|
Running = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Marlin entry-point: Set up before the program loop
|
|
|
|
* - Set up the kill pin, filament runout, power hold
|
|
|
|
* - Start the serial port
|
|
|
|
* - Print startup messages and diagnostics
|
|
|
|
* - Get EEPROM or default settings
|
|
|
|
* - Initialize managers for:
|
|
|
|
* • temperature
|
|
|
|
* • planner
|
|
|
|
* • watchdog
|
|
|
|
* • stepper
|
|
|
|
* • photo pin
|
|
|
|
* • servos
|
|
|
|
* • LCD controller
|
|
|
|
* • Digipot I2C
|
|
|
|
* • Z probe sled
|
|
|
|
* • status LEDs
|
|
|
|
*/
|
|
|
|
void setup() {
|
|
|
|
|
|
|
|
#if ENABLED(MAX7219_DEBUG)
|
|
|
|
Max7219_init();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef DISABLE_JTAG
|
|
|
|
// Disable JTAG on AT90USB chips to free up pins for IO
|
|
|
|
MCUCR = 0x80;
|
|
|
|
MCUCR = 0x80;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
|
|
setup_filrunoutpin();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
setup_killpin();
|
|
|
|
|
|
|
|
setup_powerhold();
|
|
|
|
|
|
|
|
#if HAS_STEPPER_RESET
|
|
|
|
disableStepperDrivers();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
MYSERIAL.begin(BAUDRATE);
|
|
|
|
while(!MYSERIAL);
|
|
|
|
SERIAL_PROTOCOLLNPGM("start");
|
|
|
|
SERIAL_ECHO_START();
|
|
|
|
|
|
|
|
// Check startup - does nothing if bootloader sets MCUSR to 0
|
|
|
|
byte mcu = HAL_get_reset_source();
|
|
|
|
if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
|
|
|
|
if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
|
|
|
|
if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
|
|
|
|
if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
|
|
|
|
if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
|
|
|
|
HAL_clear_reset_source();
|
|
|
|
|
|
|
|
#if ENABLED(USE_WATCHDOG) //reinit watchdog after HAL_get_reset_source call
|
|
|
|
watchdog_init();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
SERIAL_ECHOPGM(MSG_MARLIN);
|
|
|
|
SERIAL_CHAR(' ');
|
|
|
|
SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
|
|
|
#if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
|
|
|
|
SERIAL_ECHO_START();
|
|
|
|
SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
|
|
|
|
SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
|
|
|
|
SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
|
|
|
|
SERIAL_ECHO_START();
|
|
|
|
SERIAL_ECHOLNPGM("Compiled: " __DATE__);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
SERIAL_ECHO_START();
|
|
|
|
SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
|
|
|
|
SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
|
|
|
|
|
|
|
|
queue_setup();
|
|
|
|
|
|
|
|
// Load data from EEPROM if available (or use defaults)
|
|
|
|
// This also updates variables in the planner, elsewhere
|
|
|
|
(void)settings.load();
|
|
|
|
|
|
|
|
#if HAS_M206_COMMAND
|
|
|
|
// Initialize current position based on home_offset
|
|
|
|
COPY(current_position, home_offset);
|
|
|
|
#else
|
|
|
|
ZERO(current_position);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Vital to init stepper/planner equivalent for current_position
|
|
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
|
|
|
|
thermalManager.init(); // Initialize temperature loop
|
|
|
|
|
|
|
|
stepper.init(); // Initialize stepper, this enables interrupts!
|
|
|
|
servo_init();
|
|
|
|
|
|
|
|
#if HAS_PHOTOGRAPH
|
|
|
|
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_CASE_LIGHT
|
|
|
|
case_light_on = CASE_LIGHT_DEFAULT_ON;
|
|
|
|
case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
|
|
|
|
update_case_light();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(SPINDLE_LASER_ENABLE)
|
|
|
|
OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
|
|
|
|
#if SPINDLE_DIR_CHANGE
|
|
|
|
OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
|
|
|
|
#endif
|
|
|
|
#if ENABLED(SPINDLE_LASER_PWM) && defined(SPINDLE_LASER_PWM_PIN) && SPINDLE_LASER_PWM_PIN >= 0
|
|
|
|
SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
|
|
|
|
analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
endstops.enable_z_probe(false);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(USE_CONTROLLER_FAN)
|
|
|
|
SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_STEPPER_RESET
|
|
|
|
enableStepperDrivers();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(DIGIPOT_I2C)
|
|
|
|
digipot_i2c_init();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(DAC_STEPPER_CURRENT)
|
|
|
|
dac_init();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
|
|
|
|
OUT_WRITE(SOL1_PIN, LOW); // turn it off
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_HOME
|
|
|
|
SET_INPUT_PULLUP(HOME_PIN);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if PIN_EXISTS(STAT_LED_RED)
|
|
|
|
OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if PIN_EXISTS(STAT_LED_BLUE)
|
|
|
|
OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(NEOPIXEL_RGBW_LED)
|
|
|
|
SET_OUTPUT(NEOPIXEL_PIN);
|
|
|
|
setup_neopixel();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
|
|
|
|
SET_OUTPUT(RGB_LED_R_PIN);
|
|
|
|
SET_OUTPUT(RGB_LED_G_PIN);
|
|
|
|
SET_OUTPUT(RGB_LED_B_PIN);
|
|
|
|
#if ENABLED(RGBW_LED)
|
|
|
|
SET_OUTPUT(RGB_LED_W_PIN);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(MK2_MULTIPLEXER)
|
|
|
|
SET_OUTPUT(E_MUX0_PIN);
|
|
|
|
SET_OUTPUT(E_MUX1_PIN);
|
|
|
|
SET_OUTPUT(E_MUX2_PIN);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if HAS_FANMUX
|
|
|
|
fanmux_init();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
lcd_init();
|
|
|
|
|
|
|
|
#ifndef CUSTOM_BOOTSCREEN_TIMEOUT
|
|
|
|
#define CUSTOM_BOOTSCREEN_TIMEOUT 2500
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(SHOW_BOOTSCREEN)
|
|
|
|
#if ENABLED(DOGLCD) // On DOGM the first bootscreen is already drawn
|
|
|
|
#if ENABLED(SHOW_CUSTOM_BOOTSCREEN)
|
|
|
|
safe_delay(CUSTOM_BOOTSCREEN_TIMEOUT); // Custom boot screen pause
|
|
|
|
lcd_bootscreen(); // Show Marlin boot screen
|
|
|
|
#endif
|
|
|
|
safe_delay(BOOTSCREEN_TIMEOUT); // Pause
|
|
|
|
#elif ENABLED(ULTRA_LCD)
|
|
|
|
lcd_bootscreen();
|
|
|
|
#if DISABLED(SDSUPPORT)
|
|
|
|
lcd_init();
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
|
|
|
|
// Initialize mixing to 100% color 1
|
|
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
|
|
mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
|
|
|
|
for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
|
|
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
|
|
mixing_virtual_tool_mix[t][i] = mixing_factor[i];
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(BLTOUCH)
|
|
|
|
// Make sure any BLTouch error condition is cleared
|
|
|
|
bltouch_command(BLTOUCH_RESET);
|
|
|
|
set_bltouch_deployed(true);
|
|
|
|
set_bltouch_deployed(false);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
|
|
I2CPEM.init();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
|
|
|
|
i2c.onReceive(i2c_on_receive);
|
|
|
|
i2c.onRequest(i2c_on_request);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
|
|
|
setup_endstop_interrupts();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
|
|
|
|
move_extruder_servo(0); // Initialize extruder servo
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(SWITCHING_NOZZLE)
|
|
|
|
move_nozzle_servo(0); // Initialize nozzle servo
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(PARKING_EXTRUDER)
|
|
|
|
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
|
|
|
|
pe_activate_magnet(0);
|
|
|
|
pe_activate_magnet(1);
|
|
|
|
#else
|
|
|
|
pe_deactivate_magnet(0);
|
|
|
|
pe_deactivate_magnet(1);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The main Marlin program loop
|
|
|
|
*
|
|
|
|
* - Save or log commands to SD
|
|
|
|
* - Process available commands (if not saving)
|
|
|
|
* - Call heater manager
|
|
|
|
* - Call inactivity manager
|
|
|
|
* - Call endstop manager
|
|
|
|
* - Call LCD update
|
|
|
|
*/
|
|
|
|
void loop() {
|
|
|
|
if (commands_in_queue < BUFSIZE) get_available_commands();
|
|
|
|
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
card.checkautostart(false);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
advance_command_queue();
|
|
|
|
|
|
|
|
endstops.report_state();
|
|
|
|
idle();
|
|
|
|
}
|