/**
* Marlin 3 D Printer Firmware
* Copyright ( C ) 2016 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( C ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*
*/
# pragma once
/**
* planner . h
*
* Buffer movement commands and manage the acceleration profile plan
*
* Derived from Grbl
* Copyright ( c ) 2009 - 2011 Simen Svale Skogsrud
*/
# include "../Marlin.h"
# include "motion.h"
# include "../gcode/queue.h"
# if ENABLED(DELTA)
# include "delta.h"
# endif
# if ABL_PLANAR
# include "../libs/vector_3.h"
# endif
# if ENABLED(FWRETRACT)
# include "../feature/fwretract.h"
# endif
# if ENABLED(MIXING_EXTRUDER)
# include "../feature/mixing.h"
# endif
enum BlockFlagBit : char {
// Recalculate trapezoids on entry junction. For optimization.
BLOCK_BIT_RECALCULATE ,
// Nominal speed always reached.
// i.e., The segment is long enough, so the nominal speed is reachable if accelerating
// from a safe speed (in consideration of jerking from zero speed).
BLOCK_BIT_NOMINAL_LENGTH ,
// The block is segment 2+ of a longer move
BLOCK_BIT_CONTINUED ,
// Sync the stepper counts from the block
BLOCK_BIT_SYNC_POSITION
} ;
enum BlockFlag : char {
BLOCK_FLAG_RECALCULATE = _BV ( BLOCK_BIT_RECALCULATE ) ,
BLOCK_FLAG_NOMINAL_LENGTH = _BV ( BLOCK_BIT_NOMINAL_LENGTH ) ,
BLOCK_FLAG_CONTINUED = _BV ( BLOCK_BIT_CONTINUED ) ,
BLOCK_FLAG_SYNC_POSITION = _BV ( BLOCK_BIT_SYNC_POSITION )
} ;
/**
* struct block_t
*
* A single entry in the planner buffer .
* Tracks linear movement over multiple axes .
*
* The " nominal " values are as - specified by gcode , and
* may never actually be reached due to acceleration limits .
*/
typedef struct block_t {
volatile uint8_t flag ; // Block flags (See BlockFlag enum above) - Modified by ISR and main thread!
// Fields used by the motion planner to manage acceleration
float nominal_speed_sqr , // The nominal speed for this block in (mm/sec)^2
entry_speed_sqr , // Entry speed at previous-current junction in (mm/sec)^2
max_entry_speed_sqr , // Maximum allowable junction entry speed in (mm/sec)^2
millimeters , // The total travel of this block in mm
acceleration ; // acceleration mm/sec^2
union {
// Data used by all move blocks
struct {
// Fields used by the Bresenham algorithm for tracing the line
uint32_t steps [ NUM_AXIS ] ; // Step count along each axis
} ;
// Data used by all sync blocks
struct {
int32_t position [ NUM_AXIS ] ; // New position to force when this sync block is executed
} ;
} ;
uint32_t step_event_count ; // The number of step events required to complete this block
# if EXTRUDERS > 1
uint8_t extruder ; // The extruder to move (if E move)
# else
static constexpr uint8_t extruder = 0 ;
# endif
# if ENABLED(MIXING_EXTRUDER)
MIXER_BLOCK_FIELD ; // Normalized color for the mixing steppers
# endif
// Settings for the trapezoid generator
uint32_t accelerate_until , // The index of the step event on which to stop acceleration
decelerate_after ; // The index of the step event on which to start decelerating
# if ENABLED(S_CURVE_ACCELERATION)
uint32_t cruise_rate , // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase
acceleration_time , // Acceleration time and deceleration time in STEP timer counts
deceleration_time ,
acceleration_time_inverse , // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
deceleration_time_inverse ;
# else
uint32_t acceleration_rate ; // The acceleration rate used for acceleration calculation
# endif
uint8_t direction_bits ; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
// Advance extrusion
# if ENABLED(LIN_ADVANCE)
bool use_advance_lead ;
uint16_t advance_speed , // STEP timer value for extruder speed offset ISR
max_adv_steps , // max. advance steps to get cruising speed pressure (not always nominal_speed!)
final_adv_steps ; // advance steps due to exit speed
float e_D_ratio ;
# endif
uint32_t nominal_rate , // The nominal step rate for this block in step_events/sec
initial_rate , // The jerk-adjusted step rate at start of block
final_rate , // The minimal rate at exit
acceleration_steps_per_s2 ; // acceleration steps/sec^2
# if FAN_COUNT > 0
uint8_t fan_speed [ FAN_COUNT ] ;
# endif
# if ENABLED(BARICUDA)
uint8_t valve_pressure , e_to_p_pressure ;
# endif
uint32_t segment_time_us ;
} block_t ;
# define HAS_POSITION_FLOAT (ENABLED(LIN_ADVANCE) || ENABLED(SCARA_FEEDRATE_SCALING))
# define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
typedef struct {
uint32_t max_acceleration_mm_per_s2 [ XYZE_N ] , // (mm/s^2) M201 XYZE
min_segment_time_us ; // (µs) M205 B
float axis_steps_per_mm [ XYZE_N ] , // (steps) M92 XYZE - Steps per millimeter
max_feedrate_mm_s [ XYZE_N ] , // (mm/s) M203 XYZE - Max speeds
acceleration , // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves.
retract_acceleration , // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes
travel_acceleration , // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves.
min_feedrate_mm_s , // (mm/s) M205 S - Minimum linear feedrate
min_travel_feedrate_mm_s ; // (mm/s) M205 T - Minimum travel feedrate
} planner_settings_t ;
# if DISABLED(SKEW_CORRECTION)
# define XY_SKEW_FACTOR 0
# define XZ_SKEW_FACTOR 0
# define YZ_SKEW_FACTOR 0
# endif
typedef struct {
# if ENABLED(SKEW_CORRECTION_GCODE)
float xy ;
# if ENABLED(SKEW_CORRECTION_FOR_Z)
float xz , yz ;
# else
const float xz = XZ_SKEW_FACTOR , yz = YZ_SKEW_FACTOR ;
# endif
# else
const float xy = XY_SKEW_FACTOR ,
xz = XZ_SKEW_FACTOR , yz = YZ_SKEW_FACTOR ;
# endif
} skew_factor_t ;
class Planner {
public :
/**
* The move buffer , calculated in stepper steps
*
* block_buffer is a ring buffer . . .
*
* head , tail : indexes for write , read
* head = = tail : the buffer is empty
* head ! = tail : blocks are in the buffer
* head = = ( tail - 1 ) % size : the buffer is full
*
* Writer of head is Planner : : buffer_segment ( ) .
* Reader of tail is Stepper : : isr ( ) . Always consider tail busy / read - only
*/
static block_t block_buffer [ BLOCK_BUFFER_SIZE ] ;
static volatile uint8_t block_buffer_head , // Index of the next block to be pushed
block_buffer_nonbusy , // Index of the first non busy block
block_buffer_planned , // Index of the optimally planned block
block_buffer_tail ; // Index of the busy block, if any
static uint16_t cleaning_buffer_counter ; // A counter to disable queuing of blocks
static uint8_t delay_before_delivering ; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
# if ENABLED(DISTINCT_E_FACTORS)
static uint8_t last_extruder ; // Respond to extruder change
# endif
static int16_t flow_percentage [ EXTRUDERS ] ; // Extrusion factor for each extruder
static float e_factor [ EXTRUDERS ] ; // The flow percentage and volumetric multiplier combine to scale E movement
# if DISABLED(NO_VOLUMETRICS)
static float filament_size [ EXTRUDERS ] , // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
volumetric_area_nominal , // Nominal cross-sectional area
volumetric_multiplier [ EXTRUDERS ] ; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
// May be auto-adjusted by a filament width sensor
# endif
static planner_settings_t settings ;
static uint32_t max_acceleration_steps_per_s2 [ XYZE_N ] ; // (steps/s^2) Derived from mm_per_s2
static float steps_to_mm [ XYZE_N ] ; // Millimeters per step
# if ENABLED(JUNCTION_DEVIATION)
static float junction_deviation_mm ; // (mm) M205 J
# if ENABLED(LIN_ADVANCE)
static float max_e_jerk // Calculated from junction_deviation_mm
# if ENABLED(DISTINCT_E_FACTORS)
[ EXTRUDERS ]
# endif
;
# endif
# endif
# if HAS_CLASSIC_JERK
static float max_jerk [
# if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
XYZ // (mm/s^2) M205 XYZ - The largest speed change requiring no acceleration.
# else
XYZE // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
# endif
] ;
# endif
# if HAS_LEVELING
static bool leveling_active ; // Flag that bed leveling is enabled
# if ABL_PLANAR
static matrix_3x3 bed_level_matrix ; // Transform to compensate for bed level
# endif
# if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static float z_fade_height , inverse_z_fade_height ;
# endif
# else
static constexpr bool leveling_active = false ;
# endif
# if ENABLED(LIN_ADVANCE)
static float extruder_advance_K [ EXTRUDERS ] ;
# endif
# if HAS_POSITION_FLOAT
static float position_float [ XYZE ] ;
# endif
# if IS_KINEMATIC
static float position_cart [ XYZE ] ;
# endif
static skew_factor_t skew_factor ;
# if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
static bool abort_on_endstop_hit ;
# endif
private :
/**
* The current position of the tool in absolute steps
* Recalculated if any axis_steps_per_mm are changed by gcode
*/
static int32_t position [ NUM_AXIS ] ;
/**
* Speed of previous path line segment
*/
static float previous_speed [ NUM_AXIS ] ;
/**
* Nominal speed of previous path line segment ( mm / s ) ^ 2
*/
static float previous_nominal_speed_sqr ;
/**
* Limit where 64 bit math is necessary for acceleration calculation
*/
static uint32_t cutoff_long ;
# if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static float last_fade_z ;
# endif
# if ENABLED(DISABLE_INACTIVE_EXTRUDER)
/**
* Counters to manage disabling inactive extruders
*/
static uint8_t g_uc_extruder_last_move [ EXTRUDERS ] ;
# endif // DISABLE_INACTIVE_EXTRUDER
# ifdef XY_FREQUENCY_LIMIT
// Used for the frequency limit
# define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
// Old direction bits. Used for speed calculations
static unsigned char old_direction_bits ;
// Segment times (in µs). Used for speed calculations
static uint32_t axis_segment_time_us [ 2 ] [ 3 ] ;
# endif
# if ENABLED(ULTRA_LCD)
volatile static uint32_t block_buffer_runtime_us ; //Theoretical block buffer runtime in µs
# endif
# if ENABLED(BACKLASH_COMPENSATION)
static void add_backlash_correction_steps ( const int32_t da , const int32_t db , const int32_t dc , const uint8_t dm , block_t * const block ) ;
# endif
public :
/**
* Instance Methods
*/
Planner ( ) ;
void init ( ) ;
/**
* Static ( class ) Methods
*/
static void reset_acceleration_rates ( ) ;
static void refresh_positioning ( ) ;
FORCE_INLINE static void refresh_e_factor ( const uint8_t e ) {
e_factor [ e ] = ( flow_percentage [ e ] * 0.01f
# if DISABLED(NO_VOLUMETRICS)
* volumetric_multiplier [ e ]
# endif
) ;
}
// Manage fans, paste pressure, etc.
static void check_axes_activity ( ) ;
// Update multipliers based on new diameter measurements
static void calculate_volumetric_multipliers ( ) ;
# if ENABLED(FILAMENT_WIDTH_SENSOR)
void calculate_volumetric_for_width_sensor ( const int8_t encoded_ratio ) ;
# endif
# if DISABLED(NO_VOLUMETRICS)
FORCE_INLINE static void set_filament_size ( const uint8_t e , const float & v ) {
filament_size [ e ] = v ;
// make sure all extruders have some sane value for the filament size
for ( uint8_t i = 0 ; i < COUNT ( filament_size ) ; i + + )
if ( ! filament_size [ i ] ) filament_size [ i ] = DEFAULT_NOMINAL_FILAMENT_DIA ;
}
# endif
# if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
/**
* Get the Z leveling fade factor based on the given Z height ,
* re - calculating only when needed .
*
* Returns 1.0 if planner . z_fade_height is 0.0 .
* Returns 0.0 if Z is past the specified ' Fade Height ' .
*/
static inline float fade_scaling_factor_for_z ( const float & rz ) {
static float z_fade_factor = 1 ;
if ( z_fade_height ) {
if ( rz > = z_fade_height ) return 0 ;
if ( last_fade_z ! = rz ) {
last_fade_z = rz ;
z_fade_factor = 1 - rz * inverse_z_fade_height ;
}
return z_fade_factor ;
}
return 1 ;
}
FORCE_INLINE static void force_fade_recalc ( ) { last_fade_z = - 999.999f ; }
FORCE_INLINE static void set_z_fade_height ( const float & zfh ) {
z_fade_height = zfh > 0 ? zfh : 0 ;
inverse_z_fade_height = RECIPROCAL ( z_fade_height ) ;
force_fade_recalc ( ) ;
}
FORCE_INLINE static bool leveling_active_at_z ( const float & rz ) {
return ! z_fade_height | | rz < z_fade_height ;
}
# else
FORCE_INLINE static float fade_scaling_factor_for_z ( const float & rz ) {
UNUSED ( rz ) ;
return 1 ;
}
FORCE_INLINE static bool leveling_active_at_z ( const float & rz ) { UNUSED ( rz ) ; return true ; }
# endif
# if ENABLED(SKEW_CORRECTION)
FORCE_INLINE static void skew ( float & cx , float & cy , const float & cz ) {
if ( WITHIN ( cx , X_MIN_POS + 1 , X_MAX_POS ) & & WITHIN ( cy , Y_MIN_POS + 1 , Y_MAX_POS ) ) {
const float sx = cx - cy * skew_factor . xy - cz * ( skew_factor . xz - ( skew_factor . xy * skew_factor . yz ) ) ,
sy = cy - cz * skew_factor . yz ;
if ( WITHIN ( sx , X_MIN_POS , X_MAX_POS ) & & WITHIN ( sy , Y_MIN_POS , Y_MAX_POS ) ) {
cx = sx ; cy = sy ;
}
}
}
FORCE_INLINE static void skew ( float ( & raw ) [ XYZ ] ) { skew ( raw [ X_AXIS ] , raw [ Y_AXIS ] , raw [ Z_AXIS ] ) ; }
FORCE_INLINE static void skew ( float ( & raw ) [ XYZE ] ) { skew ( raw [ X_AXIS ] , raw [ Y_AXIS ] , raw [ Z_AXIS ] ) ; }
FORCE_INLINE static void unskew ( float & cx , float & cy , const float & cz ) {
if ( WITHIN ( cx , X_MIN_POS , X_MAX_POS ) & & WITHIN ( cy , Y_MIN_POS , Y_MAX_POS ) ) {
const float sx = cx + cy * skew_factor . xy + cz * skew_factor . xz ,
sy = cy + cz * skew_factor . yz ;
if ( WITHIN ( sx , X_MIN_POS , X_MAX_POS ) & & WITHIN ( sy , Y_MIN_POS , Y_MAX_POS ) ) {
cx = sx ; cy = sy ;
}
}
}
FORCE_INLINE static void unskew ( float ( & raw ) [ XYZ ] ) { unskew ( raw [ X_AXIS ] , raw [ Y_AXIS ] , raw [ Z_AXIS ] ) ; }
FORCE_INLINE static void unskew ( float ( & raw ) [ XYZE ] ) { unskew ( raw [ X_AXIS ] , raw [ Y_AXIS ] , raw [ Z_AXIS ] ) ; }
# endif // SKEW_CORRECTION
# if HAS_LEVELING
/**
* Apply leveling to transform a cartesian position
* as it will be given to the planner and steppers .
*/
static void apply_leveling ( float & rx , float & ry , float & rz ) ;
FORCE_INLINE static void apply_leveling ( float ( & raw ) [ XYZ ] ) { apply_leveling ( raw [ X_AXIS ] , raw [ Y_AXIS ] , raw [ Z_AXIS ] ) ; }
FORCE_INLINE static void apply_leveling ( float ( & raw ) [ XYZE ] ) { apply_leveling ( raw [ X_AXIS ] , raw [ Y_AXIS ] , raw [ Z_AXIS ] ) ; }
static void unapply_leveling ( float raw [ XYZ ] ) ;
# endif
# if ENABLED(FWRETRACT)
static void apply_retract ( float & rz , float & e ) ;
FORCE_INLINE static void apply_retract ( float ( & raw ) [ XYZE ] ) { apply_retract ( raw [ Z_AXIS ] , raw [ E_AXIS ] ) ; }
static void unapply_retract ( float & rz , float & e ) ;
FORCE_INLINE static void unapply_retract ( float ( & raw ) [ XYZE ] ) { unapply_retract ( raw [ Z_AXIS ] , raw [ E_AXIS ] ) ; }
# endif
# if HAS_POSITION_MODIFIERS
FORCE_INLINE static void apply_modifiers ( float ( & pos ) [ XYZE ]
# if HAS_LEVELING
, bool leveling =
# if PLANNER_LEVELING
true
# else
false
# endif
# endif
) {
# if ENABLED(SKEW_CORRECTION)
skew ( pos ) ;
# endif
# if HAS_LEVELING
if ( leveling )
apply_leveling ( pos ) ;
# endif
# if ENABLED(FWRETRACT)
apply_retract ( pos ) ;
# endif
}
FORCE_INLINE static void unapply_modifiers ( float ( & pos ) [ XYZE ]
# if HAS_LEVELING
, bool leveling =
# if PLANNER_LEVELING
true
# else
false
# endif
# endif
) {
# if ENABLED(FWRETRACT)
unapply_retract ( pos ) ;
# endif
# if HAS_LEVELING
if ( leveling )
unapply_leveling ( pos ) ;
# endif
# if ENABLED(SKEW_CORRECTION)
unskew ( pos ) ;
# endif
}
# endif // HAS_POSITION_MODIFIERS
// Number of moves currently in the planner including the busy block, if any
FORCE_INLINE static uint8_t movesplanned ( ) { return BLOCK_MOD ( block_buffer_head - block_buffer_tail ) ; }
// Number of nonbusy moves currently in the planner
FORCE_INLINE static uint8_t nonbusy_movesplanned ( ) { return BLOCK_MOD ( block_buffer_head - block_buffer_nonbusy ) ; }
// Remove all blocks from the buffer
FORCE_INLINE static void clear_block_buffer ( ) { block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail = 0 ; }
// Check if movement queue is full
FORCE_INLINE static bool is_full ( ) { return block_buffer_tail = = next_block_index ( block_buffer_head ) ; }
// Get count of movement slots free
FORCE_INLINE static uint8_t moves_free ( ) { return BLOCK_BUFFER_SIZE - 1 - movesplanned ( ) ; }
/**
* Planner : : get_next_free_block
*
* - Get the next head indices ( passed by reference )
* - Wait for the number of spaces to open up in the planner
* - Return the first head block
*/
FORCE_INLINE static block_t * get_next_free_block ( uint8_t & next_buffer_head , const uint8_t count = 1 ) {
// Wait until there are enough slots free
while ( moves_free ( ) < count ) { idle ( ) ; }
// Return the first available block
next_buffer_head = next_block_index ( block_buffer_head ) ;
return & block_buffer [ block_buffer_head ] ;
}
/**
* Planner : : _buffer_steps
*
* Add a new linear movement to the buffer ( in terms of steps ) .
*
* target - target position in steps units
* fr_mm_s - ( target ) speed of the move
* extruder - target extruder
* millimeters - the length of the movement , if known
*
* Returns true if movement was buffered , false otherwise
*/
static bool _buffer_steps ( const int32_t ( & target ) [ XYZE ]
# if HAS_POSITION_FLOAT
, const float ( & target_float ) [ ABCE ]
# endif
# if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
, const float ( & delta_mm_cart ) [ XYZE ]
# endif
, float fr_mm_s , const uint8_t extruder , const float & millimeters = 0.0
) ;
/**
* Planner : : _populate_block
*
* Fills a new linear movement in the block ( in terms of steps ) .
*
* target - target position in steps units
* fr_mm_s - ( target ) speed of the move
* extruder - target extruder
* millimeters - the length of the movement , if known
*
* Returns true is movement is acceptable , false otherwise
*/
static bool _populate_block ( block_t * const block , bool split_move ,
const int32_t ( & target ) [ XYZE ]
# if HAS_POSITION_FLOAT
, const float ( & target_float ) [ XYZE ]
# endif
# if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
, const float ( & delta_mm_cart ) [ XYZE ]
# endif
, float fr_mm_s , const uint8_t extruder , const float & millimeters = 0.0
) ;
/**
* Planner : : buffer_sync_block
* Add a block to the buffer that just updates the position
*/
static void buffer_sync_block ( ) ;
# if IS_KINEMATIC
private :
// Allow do_homing_move to access internal functions, such as buffer_segment.
friend void do_homing_move ( const AxisEnum , const float , const float ) ;
# endif
/**
* Planner : : buffer_segment
*
* Add a new linear movement to the buffer in axis units .
*
* Leveling and kinematics should be applied ahead of calling this .
*
* a , b , c , e - target positions in mm and / or degrees
* fr_mm_s - ( target ) speed of the move
* extruder - target extruder
* millimeters - the length of the movement , if known
*/
static bool buffer_segment ( const float & a , const float & b , const float & c , const float & e
# if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
, const float ( & delta_mm_cart ) [ XYZE ]
# endif
, const float & fr_mm_s , const uint8_t extruder , const float & millimeters = 0.0
) ;
FORCE_INLINE static bool buffer_segment ( const float ( & abce ) [ ABCE ]
# if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
, const float ( & delta_mm_cart ) [ XYZE ]
# endif
, const float & fr_mm_s , const uint8_t extruder , const float & millimeters = 0.0
) {
return buffer_segment ( abce [ A_AXIS ] , abce [ B_AXIS ] , abce [ C_AXIS ] , abce [ E_AXIS ]
# if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
, delta_mm_cart
# endif
, fr_mm_s , extruder , millimeters ) ;
}
public :
/**
* Add a new linear movement to the buffer .
* The target is cartesian , it ' s translated to delta / scara if
* needed .
*
*
* rx , ry , rz , e - target position in mm or degrees
* fr_mm_s - ( target ) speed of the move ( mm / s )
* extruder - target extruder
* millimeters - the length of the movement , if known
* inv_duration - the reciprocal if the duration of the movement , if known ( kinematic only if feeedrate scaling is enabled )
*/
static bool buffer_line ( const float & rx , const float & ry , const float & rz , const float & e , const float & fr_mm_s , const uint8_t extruder , const float millimeters = 0.0
# if ENABLED(SCARA_FEEDRATE_SCALING)
, const float & inv_duration = 0.0
# endif
) ;
FORCE_INLINE static bool buffer_line ( const float ( & cart ) [ XYZE ] , const float & fr_mm_s , const uint8_t extruder , const float millimeters = 0.0
# if ENABLED(SCARA_FEEDRATE_SCALING)
, const float & inv_duration = 0.0
# endif
) {
return buffer_line ( cart [ X_AXIS ] , cart [ Y_AXIS ] , cart [ Z_AXIS ] , cart [ E_AXIS ] , fr_mm_s , extruder , millimeters
# if ENABLED(SCARA_FEEDRATE_SCALING)
, inv_duration
# endif
) ;
}
/**
* Set the planner . position and individual stepper positions .
* Used by G92 , G28 , G29 , and other procedures .
*
* The supplied position is in the cartesian coordinate space and is
* translated in to machine space as needed . Modifiers such as leveling
* and skew are also applied .
*
* Multiplies by axis_steps_per_mm [ ] and does necessary conversion
* for COREXY / COREXZ / COREYZ to set the corresponding stepper positions .
*
* Clears previous speed values .
*/
static void set_position_mm ( const float & rx , const float & ry , const float & rz , const float & e ) ;
FORCE_INLINE static void set_position_mm ( const float ( & cart ) [ XYZE ] ) { set_position_mm ( cart [ X_AXIS ] , cart [ Y_AXIS ] , cart [ Z_AXIS ] , cart [ E_AXIS ] ) ; }
static void set_e_position_mm ( const float & e ) ;
/**
* Set the planner . position and individual stepper positions .
*
* The supplied position is in machine space , and no additional
* conversions are applied .
*/
static void set_machine_position_mm ( const float & a , const float & b , const float & c , const float & e ) ;
FORCE_INLINE static void set_machine_position_mm ( const float ( & abce ) [ ABCE ] ) { set_machine_position_mm ( abce [ A_AXIS ] , abce [ B_AXIS ] , abce [ C_AXIS ] , abce [ E_AXIS ] ) ; }
/**
* Get an axis position according to stepper position ( s )
* For CORE machines apply translation from ABC to XYZ .
*/
static float get_axis_position_mm ( const AxisEnum axis ) ;
// SCARA AB axes are in degrees, not mm
# if IS_SCARA
FORCE_INLINE static float get_axis_position_degrees ( const AxisEnum axis ) { return get_axis_position_mm ( axis ) ; }
# endif
// Called to force a quick stop of the machine (for example, when an emergency
// stop is required, or when endstops are hit)
static void quick_stop ( ) ;
// Called when an endstop is triggered. Causes the machine to stop inmediately
static void endstop_triggered ( const AxisEnum axis ) ;
// Triggered position of an axis in mm (not core-savvy)
static float triggered_position_mm ( const AxisEnum axis ) ;
// Block until all buffered steps are executed / cleaned
static void synchronize ( ) ;
// Wait for moves to finish and disable all steppers
static void finish_and_disable ( ) ;
// Periodic tick to handle cleaning timeouts
// Called from the Temperature ISR at ~1kHz
static void tick ( ) {
if ( cleaning_buffer_counter ) {
- - cleaning_buffer_counter ;
# if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
if ( ! cleaning_buffer_counter ) enqueue_and_echo_commands_P ( PSTR ( SD_FINISHED_RELEASECOMMAND ) ) ;
# endif
}
}
/**
* Does the buffer have any blocks queued ?
*/
FORCE_INLINE static bool has_blocks_queued ( ) { return ( block_buffer_head ! = block_buffer_tail ) ; }
/**
* The current block . NULL if the buffer is empty .
* This also marks the block as busy .
* WARNING : Called from Stepper ISR context !
*/
static block_t * get_current_block ( ) {
// Get the number of moves in the planner queue so far
const uint8_t nr_moves = movesplanned ( ) ;
// If there are any moves queued ...
if ( nr_moves ) {
// If there is still delay of delivery of blocks running, decrement it
if ( delay_before_delivering ) {
- - delay_before_delivering ;
// If the number of movements queued is less than 3, and there is still time
// to wait, do not deliver anything
if ( nr_moves < 3 & & delay_before_delivering ) return NULL ;
delay_before_delivering = 0 ;
}
// If we are here, there is no excuse to deliver the block
block_t * const block = & block_buffer [ block_buffer_tail ] ;
// No trapezoid calculated? Don't execute yet.
if ( TEST ( block - > flag , BLOCK_BIT_RECALCULATE ) ) return NULL ;
# if ENABLED(ULTRA_LCD)
block_buffer_runtime_us - = block - > segment_time_us ; // We can't be sure how long an active block will take, so don't count it.
# endif
// As this block is busy, advance the nonbusy block pointer
block_buffer_nonbusy = next_block_index ( block_buffer_tail ) ;
// Push block_buffer_planned pointer, if encountered.
if ( block_buffer_tail = = block_buffer_planned )
block_buffer_planned = block_buffer_nonbusy ;
// Return the block
return block ;
}
// The queue became empty
# if ENABLED(ULTRA_LCD)
clear_block_buffer_runtime ( ) ; // paranoia. Buffer is empty now - so reset accumulated time to zero.
# endif
return NULL ;
}
/**
* " Discard " the block and " release " the memory .
* Called when the current block is no longer needed .
* NB : There MUST be a current block to call this function ! !
*/
FORCE_INLINE static void discard_current_block ( ) {
if ( has_blocks_queued ( ) )
block_buffer_tail = next_block_index ( block_buffer_tail ) ;
}
# if ENABLED(ULTRA_LCD)
static uint16_t block_buffer_runtime ( ) {
# ifdef __AVR__
// Protect the access to the variable. Only required for AVR, as
// any 32bit CPU offers atomic access to 32bit variables
bool was_enabled = STEPPER_ISR_ENABLED ( ) ;
if ( was_enabled ) DISABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
# endif
millis_t bbru = block_buffer_runtime_us ;
# ifdef __AVR__
// Reenable Stepper ISR
if ( was_enabled ) ENABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
# endif
// To translate µs to ms a division by 1000 would be required.
// We introduce 2.4% error here by dividing by 1024.
// Doesn't matter because block_buffer_runtime_us is already too small an estimation.
bbru > > = 10 ;
// limit to about a minute.
NOMORE ( bbru , 0xFFFFul ) ;
return bbru ;
}
static void clear_block_buffer_runtime ( ) {
# ifdef __AVR__
// Protect the access to the variable. Only required for AVR, as
// any 32bit CPU offers atomic access to 32bit variables
bool was_enabled = STEPPER_ISR_ENABLED ( ) ;
if ( was_enabled ) DISABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
# endif
block_buffer_runtime_us = 0 ;
# ifdef __AVR__
// Reenable Stepper ISR
if ( was_enabled ) ENABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
# endif
}
# endif
# if ENABLED(AUTOTEMP)
static float autotemp_min , autotemp_max , autotemp_factor ;
static bool autotemp_enabled ;
static void getHighESpeed ( ) ;
static void autotemp_M104_M109 ( ) ;
# endif
# if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
FORCE_INLINE static void recalculate_max_e_jerk ( ) {
# define GET_MAX_E_JERK(N) SQRT(SQRT(0.5) * junction_deviation_mm * (N) * RECIPROCAL(1.0 - SQRT(0.5)))
# if ENABLED(DISTINCT_E_FACTORS)
for ( uint8_t i = 0 ; i < EXTRUDERS ; i + + )
max_e_jerk [ i ] = GET_MAX_E_JERK ( settings . max_acceleration_mm_per_s2 [ E_AXIS_N ( i ) ] ) ;
# else
max_e_jerk = GET_MAX_E_JERK ( settings . max_acceleration_mm_per_s2 [ E_AXIS ] ) ;
# endif
}
# endif
private :
/**
* Get the index of the next / previous block in the ring buffer
*/
static constexpr uint8_t next_block_index ( const uint8_t block_index ) { return BLOCK_MOD ( block_index + 1 ) ; }
static constexpr uint8_t prev_block_index ( const uint8_t block_index ) { return BLOCK_MOD ( block_index - 1 ) ; }
/**
* Calculate the distance ( not time ) it takes to accelerate
* from initial_rate to target_rate using the given acceleration :
*/
static float estimate_acceleration_distance ( const float & initial_rate , const float & target_rate , const float & accel ) {
if ( accel = = 0 ) return 0 ; // accel was 0, set acceleration distance to 0
return ( sq ( target_rate ) - sq ( initial_rate ) ) / ( accel * 2 ) ;
}
/**
* Return the point at which you must start braking ( at the rate of - ' accel ' ) if
* you start at ' initial_rate ' , accelerate ( until reaching the point ) , and want to end at
* ' final_rate ' after traveling ' distance ' .
*
* This is used to compute the intersection point between acceleration and deceleration
* in cases where the " trapezoid " has no plateau ( i . e . , never reaches maximum speed )
*/
static float intersection_distance ( const float & initial_rate , const float & final_rate , const float & accel , const float & distance ) {
if ( accel = = 0 ) return 0 ; // accel was 0, set intersection distance to 0
return ( accel * 2 * distance - sq ( initial_rate ) + sq ( final_rate ) ) / ( accel * 4 ) ;
}
/**
* Calculate the maximum allowable speed squared at this point , in order
* to reach ' target_velocity_sqr ' using ' acceleration ' within a given
* ' distance ' .
*/
static float max_allowable_speed_sqr ( const float & accel , const float & target_velocity_sqr , const float & distance ) {
return target_velocity_sqr - 2 * accel * distance ;
}
# if ENABLED(S_CURVE_ACCELERATION)
/**
* Calculate the speed reached given initial speed , acceleration and distance
*/
static float final_speed ( const float & initial_velocity , const float & accel , const float & distance ) {
return SQRT ( sq ( initial_velocity ) + 2 * accel * distance ) ;
}
# endif
static void calculate_trapezoid_for_block ( block_t * const block , const float & entry_factor , const float & exit_factor ) ;
static void reverse_pass_kernel ( block_t * const current , const block_t * const next ) ;
static void forward_pass_kernel ( const block_t * const previous , block_t * const current , uint8_t block_index ) ;
static void reverse_pass ( ) ;
static void forward_pass ( ) ;
static void recalculate_trapezoids ( ) ;
static void recalculate ( ) ;
# if ENABLED(JUNCTION_DEVIATION)
FORCE_INLINE static void normalize_junction_vector ( float ( & vector ) [ XYZE ] ) {
float magnitude_sq = 0 ;
LOOP_XYZE ( idx ) if ( vector [ idx ] ) magnitude_sq + = sq ( vector [ idx ] ) ;
const float inv_magnitude = RSQRT ( magnitude_sq ) ;
LOOP_XYZE ( idx ) vector [ idx ] * = inv_magnitude ;
}
FORCE_INLINE static float limit_value_by_axis_maximum ( const float & max_value , float ( & unit_vec ) [ XYZE ] ) {
float limit_value = max_value ;
LOOP_XYZE ( idx ) if ( unit_vec [ idx ] ) // Avoid divide by zero
NOMORE ( limit_value , ABS ( settings . max_acceleration_mm_per_s2 [ idx ] / unit_vec [ idx ] ) ) ;
return limit_value ;
}
# endif // JUNCTION_DEVIATION
} ;
# define PLANNER_XY_FEEDRATE() (MIN(planner.settings.max_feedrate_mm_s[X_AXIS], planner.settings.max_feedrate_mm_s[Y_AXIS]))
extern Planner planner ;