Consolidate "bedlevel" code

2.0.x
Scott Lahteine 7 years ago
parent 71aefc2e22
commit 551752eac7

File diff suppressed because it is too large Load Diff

@ -48,10 +48,6 @@ void idle(
void manage_inactivity(bool ignore_stepper_queue = false);
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
extern bool extruder_duplication_enabled;
#endif
#if HAS_X2_ENABLE
#define enable_X() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0)
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
@ -179,13 +175,6 @@ extern bool Running;
inline bool IsRunning() { return Running; }
inline bool IsStopped() { return !Running; }
/**
* Feedrate scaling and conversion
*/
extern int16_t feedrate_percentage;
#define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01)
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
@ -197,71 +186,23 @@ extern volatile bool wait_for_heatup;
extern volatile bool wait_for_user;
#endif
// Hotend Offsets
#if HOTENDS > 1
extern float hotend_offset[XYZ][HOTENDS];
#endif
// Software Endstops
extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
void update_software_endstops(const AxisEnum axis);
#endif
#if IS_KINEMATIC
extern float delta[ABC];
void inverse_kinematics(const float logical[XYZ]);
#endif
#if ENABLED(DELTA)
extern float endstop_adj[ABC],
delta_radius,
delta_diagonal_rod,
delta_calibration_radius,
delta_segments_per_second,
delta_tower_angle_trim[2],
delta_clip_start_height;
void recalc_delta_settings(float radius, float diagonal_rod);
#elif IS_SCARA
void forward_kinematics_SCARA(const float &a, const float &b);
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
extern int bilinear_grid_spacing[2], bilinear_start[2];
extern float bilinear_grid_factor[2],
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
float bilinear_z_offset(const float logical[XYZ]);
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
typedef struct { double A, B, D; } linear_fit;
linear_fit* lsf_linear_fit(double x[], double y[], double z[], const int);
#endif
#if HAS_LEVELING
bool leveling_is_valid();
bool leveling_is_active();
void set_bed_leveling_enabled(const bool enable=true);
void reset_bed_level();
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
void set_z_fade_height(const float zfh);
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
extern float z_endstop_adj;
#endif
#if HAS_BED_PROBE
extern float zprobe_zoffset;
void refresh_zprobe_zoffset(const bool no_babystep=false);
#define DEPLOY_PROBE() set_probe_deployed(true)
#define STOW_PROBE() set_probe_deployed(false)
#else
#define DEPLOY_PROBE()
#define STOW_PROBE()
#if HAS_SERVOS
#include "HAL/servo.h"
extern HAL_SERVO_LIB servo[NUM_SERVOS];
#define MOVE_SERVO(I, P) servo[I].move(P)
#if HAS_Z_SERVO_ENDSTOP
#define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
#define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
#endif
#endif
#if FAN_COUNT > 0
@ -309,16 +250,4 @@ extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
void calculate_volumetric_multipliers();
/**
* Blocking movement and shorthand functions
*/
void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s=0.0);
void do_blocking_move_to_x(const float &x, const float &fr_mm_s=0.0);
void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0);
void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0);
#if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true);
#endif
#endif // __MARLIN_H__

@ -0,0 +1,425 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#include "abl.h"
#include "../../../module/motion.h"
int bilinear_grid_spacing[2], bilinear_start[2];
float bilinear_grid_factor[2],
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
/**
* Extrapolate a single point from its neighbors
*/
static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM("Extrapolate [");
if (x < 10) SERIAL_CHAR(' ');
SERIAL_ECHO((int)x);
SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
SERIAL_CHAR(' ');
if (y < 10) SERIAL_CHAR(' ');
SERIAL_ECHO((int)y);
SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
SERIAL_CHAR(']');
}
#endif
if (!isnan(z_values[x][y])) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
#endif
return; // Don't overwrite good values.
}
SERIAL_EOL();
// Get X neighbors, Y neighbors, and XY neighbors
const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
b1 = z_values[x ][y1], b2 = z_values[x ][y2],
c1 = z_values[x1][y1], c2 = z_values[x2][y2];
// Treat far unprobed points as zero, near as equal to far
if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
// Take the average instead of the median
z_values[x][y] = (a + b + c) / 3.0;
// Median is robust (ignores outliers).
// z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
// : ((c < b) ? b : (a < c) ? a : c);
}
//Enable this if your SCARA uses 180° of total area
//#define EXTRAPOLATE_FROM_EDGE
#if ENABLED(EXTRAPOLATE_FROM_EDGE)
#if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
#define HALF_IN_X
#elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
#define HALF_IN_Y
#endif
#endif
/**
* Fill in the unprobed points (corners of circular print surface)
* using linear extrapolation, away from the center.
*/
void extrapolate_unprobed_bed_level() {
#ifdef HALF_IN_X
constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
#else
constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
xlen = ctrx1;
#endif
#ifdef HALF_IN_Y
constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
#else
constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
ylen = ctry1;
#endif
for (uint8_t xo = 0; xo <= xlen; xo++)
for (uint8_t yo = 0; yo <= ylen; yo++) {
uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
#ifndef HALF_IN_X
const uint8_t x1 = ctrx1 - xo;
#endif
#ifndef HALF_IN_Y
const uint8_t y1 = ctry1 - yo;
#ifndef HALF_IN_X
extrapolate_one_point(x1, y1, +1, +1); // left-below + +
#endif
extrapolate_one_point(x2, y1, -1, +1); // right-below - +
#endif
#ifndef HALF_IN_X
extrapolate_one_point(x1, y2, +1, -1); // left-above + -
#endif
extrapolate_one_point(x2, y2, -1, -1); // right-above - -
}
}
void print_bilinear_leveling_grid() {
SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
[](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
);
}
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
#define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
#define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
#define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
#define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
int bilinear_grid_spacing_virt[2] = { 0 };
float bilinear_grid_factor_virt[2] = { 0 };
void print_bilinear_leveling_grid_virt() {
SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
[](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
);
}
#define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
uint8_t ep = 0, ip = 1;
if (!x || x == ABL_TEMP_POINTS_X - 1) {
if (x) {
ep = GRID_MAX_POINTS_X - 1;
ip = GRID_MAX_POINTS_X - 2;
}
if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
return LINEAR_EXTRAPOLATION(
z_values[ep][y - 1],
z_values[ip][y - 1]
);
else
return LINEAR_EXTRAPOLATION(
bed_level_virt_coord(ep + 1, y),
bed_level_virt_coord(ip + 1, y)
);
}
if (!y || y == ABL_TEMP_POINTS_Y - 1) {
if (y) {
ep = GRID_MAX_POINTS_Y - 1;
ip = GRID_MAX_POINTS_Y - 2;
}
if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
return LINEAR_EXTRAPOLATION(
z_values[x - 1][ep],
z_values[x - 1][ip]
);
else
return LINEAR_EXTRAPOLATION(
bed_level_virt_coord(x, ep + 1),
bed_level_virt_coord(x, ip + 1)
);
}
return z_values[x - 1][y - 1];
}
static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
return (
p[i-1] * -t * sq(1 - t)
+ p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
+ p[i+1] * t * (1 + 4 * t - 3 * sq(t))
- p[i+2] * sq(t) * (1 - t)
) * 0.5;
}
static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
float row[4], column[4];
for (uint8_t i = 0; i < 4; i++) {
for (uint8_t j = 0; j < 4; j++) {
column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
}
row[i] = bed_level_virt_cmr(column, 1, ty);
}
return bed_level_virt_cmr(row, 1, tx);
}
void bed_level_virt_interpolate() {
bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
continue;
z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
bed_level_virt_2cmr(
x + 1,
y + 1,
(float)tx / (BILINEAR_SUBDIVISIONS),
(float)ty / (BILINEAR_SUBDIVISIONS)
);
}
}
#endif // ABL_BILINEAR_SUBDIVISION
// Refresh after other values have been updated
void refresh_bed_level() {
bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bed_level_virt_interpolate();
#endif
}
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
#define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
#define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
#define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
#define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
#define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
#else
#define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
#define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
#define ABL_BG_POINTS_X GRID_MAX_POINTS_X
#define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
#define ABL_BG_GRID(X,Y) z_values[X][Y]
#endif
// Get the Z adjustment for non-linear bed leveling
float bilinear_z_offset(const float logical[XYZ]) {
static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
last_x = -999.999, last_y = -999.999;
// Whole units for the grid line indices. Constrained within bounds.
static int8_t gridx, gridy, nextx, nexty,
last_gridx = -99, last_gridy = -99;
// XY relative to the probed area
const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
#if ENABLED(EXTRAPOLATE_BEYOND_GRID)
// Keep using the last grid box
#define FAR_EDGE_OR_BOX 2
#else
// Just use the grid far edge
#define FAR_EDGE_OR_BOX 1
#endif
if (last_x != x) {
last_x = x;
ratio_x = x * ABL_BG_FACTOR(X_AXIS);
const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
ratio_x -= gx; // Subtract whole to get the ratio within the grid box
#if DISABLED(EXTRAPOLATE_BEYOND_GRID)
// Beyond the grid maintain height at grid edges
NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
#endif
gridx = gx;
nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
}
if (last_y != y || last_gridx != gridx) {
if (last_y != y) {
last_y = y;
ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
ratio_y -= gy;
#if DISABLED(EXTRAPOLATE_BEYOND_GRID)
// Beyond the grid maintain height at grid edges
NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
#endif
gridy = gy;
nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
}
if (last_gridx != gridx || last_gridy != gridy) {
last_gridx = gridx;
last_gridy = gridy;
// Z at the box corners
z1 = ABL_BG_GRID(gridx, gridy); // left-front
d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
z3 = ABL_BG_GRID(nextx, gridy); // right-front
d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
}
// Bilinear interpolate. Needed since y or gridx has changed.
L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
D = R - L;
}
const float offset = L + ratio_x * D; // the offset almost always changes
/*
static float last_offset = 0;
if (FABS(last_offset - offset) > 0.2) {
SERIAL_ECHOPGM("Sudden Shift at ");
SERIAL_ECHOPAIR("x=", x);
SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
SERIAL_ECHOPAIR(" y=", y);
SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
SERIAL_ECHOPAIR(" z1=", z1);
SERIAL_ECHOPAIR(" z2=", z2);
SERIAL_ECHOPAIR(" z3=", z3);
SERIAL_ECHOLNPAIR(" z4=", z4);
SERIAL_ECHOPAIR(" L=", L);
SERIAL_ECHOPAIR(" R=", R);
SERIAL_ECHOLNPAIR(" offset=", offset);
}
last_offset = offset;
//*/
return offset;
}
#if !IS_KINEMATIC
#define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
/**
* Prepare a bilinear-leveled linear move on Cartesian,
* splitting the move where it crosses grid borders.
*/
void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits, uint16_t y_splits) {
int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
cx2 = CELL_INDEX(X, destination[X_AXIS]),
cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
if (cx1 == cx2 && cy1 == cy2) {
// Start and end on same mesh square
line_to_destination(fr_mm_s);
set_current_to_destination();
return;
}
#define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
float normalized_dist, end[XYZE];
// Split at the left/front border of the right/top square
const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
if (cx2 != cx1 && TEST(x_splits, gcx)) {
COPY(end, destination);
destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = LINE_SEGMENT_END(Y);
CBI(x_splits, gcx);
}
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
COPY(end, destination);
destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = LINE_SEGMENT_END(X);
CBI(y_splits, gcy);
}
else {
// Already split on a border
line_to_destination(fr_mm_s);
set_current_to_destination();
return;
}
destination[Z_AXIS] = LINE_SEGMENT_END(Z);
destination[E_AXIS] = LINE_SEGMENT_END(E);
// Do the split and look for more borders
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
// Restore destination from stack
COPY(destination, end);
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
}
#endif // !IS_KINEMATIC
#endif // AUTO_BED_LEVELING_BILINEAR

@ -0,0 +1,51 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef __ABL_H__
#define __ABL_H__
#include "../../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#include "../bedlevel.h"
extern int bilinear_grid_spacing[2], bilinear_start[2];
extern float bilinear_grid_factor[2],
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
float bilinear_z_offset(const float logical[XYZ]);
void extrapolate_unprobed_bed_level();
void print_bilinear_leveling_grid();
void refresh_bed_level();
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
void print_bilinear_leveling_grid_virt();
void bed_level_virt_interpolate();
#endif
#if !IS_KINEMATIC
void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits=0xFFFF, uint16_t y_splits=0xFFFF);
#endif
#endif // AUTO_BED_LEVELING_BILINEAR
#endif // __ABL_H__

@ -0,0 +1,314 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if HAS_LEVELING
#include "bedlevel.h"
#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
#include "../../module/stepper.h"
#endif
#if PLANNER_LEVELING
#include "../../module/planner.h"
#endif
#if ENABLED(PROBE_MANUALLY)
bool g29_in_progress = false;
#if ENABLED(LCD_BED_LEVELING)
#include "../../lcd/ultralcd.h"
#endif
#endif
bool leveling_is_valid() {
return
#if ENABLED(MESH_BED_LEVELING)
mbl.has_mesh()
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
!!bilinear_grid_spacing[X_AXIS]
#elif ENABLED(AUTO_BED_LEVELING_UBL)
true
#else // 3POINT, LINEAR
true
#endif
;
}
bool leveling_is_active() {
return
#if ENABLED(MESH_BED_LEVELING)
mbl.active()
#elif ENABLED(AUTO_BED_LEVELING_UBL)
ubl.state.active
#else // OLDSCHOOL_ABL
planner.abl_enabled
#endif
;
}
/**
* Turn bed leveling on or off, fixing the current
* position as-needed.
*
* Disable: Current position = physical position
* Enable: Current position = "unleveled" physical position
*/
void set_bed_leveling_enabled(const bool enable/*=true*/) {
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
const bool can_change = (!enable || leveling_is_valid());
#else
constexpr bool can_change = true;
#endif
if (can_change && enable != leveling_is_active()) {
#if ENABLED(MESH_BED_LEVELING)
if (!enable)
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
const bool enabling = enable && leveling_is_valid();
mbl.set_active(enabling);
if (enabling) planner.unapply_leveling(current_position);
#elif ENABLED(AUTO_BED_LEVELING_UBL)
#if PLANNER_LEVELING
if (ubl.state.active) { // leveling from on to off
// change unleveled current_position to physical current_position without moving steppers.
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
ubl.state.active = false; // disable only AFTER calling apply_leveling
}
else { // leveling from off to on
ubl.state.active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
// change physical current_position to unleveled current_position without moving steppers.
planner.unapply_leveling(current_position);
}
#else
ubl.state.active = enable; // just flip the bit, current_position will be wrong until next move.
#endif
#else // OLDSCHOOL_ABL
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Force bilinear_z_offset to re-calculate next time
const float reset[XYZ] = { -9999.999, -9999.999, 0 };
(void)bilinear_z_offset(reset);
#endif
// Enable or disable leveling compensation in the planner
planner.abl_enabled = enable;
if (!enable)
// When disabling just get the current position from the steppers.
// This will yield the smallest error when first converted back to steps.
set_current_from_steppers_for_axis(
#if ABL_PLANAR
ALL_AXES
#else
Z_AXIS
#endif
);
else
// When enabling, remove compensation from the current position,
// so compensation will give the right stepper counts.
planner.unapply_leveling(current_position);
#endif // OLDSCHOOL_ABL
}
}
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
void set_z_fade_height(const float zfh) {
const bool level_active = leveling_is_active();
#if ENABLED(AUTO_BED_LEVELING_UBL)
if (level_active)
set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
planner.z_fade_height = zfh;
planner.inverse_z_fade_height = RECIPROCAL(zfh);
if (level_active)
set_bed_leveling_enabled(true); // turn back on after changing fade height
#else
planner.z_fade_height = zfh;
planner.inverse_z_fade_height = RECIPROCAL(zfh);
if (level_active) {
set_current_from_steppers_for_axis(
#if ABL_PLANAR
ALL_AXES
#else
Z_AXIS
#endif
);
}
#endif
}
#endif // ENABLE_LEVELING_FADE_HEIGHT
/**
* Reset calibration results to zero.
*/
void reset_bed_level() {
set_bed_leveling_enabled(false);
#if ENABLED(MESH_BED_LEVELING)
if (leveling_is_valid()) {
mbl.reset();
mbl.set_has_mesh(false);
}
#else
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
#endif
#if ABL_PLANAR
planner.bed_level_matrix.set_to_identity();
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
z_values[x][y] = NAN;
#elif ENABLED(AUTO_BED_LEVELING_UBL)
ubl.reset();
#endif
#endif
}
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
/**
* Enable to produce output in JSON format suitable
* for SCAD or JavaScript mesh visualizers.
*
* Visualize meshes in OpenSCAD using the included script.
*
* buildroot/shared/scripts/MarlinMesh.scad
*/
//#define SCAD_MESH_OUTPUT
/**
* Print calibration results for plotting or manual frame adjustment.
*/
void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, element_2d_fn fn) {
#ifndef SCAD_MESH_OUTPUT
for (uint8_t x = 0; x < sx; x++) {
for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL((int)x);
}
SERIAL_EOL();
#endif
#ifdef SCAD_MESH_OUTPUT
SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
#endif
for (uint8_t y = 0; y < sy; y++) {
#ifdef SCAD_MESH_OUTPUT
SERIAL_PROTOCOLPGM(" ["); // open sub-array
#else
if (y < 10) SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL((int)y);
#endif
for (uint8_t x = 0; x < sx; x++) {
SERIAL_PROTOCOLCHAR(' ');
const float offset = fn(x, y);
if (!isnan(offset)) {
if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
SERIAL_PROTOCOL_F(offset, precision);
}
else {
#ifdef SCAD_MESH_OUTPUT
for (uint8_t i = 3; i < precision + 3; i++)
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOLPGM("NAN");
#else
for (uint8_t i = 0; i < precision + 3; i++)
SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
#endif
}
#ifdef SCAD_MESH_OUTPUT
if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
#endif
}
#ifdef SCAD_MESH_OUTPUT
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOLCHAR(']'); // close sub-array
if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
#endif
SERIAL_EOL();
}
#ifdef SCAD_MESH_OUTPUT
SERIAL_PROTOCOLPGM("];"); // close 2D array
#endif
SERIAL_EOL();
}
#endif // AUTO_BED_LEVELING_BILINEAR || MESH_BED_LEVELING
#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
void _manual_goto_xy(const float &x, const float &y) {
const float old_feedrate_mm_s = feedrate_mm_s;
#if MANUAL_PROBE_HEIGHT > 0
const float prev_z = current_position[Z_AXIS];
feedrate_mm_s = homing_feedrate(Z_AXIS);
current_position[Z_AXIS] = LOGICAL_Z_POSITION(MANUAL_PROBE_HEIGHT);
line_to_current_position();
#endif
feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
current_position[X_AXIS] = LOGICAL_X_POSITION(x);
current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
line_to_current_position();
#if MANUAL_PROBE_HEIGHT > 0
feedrate_mm_s = homing_feedrate(Z_AXIS);
current_position[Z_AXIS] = prev_z; // move back to the previous Z.
line_to_current_position();
#endif
feedrate_mm_s = old_feedrate_mm_s;
stepper.synchronize();
#if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
lcd_wait_for_move = false;
#endif
}
#endif
#if HAS_PROBING_PROCEDURE
void out_of_range_error(const char* p_edge) {
SERIAL_PROTOCOLPGM("?Probe ");
serialprintPGM(p_edge);
SERIAL_PROTOCOLLNPGM(" position out of range.");
}
#endif
#endif // HAS_LEVELING

@ -0,0 +1,72 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef __BEDLEVEL_H__
#define __BEDLEVEL_H__
#include "../../inc/MarlinConfig.h"
#if ENABLED(MESH_BED_LEVELING)
#include "mbl/mesh_bed_leveling.h"
#elif ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl/ubl.h"
#elif HAS_ABL
#include "abl/abl.h"
#endif
#if ENABLED(PROBE_MANUALLY)
extern bool g29_in_progress;
#else
constexpr bool g29_in_progress = false;
#endif
bool leveling_is_valid();
bool leveling_is_active();
void set_bed_leveling_enabled(const bool enable=true);
void reset_bed_level();
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
void set_z_fade_height(const float zfh);
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
#include <stdint.h>
typedef float (*element_2d_fn)(const uint8_t, const uint8_t);
/**
* Print calibration results for plotting or manual frame adjustment.
*/
void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, element_2d_fn fn);
#endif
#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
void _manual_goto_xy(const float &x, const float &y);
#endif
#if HAS_PROBING_PROCEDURE
void out_of_range_error(const char* p_edge);
#endif
#endif // __BEDLEVEL_H__

@ -20,13 +20,14 @@
*
*/
#include "../../inc/MarlinConfig.h"
#include "../../../inc/MarlinConfig.h"
#if ENABLED(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#include "../../module/motion.h"
#include "../../../module/motion.h"
#include "../../../feature/bedlevel/bedlevel.h"
mesh_bed_leveling mbl;
@ -110,4 +111,13 @@
mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
}
void mbl_mesh_report() {
SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
[](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
);
}
#endif // MESH_BED_LEVELING

@ -23,7 +23,7 @@
#ifndef _MESH_BED_LEVELING_H_
#define _MESH_BED_LEVELING_H_
#include "../../Marlin.h"
#include "../../../inc/MarlinConfig.h"
enum MeshLevelingState {
MeshReport,
@ -120,6 +120,10 @@ public:
extern mesh_bed_leveling mbl;
// Support functions, which may be embedded in the class later
void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits=0xFF, uint8_t y_splits=0xFF);
void mbl_mesh_report();
#endif // _MESH_BED_LEVELING_H_

@ -20,17 +20,17 @@
*
*/
#include "../../inc/MarlinConfig.h"
#include "../../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl.h"
unified_bed_leveling ubl;
#include "../../module/configuration_store.h"
#include "../../core/serial.h"
#include "../../module/planner.h"
#include "../../module/motion.h"
#include "../../../module/configuration_store.h"
#include "../../../module/planner.h"
#include "../../../module/motion.h"
#include "../../bedlevel/bedlevel.h"
#include "math.h"
@ -78,6 +78,10 @@
bool unified_bed_leveling::g26_debug_flag = false,
unified_bed_leveling::has_control_of_lcd_panel = false;
#if ENABLED(ULTRA_LCD)
bool unified_bed_leveling::lcd_map_control = false;
#endif
volatile int unified_bed_leveling::encoder_diff;
unified_bed_leveling::unified_bed_leveling() {

@ -23,9 +23,9 @@
#ifndef UNIFIED_BED_LEVELING_H
#define UNIFIED_BED_LEVELING_H
#include "../../Marlin.h"
#include "../../core/serial.h"
#include "../../module/planner.h"
#include "../../../Marlin.h"
#include "../../../module/planner.h"
#include "../../../module/motion.h"
#define UBL_VERSION "1.01"
#define UBL_OK false
@ -57,7 +57,6 @@ enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
char *ftostr43sign(const float&, char);
bool ubl_lcd_clicked();
void home_all_axes();
extern uint8_t ubl_cnt;
@ -190,6 +189,10 @@ class unified_bed_leveling {
static bool g26_debug_flag, has_control_of_lcd_panel;
#if ENABLED(ULTRA_LCD)
static bool lcd_map_control;
#endif
static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
unified_bed_leveling();
@ -246,12 +249,16 @@ class unified_bed_leveling {
*/
inline static float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 2) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1l_i") : PSTR("yi") );
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
SERIAL_ECHOPAIR(",x1_i=", x1_i);
SERIAL_ECHOPAIR(",yi=", yi);
SERIAL_CHAR(')');
SERIAL_EOL();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1l_i") : PSTR("yi") );
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
SERIAL_ECHOPAIR(",x1_i=", x1_i);
SERIAL_ECHOPAIR(",yi=", yi);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
return NAN;
}
@ -266,12 +273,16 @@ class unified_bed_leveling {
//
inline static float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 2)) {
serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("yl_i") );
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ly0=", ly0);
SERIAL_ECHOPAIR(", xi=", xi);
SERIAL_ECHOPAIR(", y1_i=", y1_i);
SERIAL_CHAR(')');
SERIAL_EOL();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("yl_i") );
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ly0=", ly0);
SERIAL_ECHOPAIR(", xi=", xi);
SERIAL_ECHOPAIR(", y1_i=", y1_i);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
return NAN;
}
@ -390,6 +401,19 @@ class unified_bed_leveling {
static bool prepare_segmented_line_to(const float ltarget[XYZE], const float &feedrate);
static void line_to_destination_cartesian(const float &fr, uint8_t e);
#define _CMPZ(a,b) (z_values[a][b] == z_values[a][b+1])
#define CMPZ(a) (_CMPZ(a, 0) && _CMPZ(a, 1))
#define ZZER(a) (z_values[a][0] == 0)
FORCE_INLINE bool mesh_is_valid() {
return !(
( CMPZ(0) && CMPZ(1) && CMPZ(2) // adjacent z values all equal?
&& ZZER(0) && ZZER(1) && ZZER(2) // all zero at the edge?
)
|| isnan(z_values[0][0])
);
}
}; // class unified_bed_leveling
extern unified_bed_leveling ubl;

@ -20,20 +20,23 @@
*
*/
#include "../../inc/MarlinConfig.h"
#include "../../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl.h"
#include "../../Marlin.h"
#include "../../libs/hex_print_routines.h"
#include "../../module/configuration_store.h"
#include "../../lcd/ultralcd.h"
#include "../../module/stepper.h"
#include "../../module/planner.h"
#include "../../gcode/parser.h"
#include "../../libs/least_squares_fit.h"
#include "../../../Marlin.h"
#include "../../../libs/hex_print_routines.h"
#include "../../../module/configuration_store.h"
#include "../../../lcd/ultralcd.h"
#include "../../../module/stepper.h"
#include "../../../module/planner.h"
#include "../../../module/probe.h"
#include "../../../gcode/gcode.h"
#include "../../../gcode/parser.h"
#include "../../../feature/bedlevel/bedlevel.h"
#include "../../../libs/least_squares_fit.h"
#include <math.h>
@ -52,11 +55,8 @@
extern float meshedit_done;
extern long babysteps_done;
extern float probe_pt(const float &lx, const float &ly, const bool, const uint8_t, const bool=true);
extern bool set_probe_deployed(bool);
extern void set_bed_leveling_enabled(bool);
typedef void (*screenFunc_t)();
extern void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0);
//extern bool set_probe_deployed(bool);
//extern void set_bed_leveling_enabled(bool);
#define SIZE_OF_LITTLE_RAISE 1
#define BIG_RAISE_NOT_NEEDED 0
@ -314,7 +314,7 @@
if (axis_unhomed_error()) {
const int8_t p_val = parser.intval('P', -1);
if (p_val == 1 || p_val == 2 || p_val == 4 || parser.seen('J'))
home_all_axes();
gcode.home_all_axes();
}
if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
@ -1515,7 +1515,7 @@
idle();
} while (!ubl_lcd_clicked());
if (!ubl_lcd_map_control) lcd_return_to_status();
if (!lcd_map_control) lcd_return_to_status();
// The technique used here generates a race condition for the encoder click.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) or here.
@ -1561,7 +1561,7 @@
LCD_MESSAGEPGM(MSG_UBL_DONE_EDITING_MESH);
SERIAL_ECHOLNPGM("Done Editing Mesh");
if (ubl_lcd_map_control)
if (lcd_map_control)
lcd_goto_screen(_lcd_ubl_output_map_lcd);
else
lcd_return_to_status();
@ -1606,7 +1606,7 @@
// { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true } PROGMEM // Right side of the mesh looking left
// };
for (uint8_t i = 0; i < COUNT(info); ++i) {
const smart_fill_info *f = (smart_fill_info*)pgm_read_word(&info[i]);
const smart_fill_info *f = (smart_fill_info*)pgm_read_ptr(&info[i]);
const int8_t sx = pgm_read_word(&f->sx), sy = pgm_read_word(&f->sy),
ex = pgm_read_word(&f->ex), ey = pgm_read_word(&f->ey);
if (pgm_read_byte(&f->yfirst)) {

@ -19,16 +19,20 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#include "../../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl.h"
#include "../../Marlin.h"
#include "../../module/planner.h"
#include "../../module/stepper.h"
#include "../../module/motion.h"
#include "../../../Marlin.h"
#include "../../../module/planner.h"
#include "../../../module/stepper.h"
#include "../../../module/motion.h"
#if ENABLED(DELTA)
#include "../../../module/delta.h"
#endif
#include <math.h>
@ -40,25 +44,6 @@
extern void set_current_to_destination();
#endif
#if ENABLED(DELTA)
extern float delta[ABC],
endstop_adj[ABC];
extern float delta_radius,
delta_tower_angle_trim[2],
delta_tower[ABC][2],
delta_diagonal_rod,
delta_calibration_radius,
delta_diagonal_rod_2_tower[ABC],
delta_segments_per_second,
delta_clip_start_height;
extern float delta_safe_distance_from_top();
#endif
static void debug_echo_axis(const AxisEnum axis) {
if (current_position[axis] == destination[axis])
SERIAL_ECHOPGM("-------------");

@ -1,893 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Marlin Firmware -- G26 - Mesh Validation Tool
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
#include "ubl.h"
#include "../../Marlin.h"
#include "../../module/planner.h"
#include "../../module/stepper.h"
#include "../../module/motion.h"
#include "../../module/temperature.h"
#include "../../lcd/ultralcd.h"
#include "../../gcode/parser.h"
#define EXTRUSION_MULTIPLIER 1.0
#define RETRACTION_MULTIPLIER 1.0
#define NOZZLE 0.4
#define FILAMENT 1.75
#define LAYER_HEIGHT 0.2
#define PRIME_LENGTH 10.0
#define BED_TEMP 60.0
#define HOTEND_TEMP 205.0
#define OOZE_AMOUNT 0.3
#define SIZE_OF_INTERSECTION_CIRCLES 5
#define SIZE_OF_CROSSHAIRS 3
#if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES
#error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES."
#endif
/**
* G26 Mesh Validation Tool
*
* G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
* In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
* be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
* first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
* the intersections of those lines (respectively).
*
* This action allows the user to immediately see where the Mesh is properly defined and where it needs to
* be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
* the user can specify the X and Y position of interest with command parameters. This allows the user to
* focus on a particular area of the Mesh where attention is needed.
*
* B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
*
* C Current When searching for Mesh Intersection points to draw, use the current nozzle location
* as the base for any distance comparison.
*
* D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
* command to see how well a Mesh as been adjusted to match a print surface. In order to do
* this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
* alters the command's normal behaviour and disables the Unified Bed Leveling System even if
* it is on.
*
* H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
*
* F # Filament Used to specify the diameter of the filament being used. If not specified
* 1.75mm filament is assumed. If you are not getting acceptable results by using the
* 'correct' numbers, you can scale this number up or down a little bit to change the amount
* of filament that is being extruded during the printing of the various lines on the bed.
*
* K Keep-On Keep the heaters turned on at the end of the command.
*
* L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
*
* O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
* is over kill, but using this parameter will let you get the very first 'circle' perfect
* so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
* Mesh calibrated. If not specified, a filament length of .3mm is assumed.
*
* P # Prime Prime the nozzle with specified length of filament. If this parameter is not
* given, no prime action will take place. If the parameter specifies an amount, that much
* will be purged before continuing. If no amount is specified the command will start
* purging filament until the user provides an LCD Click and then it will continue with
* printing the Mesh. You can carefully remove the spent filament with a needle nose
* pliers while holding the LCD Click wheel in a depressed state. If you do not have
* an LCD, you must specify a value if you use P.
*
* Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
* un-retraction is at 1.2mm These numbers will be scaled by the specified amount
*
* R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
* If a parameter isn't given, every point will be printed unless G26 is interrupted.
* This works the same way that the UBL G29 P4 R parameter works.
*
* NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are
* aware that there's some risk associated with printing without the ability to abort in
* cases where mesh point Z value may be inaccurate. As above, if you do not include a
* parameter, every point will be printed.
*
* S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
*
* U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
* undrawn cicle is still done. But the distance to the location for each circle has a
* random number of the size specified added to it. Specifying S50 will give an interesting
* deviation from the normal behaviour on a 10 x 10 Mesh.
*
* X # X Coord. Specify the starting location of the drawing activity.
*
* Y # Y Coord. Specify the starting location of the drawing activity.
*/
// External references
extern Planner planner;
#if ENABLED(ULTRA_LCD)
extern char lcd_status_message[];
#endif
extern float destination[XYZE];
extern void set_destination_to_current() { COPY(destination, current_position); }
void prepare_move_to_destination();
#if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
inline void set_current_to_destination() { COPY(current_position, destination); }
#else
extern void sync_plan_position_e();
extern void set_current_to_destination();
#endif
#if ENABLED(NEWPANEL)
void lcd_setstatusPGM(const char* const message, const int8_t level);
void chirp_at_user();
#endif
// Private functions
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16];
float g26_e_axis_feedrate = 0.020,
random_deviation = 0.0;
static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
// retracts/recovers won't result in a bad state.
float valid_trig_angle(float);
float unified_bed_leveling::g26_extrusion_multiplier,
unified_bed_leveling::g26_retraction_multiplier,
unified_bed_leveling::g26_nozzle,
unified_bed_leveling::g26_filament_diameter,
unified_bed_leveling::g26_layer_height,
unified_bed_leveling::g26_prime_length,
unified_bed_leveling::g26_x_pos,
unified_bed_leveling::g26_y_pos,
unified_bed_leveling::g26_ooze_amount;
int16_t unified_bed_leveling::g26_bed_temp,
unified_bed_leveling::g26_hotend_temp;
int8_t unified_bed_leveling::g26_prime_flag;
bool unified_bed_leveling::g26_continue_with_closest,
unified_bed_leveling::g26_keep_heaters_on;
int16_t unified_bed_leveling::g26_repeats;
void unified_bed_leveling::G26_line_to_destination(const float &feed_rate) {
const float save_feedrate = feedrate_mm_s;
feedrate_mm_s = feed_rate; // use specified feed rate
prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_DELTA
feedrate_mm_s = save_feedrate; // restore global feed rate
}
#if ENABLED(NEWPANEL)
/**
* Detect ubl_lcd_clicked, debounce it, and return true for cancel
*/
bool user_canceled() {
if (!ubl_lcd_clicked()) return false;
safe_delay(10); // Wait for click to settle
#if ENABLED(ULTRA_LCD)
lcd_setstatusPGM(PSTR("Mesh Validation Stopped."), 99);
lcd_quick_feedback();
#endif
while (!ubl_lcd_clicked()) idle(); // Wait for button release
// If the button is suddenly pressed again,
// ask the user to resolve the issue
lcd_setstatusPGM(PSTR("Release button"), 99); // will never appear...
while (ubl_lcd_clicked()) idle(); // unless this loop happens
lcd_reset_status();
return true;
}
#endif
/**
* G26: Mesh Validation Pattern generation.
*
* Used to interactively edit UBL's Mesh by placing the
* nozzle in a problem area and doing a G29 P4 R command.
*/
void unified_bed_leveling::G26() {
SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
float tmp, start_angle, end_angle;
int i, xi, yi;
mesh_index_pair location;
// Don't allow Mesh Validation without homing first,
// or if the parameter parsing did not go OK, abort
if (axis_unhomed_error() || parse_G26_parameters()) return;
if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
stepper.synchronize();
set_current_to_destination();
}
if (turn_on_heaters()) goto LEAVE;
current_position[E_AXIS] = 0.0;
sync_plan_position_e();
if (g26_prime_flag && prime_nozzle()) goto LEAVE;
/**
* Bed is preheated
*
* Nozzle is at temperature
*
* Filament is primed!
*
* It's "Show Time" !!!
*/
ZERO(circle_flags);
ZERO(horizontal_mesh_line_flags);
ZERO(vertical_mesh_line_flags);
// Move nozzle to the specified height for the first layer
set_destination_to_current();
destination[Z_AXIS] = g26_layer_height;
move_to(destination, 0.0);
move_to(destination, g26_ooze_amount);
has_control_of_lcd_panel = true;
//debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
/**
* Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
* the CPU load and make the arc drawing faster and more smooth
*/
float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
for (i = 0; i <= 360 / 30; i++) {
cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
}
do {
location = g26_continue_with_closest
? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
: find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now.
if (location.x_index >= 0 && location.y_index >= 0) {
const float circle_x = mesh_index_to_xpos(location.x_index),
circle_y = mesh_index_to_ypos(location.y_index);
// If this mesh location is outside the printable_radius, skip it.
if (!position_is_reachable_raw_xy(circle_x, circle_y)) continue;
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
yi = location.y_index;
if (g26_debug_flag) {
SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
SERIAL_ECHOPAIR(", yi=", yi);
SERIAL_CHAR(')');
SERIAL_EOL();
}
start_angle = 0.0; // assume it is going to be a full circle
end_angle = 360.0;
if (xi == 0) { // Check for bottom edge
start_angle = -90.0;
end_angle = 90.0;
if (yi == 0) // it is an edge, check for the two left corners
start_angle = 0.0;
else if (yi == GRID_MAX_POINTS_Y - 1)
end_angle = 0.0;
}
else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge
start_angle = 90.0;
end_angle = 270.0;
if (yi == 0) // it is an edge, check for the two right corners
end_angle = 180.0;
else if (yi == GRID_MAX_POINTS_Y - 1)
start_angle = 180.0;
}
else if (yi == 0) {
start_angle = 0.0; // only do the top side of the cirlce
end_angle = 180.0;
}
else if (yi == GRID_MAX_POINTS_Y - 1) {
start_angle = 180.0; // only do the bottom side of the cirlce
end_angle = 360.0;
}
for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
#if ENABLED(NEWPANEL)
if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
#endif
int tmp_div_30 = tmp / 30.0;
if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry
y = circle_y + sin_table[tmp_div_30],
xe = circle_x + cos_table[tmp_div_30 + 1],
ye = circle_y + sin_table[tmp_div_30 + 1];
#if IS_KINEMATIC
// Check to make sure this segment is entirely on the bed, skip if not.
if (!position_is_reachable_raw_xy(x, y) || !position_is_reachable_raw_xy(xe, ye)) continue;
#else // not, we need to skip
x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
#endif
//if (g26_debug_flag) {
// char ccc, *cptr, seg_msg[50], seg_num[10];
// strcpy(seg_msg, " segment: ");
// strcpy(seg_num, " \n");
// cptr = (char*) "01234567890ABCDEF????????";
// ccc = cptr[tmp_div_30];
// seg_num[1] = ccc;
// strcat(seg_msg, seg_num);
// debug_current_and_destination(seg_msg);
//}
print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), g26_layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), g26_layer_height);
}
if (look_for_lines_to_connect())
goto LEAVE;
}
} while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0);
LEAVE:
lcd_setstatusPGM(PSTR("Leaving G26"), -1);
retract_filament(destination);
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
//debug_current_and_destination(PSTR("ready to do Z-Raise."));
move_to(destination, 0); // Raise the nozzle
//debug_current_and_destination(PSTR("done doing Z-Raise."));
destination[X_AXIS] = g26_x_pos; // Move back to the starting position
destination[Y_AXIS] = g26_y_pos;
//destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
move_to(destination, 0); // Move back to the starting position
//debug_current_and_destination(PSTR("done doing X/Y move."));
has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
if (!g26_keep_heaters_on) {
#if HAS_TEMP_BED
thermalManager.setTargetBed(0);
#endif
thermalManager.setTargetHotend(0, 0);
}
}
float valid_trig_angle(float d) {
while (d > 360.0) d -= 360.0;
while (d < 0.0) d += 360.0;
return d;
}
mesh_index_pair unified_bed_leveling::find_closest_circle_to_print(const float &X, const float &Y) {
float closest = 99999.99;
mesh_index_pair return_val;
return_val.x_index = return_val.y_index = -1;
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if (!is_bit_set(circle_flags, i, j)) {
const float mx = mesh_index_to_xpos(i), // We found a circle that needs to be printed
my = mesh_index_to_ypos(j);
// Get the distance to this intersection
float f = HYPOT(X - mx, Y - my);
// It is possible that we are being called with the values
// to let us find the closest circle to the start position.
// But if this is not the case, add a small weighting to the
// distance calculation to help it choose a better place to continue.
f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0;
// Add in the specified amount of Random Noise to our search
if (random_deviation > 1.0)
f += random(0.0, random_deviation);
if (f < closest) {
closest = f; // We found a closer location that is still
return_val.x_index = i; // un-printed --- save the data for it
return_val.y_index = j;
return_val.distance = closest;
}
}
}
}
bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
return return_val;
}
bool unified_bed_leveling::look_for_lines_to_connect() {
float sx, sy, ex, ey;
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
#if ENABLED(NEWPANEL)
if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation
#endif
if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
// This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
//
// We found two circles that need a horizontal line to connect them
// Print it!
//
sx = mesh_index_to_xpos( i ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
ex = mesh_index_to_xpos(i + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
sy = ey = constrain(mesh_index_to_ypos(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
if (g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex);
SERIAL_ECHOPAIR(", ey=", ey);
SERIAL_CHAR(')');
SERIAL_EOL();
//debug_current_and_destination(PSTR("Connecting horizontal line."));
}
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height);
}
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it
}
}
if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
// This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
//
// We found two circles that need a vertical line to connect them
// Print it!
//
sy = mesh_index_to_ypos( j ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
ey = mesh_index_to_ypos(j + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
sx = ex = constrain(mesh_index_to_xpos(i), X_MIN_POS + 1, X_MAX_POS - 1);
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
if (g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex);
SERIAL_ECHOPAIR(", ey=", ey);
SERIAL_CHAR(')');
SERIAL_EOL();
debug_current_and_destination(PSTR("Connecting vertical line."));
}
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height);
}
bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped
}
}
}
}
}
}
return false;
}
void unified_bed_leveling::move_to(const float &x, const float &y, const float &z, const float &e_delta) {
float feed_value;
static float last_z = -999.99;
bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
if (z != last_z) {
last_z = z;
feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
destination[E_AXIS] = current_position[E_AXIS];
G26_line_to_destination(feed_value);
stepper.synchronize();
set_destination_to_current();
}
// Check if X or Y is involved in the movement.
// Yes: a 'normal' movement. No: a retract() or recover()
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
destination[X_AXIS] = x;
destination[Y_AXIS] = y;
destination[E_AXIS] += e_delta;
G26_line_to_destination(feed_value);
stepper.synchronize();
set_destination_to_current();
}
void unified_bed_leveling::retract_filament(const float where[XYZE]) {
if (!g26_retracted) { // Only retract if we are not already retracted!
g26_retracted = true;
move_to(where, -1.0 * g26_retraction_multiplier);
}
}
void unified_bed_leveling::recover_filament(const float where[XYZE]) {
if (g26_retracted) { // Only un-retract if we are retracted.
move_to(where, 1.2 * g26_retraction_multiplier);
g26_retracted = false;
}
}
/**
* print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
* to the other. But there are really three sets of coordinates involved. The first coordinate
* is the present location of the nozzle. We don't necessarily want to print from this location.
* We first need to move the nozzle to the start of line segment where we want to print. Once
* there, we can use the two coordinates supplied to draw the line.
*
* Note: Although we assume the first set of coordinates is the start of the line and the second
* set of coordinates is the end of the line, it does not always work out that way. This function
* optimizes the movement to minimize the travel distance before it can start printing. This saves
* a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
* cause a lot of very little short retracement of th nozzle when it draws the very first line
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
* cases where the optimization comes into play.
*/
void unified_bed_leveling::print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
dy_s = current_position[Y_AXIS] - sy,
dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
// to save computation time
dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
dy_e = current_position[Y_AXIS] - ey,
dist_end = HYPOT2(dx_e, dy_e),
line_length = HYPOT(ex - sx, ey - sy);
// If the end point of the line is closer to the nozzle, flip the direction,
// moving from the end to the start. On very small lines the optimization isn't worth it.
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < FABS(line_length)) {
return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
}
// Decide whether to retract & bump
if (dist_start > 2.0) {
retract_filament(destination);
//todo: parameterize the bump height with a define
move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping
move_to(sx, sy, sz + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
}
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
recover_filament(destination);
move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
}
/**
* This function used to be inline code in G26. But there are so many
* parameters it made sense to turn them into static globals and get
* this code out of sight of the main routine.
*/
bool unified_bed_leveling::parse_G26_parameters() {
g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
g26_retraction_multiplier = RETRACTION_MULTIPLIER;
g26_nozzle = NOZZLE;
g26_filament_diameter = FILAMENT;
g26_layer_height = LAYER_HEIGHT;
g26_prime_length = PRIME_LENGTH;
g26_bed_temp = BED_TEMP;
g26_hotend_temp = HOTEND_TEMP;
g26_prime_flag = 0;
g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT);
g26_keep_heaters_on = parser.boolval('K');
g26_continue_with_closest = parser.boolval('C');
if (parser.seenval('B')) {
g26_bed_temp = parser.value_celsius();
if (!WITHIN(g26_bed_temp, 15, 140)) {
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
return UBL_ERR;
}
}
if (parser.seenval('L')) {
g26_layer_height = parser.value_linear_units();
if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
return UBL_ERR;
}
}
if (parser.seen('Q')) {
if (parser.has_value()) {
g26_retraction_multiplier = parser.value_float();
if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
return UBL_ERR;
}
}
else {
SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
return UBL_ERR;
}
}
if (parser.seenval('S')) {
g26_nozzle = parser.value_float();
if (!WITHIN(g26_nozzle, 0.1, 1.0)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
return UBL_ERR;
}
}
if (parser.seen('P')) {
if (!parser.has_value()) {
#if ENABLED(NEWPANEL)
g26_prime_flag = -1;
#else
SERIAL_PROTOCOLLNPGM("?Prime length must be specified when not using an LCD.");
return UBL_ERR;
#endif
}
else {
g26_prime_flag++;
g26_prime_length = parser.value_linear_units();
if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
return UBL_ERR;
}
}
}
if (parser.seenval('F')) {
g26_filament_diameter = parser.value_linear_units();
if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
return UBL_ERR;
}
}
g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
// scale up or down the length needed to get the
// same volume of filament
g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
if (parser.seenval('H')) {
g26_hotend_temp = parser.value_celsius();
if (!WITHIN(g26_hotend_temp, 165, 280)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
return UBL_ERR;
}
}
if (parser.seen('U')) {
randomSeed(millis());
// This setting will persist for the next G26
random_deviation = parser.has_value() ? parser.value_float() : 50.0;
}
#if ENABLED(NEWPANEL)
g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
#else
if (!parser.seen('R')) {
SERIAL_PROTOCOLLNPGM("?(R)epeat must be specified when not using an LCD.");
return UBL_ERR;
}
else
g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
#endif
if (g26_repeats < 1) {
SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1.");
return UBL_ERR;
}
g26_x_pos = parser.linearval('X', current_position[X_AXIS]);
g26_y_pos = parser.linearval('Y', current_position[Y_AXIS]);
if (!position_is_reachable_xy(g26_x_pos, g26_y_pos)) {
SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds.");
return UBL_ERR;
}
/**
* Wait until all parameters are verified before altering the state!
*/
set_bed_leveling_enabled(!parser.seen('D'));
return UBL_OK;
}
#if ENABLED(NEWPANEL)
bool unified_bed_leveling::exit_from_g26() {
lcd_setstatusPGM(PSTR("Leaving G26"), -1);
while (ubl_lcd_clicked()) idle();
return UBL_ERR;
}
#endif
/**
* Turn on the bed and nozzle heat and
* wait for them to get up to temperature.
*/
bool unified_bed_leveling::turn_on_heaters() {
millis_t next = millis() + 5000UL;
#if HAS_TEMP_BED
#if ENABLED(ULTRA_LCD)
if (g26_bed_temp > 25) {
lcd_setstatusPGM(PSTR("G26 Heating Bed."), 99);
lcd_quick_feedback();
#endif
has_control_of_lcd_panel = true;
thermalManager.setTargetBed(g26_bed_temp);
while (abs(thermalManager.degBed() - g26_bed_temp) > 3) {
#if ENABLED(NEWPANEL)
if (ubl_lcd_clicked()) return exit_from_g26();
#endif
if (ELAPSED(millis(), next)) {
next = millis() + 5000UL;
print_heaterstates();
SERIAL_EOL();
}
idle();
}
#if ENABLED(ULTRA_LCD)
}
lcd_setstatusPGM(PSTR("G26 Heating Nozzle."), 99);
lcd_quick_feedback();
#endif
#endif
// Start heating the nozzle and wait for it to reach temperature.
thermalManager.setTargetHotend(g26_hotend_temp, 0);
while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) {
#if ENABLED(NEWPANEL)
if (ubl_lcd_clicked()) return exit_from_g26();
#endif
if (ELAPSED(millis(), next)) {
next = millis() + 5000UL;
print_heaterstates();
SERIAL_EOL();
}
idle();
}
#if ENABLED(ULTRA_LCD)
lcd_reset_status();
lcd_quick_feedback();
#endif
return UBL_OK;
}
/**
* Prime the nozzle if needed. Return true on error.
*/
bool unified_bed_leveling::prime_nozzle() {
#if ENABLED(NEWPANEL)
float Total_Prime = 0.0;
if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
has_control_of_lcd_panel = true;
lcd_setstatusPGM(PSTR("User-Controlled Prime"), 99);
chirp_at_user();
set_destination_to_current();
recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
while (!ubl_lcd_clicked()) {
chirp_at_user();
destination[E_AXIS] += 0.25;
#ifdef PREVENT_LENGTHY_EXTRUDE
Total_Prime += 0.25;
if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
#endif
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
stepper.synchronize(); // Without this synchronize, the purge is more consistent,
// but because the planner has a buffer, we won't be able
// to stop as quickly. So we put up with the less smooth
// action to give the user a more responsive 'Stop'.
set_destination_to_current();
idle();
}
while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel
#if ENABLED(ULTRA_LCD)
strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatusPGM() without having it continue;
// So... We cheat to get a message up.
lcd_setstatusPGM(PSTR("Done Priming"), 99);
lcd_quick_feedback();
#endif
has_control_of_lcd_panel = false;
}
else {
#else
{
#endif
#if ENABLED(ULTRA_LCD)
lcd_setstatusPGM(PSTR("Fixed Length Prime."), 99);
lcd_quick_feedback();
#endif
set_destination_to_current();
destination[E_AXIS] += g26_prime_length;
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
stepper.synchronize();
set_destination_to_current();
retract_filament(destination);
}
return UBL_OK;
}
#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION

@ -20,6 +20,18 @@
*
*/
#include "../../inc/MarlinConfig.h"
#if HAS_LEVELING
#include "../gcode.h"
#include "../../feature/bedlevel/bedlevel.h"
#include "../../module/planner.h"
#if ENABLED(EEPROM_SETTINGS)
#include "../../module/configuration_store.h"
#endif
/**
* M420: Enable/Disable Bed Leveling and/or set the Z fade height.
*
@ -31,7 +43,7 @@
*
* L[index] Load UBL mesh from index (0 is default)
*/
void gcode_M420() {
void GcodeSuite::M420() {
#if ENABLED(AUTO_BED_LEVELING_UBL)
@ -64,10 +76,10 @@ void gcode_M420() {
#endif
}
// L to load a mesh from the EEPROM
// L or V display the map info
if (parser.seen('L') || parser.seen('V')) {
ubl.display_map(0); // Currently only supports one map type
SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
SERIAL_ECHOLNPAIR("ubl.mesh_is_valid = ", ubl.mesh_is_valid());
SERIAL_ECHOLNPAIR("ubl.state.storage_slot = ", ubl.state.storage_slot);
}
@ -119,3 +131,5 @@ void gcode_M420() {
SERIAL_ECHOLNPGM(MSG_OFF);
#endif
}
#endif // HAS_LEVELING

@ -20,6 +20,29 @@
*
*/
/**
* G29.cpp - Auto Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if OLDSCHOOL_ABL
#include "../../gcode.h"
#include "../../../feature/bedlevel/bedlevel.h"
#include "../../../module/motion.h"
#include "../../../module/planner.h"
#include "../../../module/stepper.h"
#include "../../../module/probe.h"
#if ENABLED(LCD_BED_LEVELING) && ENABLED(PROBE_MANUALLY)
#include "../../../lcd/ultralcd.h"
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
#include "../../../libs/least_squares_fit.h"
#endif
#if ABL_GRID
#if ENABLED(PROBE_Y_FIRST)
#define PR_OUTER_VAR xCount
@ -106,7 +129,7 @@
* There's no extra effect if you have a fixed Z probe.
*
*/
void gcode_G29() {
void GcodeSuite::G29() {
// G29 Q is also available if debugging
#if ENABLED(DEBUG_LEVELING_FEATURE)
@ -176,12 +199,10 @@ void gcode_G29() {
abl_grid_points_y = GRID_MAX_POINTS_Y;
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
ABL_VAR int abl2;
#else // Bilinear
int constexpr abl2 = GRID_MAX_POINTS;
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
ABL_VAR int abl2;
#elif ENABLED(PROBE_MANUALLY) // Bilinear
int constexpr abl2 = GRID_MAX_POINTS;
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
@ -199,7 +220,9 @@ void gcode_G29() {
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
int constexpr abl2 = 3;
#if ENABLED(PROBE_MANUALLY)
int constexpr abl2 = 3; // used to show total points
#endif
// Probe at 3 arbitrary points
ABL_VAR vector_3 points[3] = {
@ -944,3 +967,5 @@ void gcode_G29() {
if (planner.abl_enabled)
SYNC_PLAN_POSITION_KINEMATIC();
}
#endif // OLDSCHOOL_ABL

@ -20,6 +20,17 @@
*
*/
/**
* M421.cpp - Auto Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#include "../../gcode.h"
#include "../../../feature/bedlevel/abl/abl.h"
/**
* M421: Set a single Mesh Bed Leveling Z coordinate
*
@ -27,7 +38,7 @@
* M421 I<xindex> J<yindex> Z<linear>
* M421 I<xindex> J<yindex> Q<offset>
*/
void gcode_M421() {
void GcodeSuite::M421() {
int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
const bool hasI = ix >= 0,
hasJ = iy >= 0,
@ -49,3 +60,5 @@ void gcode_M421() {
#endif
}
}
#endif // AUTO_BED_LEVELING_BILINEAR

@ -20,26 +20,30 @@
*
*/
#include "../queue.h"
/**
* G29.cpp - Mesh Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(MESH_BED_LEVELING)
#include "../../../feature/bedlevel/bedlevel.h"
#include "../../libs/buzzer.h"
#include "../../lcd/ultralcd.h"
#include "../../gcode.h"
#include "../../queue.h"
#include "../../../libs/buzzer.h"
#include "../../../lcd/ultralcd.h"
#include "../../../module/motion.h"
#include "../../../module/stepper.h"
// Save 130 bytes with non-duplication of PSTR
void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
void mbl_mesh_report() {
SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
[](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
);
}
void mesh_probing_done() {
mbl.set_has_mesh(true);
home_all_axes();
gcode.home_all_axes();
set_bed_leveling_enabled(true);
#if ENABLED(MESH_G28_REST_ORIGIN)
current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
@ -70,7 +74,7 @@ void mesh_probing_done() {
* v Y-axis 1-n
*
*/
void gcode_G29() {
void GcodeSuite::G29() {
static int mbl_probe_index = -1;
#if HAS_SOFTWARE_ENDSTOPS
@ -200,3 +204,5 @@ void gcode_G29() {
report_current_position();
}
#endif // MESH_BED_LEVELING

@ -20,6 +20,18 @@
*
*/
/**
* M421.cpp - Mesh Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(MESH_BED_LEVELING)
#include "../../gcode.h"
#include "../../../module/motion.h"
#include "../../../feature/bedlevel/mbl/mesh_bed_leveling.h"
/**
* M421: Set a single Mesh Bed Leveling Z coordinate
*
@ -29,7 +41,7 @@
* M421 I<xindex> J<yindex> Z<linear>
* M421 I<xindex> J<yindex> Q<offset>
*/
void gcode_M421() {
void GcodeSuite::M421() {
const bool hasX = parser.seen('X'), hasI = parser.seen('I');
const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1;
const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
@ -47,3 +59,5 @@ void gcode_M421() {
else
mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
}
#endif // MESH_BED_LEVELING

@ -20,8 +20,17 @@
*
*/
void gcode_G26() {
/**
* G26.cpp - Unified Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(UBL_G26_MESH_VALIDATION)
#include "../../gcode.h"
#include "../../../feature/bedlevel/ubl/ubl.h"
ubl.G26();
void GcodeSuite::G26() { ubl.G26(); }
}
#endif // UBL_G26_MESH_VALIDATION

@ -20,8 +20,17 @@
*
*/
void gcode_G29() {
/**
* G29.cpp - Unified Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "../../gcode.h"
#include "../../../feature/bedlevel/ubl/ubl.h"
ubl.G29();
void GcodeSuite::G29() { ubl.G29(); }
}
#endif // AUTO_BED_LEVELING_UBL

@ -20,6 +20,17 @@
*
*/
/**
* unified.cpp - Unified Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "../../gcode.h"
#include "../../../feature/bedlevel/ubl/ubl.h"
/**
* M421: Set a single Mesh Bed Leveling Z coordinate
*
@ -29,7 +40,7 @@
* M421 C Z<linear>
* M421 C Q<offset>
*/
void gcode_M421() {
void GcodeSuite::M421() {
int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
const bool hasI = ix >= 0,
hasJ = iy >= 0,
@ -54,3 +65,5 @@ void gcode_M421() {
else
ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
}
#endif // AUTO_BED_LEVELING_UBL

@ -20,8 +20,21 @@
*
*/
void gcode_M49() {
/**
* M49.cpp - Unified Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(UBL_G26_MESH_VALIDATION)
#include "../../gcode.h"
#include "../../../feature/bedlevel/bedlevel.h"
void GcodeSuite::M49() {
ubl.g26_debug_flag ^= true;
SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
}
#endif // UBL_G26_MESH_VALIDATION

@ -20,12 +20,23 @@
*
*/
#include "common.h"
#include "../../inc/MarlinConfig.h"
#include "../gcode.h"
#include "../../module/stepper.h"
#include "../../module/endstops.h"
#if HOTENDS > 1
#include "../control/tool_change.h"
#include "../../module/tool_change.h"
#endif
#if HAS_LEVELING
#include "../../feature/bedlevel/bedlevel.h"
#endif
#include "../../lcd/ultralcd.h"
#if ENABLED(QUICK_HOME)
static void quick_home_xy() {
@ -126,11 +137,11 @@
* Z Home to the Z endstop
*
*/
void gcode_G28(const bool always_home_all) {
void GcodeSuite::G28(const bool always_home_all) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM(">>> gcode_G28");
SERIAL_ECHOLNPGM(">>> G28");
log_machine_info();
}
#endif
@ -288,7 +299,7 @@ void gcode_G28(const bool always_home_all) {
SYNC_PLAN_POSITION_KINEMATIC();
#endif // !DELTA (gcode_G28)
#endif // !DELTA (G28)
endstops.not_homing();
@ -319,6 +330,6 @@ void gcode_G28(const bool always_home_all) {
report_current_position();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< G28");
#endif
}

@ -1,65 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
#if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
extern bool lcd_wait_for_move;
#endif
inline void _manual_goto_xy(const float &x, const float &y) {
const float old_feedrate_mm_s = feedrate_mm_s;
#if MANUAL_PROBE_HEIGHT > 0
const float prev_z = current_position[Z_AXIS];
feedrate_mm_s = homing_feedrate(Z_AXIS);
current_position[Z_AXIS] = LOGICAL_Z_POSITION(MANUAL_PROBE_HEIGHT);
line_to_current_position();
#endif
feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
current_position[X_AXIS] = LOGICAL_X_POSITION(x);
current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
line_to_current_position();
#if MANUAL_PROBE_HEIGHT > 0
feedrate_mm_s = homing_feedrate(Z_AXIS);
current_position[Z_AXIS] = prev_z; // move back to the previous Z.
line_to_current_position();
#endif
feedrate_mm_s = old_feedrate_mm_s;
stepper.synchronize();
#if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
lcd_wait_for_move = false;
#endif
}
#endif
#if ENABLED(MESH_BED_LEVELING)
#include "G29-mbl.h"
#elif ENABLED(AUTO_BED_LEVELING_UBL)
#include "G29-ubl.h"
#elif HAS_ABL
#include "G29-abl.h"
#endif

@ -20,10 +20,21 @@
*
*/
#include "common.h"
#include "../../inc/MarlinConfig.h"
#if HOTENDS > 1
#include "../control/tool_change.h"
#if ENABLED(DELTA_AUTO_CALIBRATION)
#include "../gcode.h"
#include "../../module/delta.h"
#include "../../module/probe.h"
#include "../../module/motion.h"
#include "../../module/stepper.h"
#include "../../module/endstops.h"
#include "../../module/tool_change.h"
#include "../../lcd/ultralcd.h"
#if HAS_LEVELING
#include "../../feature/bedlevel/bedlevel.h"
#endif
/**
@ -54,7 +65,7 @@
* E Engage the probe for each point
*/
void print_signed_float(const char * const prefix, const float &f) {
static void print_signed_float(const char * const prefix, const float &f) {
SERIAL_PROTOCOLPGM(" ");
serialprintPGM(prefix);
SERIAL_PROTOCOLCHAR(':');
@ -62,12 +73,12 @@ void print_signed_float(const char * const prefix, const float &f) {
SERIAL_PROTOCOL_F(f, 2);
}
inline void print_G33_settings(const bool end_stops, const bool tower_angles){ // TODO echo these to LCD ???
static void print_G33_settings(const bool end_stops, const bool tower_angles){ // TODO echo these to LCD ???
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
if (end_stops) {
print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]);
print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]);
print_signed_float(PSTR(" Ex"), delta_endstop_adj[A_AXIS]);
print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
}
SERIAL_EOL();
@ -79,7 +90,7 @@ inline void print_G33_settings(const bool end_stops, const bool tower_angles){ /
}
}
void G33_cleanup(
static void G33_cleanup(
#if HOTENDS > 1
const uint8_t old_tool_index
#endif
@ -94,7 +105,7 @@ void G33_cleanup(
#endif
}
void gcode_G33() {
void GcodeSuite::G33() {
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
if (!WITHIN(probe_points, 1, 7)) {
@ -110,7 +121,7 @@ void gcode_G33() {
const float calibration_precision = parser.floatval('C');
if (calibration_precision < 0) {
SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
return;
}
@ -121,7 +132,6 @@ void gcode_G33() {
}
const bool towers_set = parser.boolval('T', true),
stow_after_each = parser.boolval('E'),
_1p_calibration = probe_points == 1,
_4p_calibration = probe_points == 2,
_4p_towers_points = _4p_calibration && towers_set,
@ -133,18 +143,24 @@ void gcode_G33() {
_7p_quadruple_circle = probe_points == 7,
_7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
_7p_intermed_points = _7p_calibration && !_7p_half_circle;
#if DISABLED(PROBE_MANUALLY)
const bool stow_after_each = parser.boolval('E');
const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
#endif
const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
int8_t iterations = 0;
float test_precision,
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
zero_std_dev_old = zero_std_dev,
zero_std_dev_min = zero_std_dev,
e_old[XYZ] = {
endstop_adj[A_AXIS],
endstop_adj[B_AXIS],
endstop_adj[C_AXIS]
delta_endstop_adj[A_AXIS],
delta_endstop_adj[B_AXIS],
delta_endstop_adj[C_AXIS]
},
dr_old = delta_radius,
zh_old = home_offset[Z_AXIS],
@ -167,6 +183,7 @@ void gcode_G33() {
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
stepper.synchronize();
#if HAS_LEVELING
reset_bed_level(); // After calibration bed-level data is no longer valid
#endif
@ -274,7 +291,7 @@ void gcode_G33() {
if ((zero_std_dev < test_precision && zero_std_dev > calibration_precision) || iterations <= force_iterations) {
if (zero_std_dev < zero_std_dev_min) {
COPY(e_old, endstop_adj);
COPY(e_old, delta_endstop_adj);
dr_old = delta_radius;
zh_old = home_offset[Z_AXIS];
alpha_old = delta_tower_angle_trim[A_AXIS];
@ -337,20 +354,20 @@ void gcode_G33() {
break;
}
LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
delta_radius += r_delta;
delta_tower_angle_trim[A_AXIS] += t_alpha;
delta_tower_angle_trim[B_AXIS] += t_beta;
// adjust delta_height and endstops by the max amount
const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(i) endstop_adj[i] -= z_temp;
LOOP_XYZ(i) delta_endstop_adj[i] -= z_temp;
recalc_delta_settings(delta_radius, delta_diagonal_rod);
}
else if (zero_std_dev >= test_precision) { // step one back
COPY(endstop_adj, e_old);
COPY(delta_endstop_adj, e_old);
delta_radius = dr_old;
home_offset[Z_AXIS] = zh_old;
delta_tower_angle_trim[A_AXIS] = alpha_old;
@ -449,3 +466,5 @@ void gcode_G33() {
G33_CLEANUP();
}
#endif // DELTA_AUTO_CALIBRATION

@ -33,11 +33,11 @@
#endif
LOOP_XYZ(i) {
if (parser.seen(axis_codes[i])) {
endstop_adj[i] = parser.value_linear_units();
delta_endstop_adj[i] = parser.value_linear_units();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
SERIAL_ECHOPAIR("delta_endstop_adj[", axis_codes[i]);
SERIAL_ECHOLNPAIR("] = ", delta_endstop_adj[i]);
}
#endif
}
@ -48,9 +48,9 @@
}
#endif
// normalize endstops so all are <=0; set the residue to delta height
const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(i) endstop_adj[i] -= z_temp;
LOOP_XYZ(i) delta_endstop_adj[i] -= z_temp;
}
#elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)

@ -1,81 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef CALIBRATE_COMMON_H
#define CALIBRATE_COMMON_H
#if ENABLED(DELTA)
/**
* A delta can only safely home all axes at the same time
* This is like quick_home_xy() but for 3 towers.
*/
inline bool home_delta() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
#endif
// Init the current position of all carriages to 0,0,0
ZERO(current_position);
sync_plan_position();
// Move all carriages together linearly until an endstop is hit.
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (DELTA_HEIGHT + home_offset[Z_AXIS] + 10);
feedrate_mm_s = homing_feedrate(X_AXIS);
line_to_current_position();
stepper.synchronize();
// If an endstop was not hit, then damage can occur if homing is continued.
// This can occur if the delta height (DELTA_HEIGHT + home_offset[Z_AXIS]) is
// not set correctly.
if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
return false;
}
endstops.hit_on_purpose(); // clear endstop hit flags
// At least one carriage has reached the top.
// Now re-home each carriage separately.
HOMEAXIS(A);
HOMEAXIS(B);
HOMEAXIS(C);
// Set all carriages to their home positions
// Do this here all at once for Delta, because
// XYZ isn't ABC. Applying this per-tower would
// give the impression that they are the same.
LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
SYNC_PLAN_POSITION_KINEMATIC();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
#endif
return true;
}
#endif // DELTA
#endif // CALIBRATE_COMMON_H

@ -47,7 +47,7 @@ void gcode_M18_M84() {
}
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
ubl_lcd_map_control = defer_return_to_status = false;
ubl.lcd_map_control = defer_return_to_status = false;
#endif
}
}

@ -115,14 +115,10 @@ extern void gcode_G18();
extern void gcode_G19();
extern void gcode_G20();
extern void gcode_G21();
extern void gcode_G26();
extern void gcode_G27();
extern void gcode_G28(const bool always_home_all);
extern void gcode_G29();
extern void gcode_G30();
extern void gcode_G31();
extern void gcode_G32();
extern void gcode_G33();
extern void gcode_G38(bool is_38_2);
extern void gcode_G42();
extern void gcode_G92();
@ -149,7 +145,6 @@ extern void gcode_M34();
extern void gcode_M42();
extern void gcode_M43();
extern void gcode_M48();
extern void gcode_M49();
extern void gcode_M75();
extern void gcode_M76();
extern void gcode_M77();
@ -225,8 +220,6 @@ extern void gcode_M405();
extern void gcode_M406();
extern void gcode_M407();
extern void gcode_M410();
extern void gcode_M420();
extern void gcode_M421();
extern void gcode_M428();
extern void gcode_M500();
extern void gcode_M501();
@ -238,7 +231,6 @@ extern void gcode_M605();
extern void gcode_M665();
extern void gcode_M666();
extern void gcode_M702();
extern void gcode_M851();
extern void gcode_M900();
extern void gcode_M906();
extern void gcode_M911();
@ -348,9 +340,9 @@ void GcodeSuite::process_next_command() {
break;
#endif // INCH_MODE_SUPPORT
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
#if ENABLED(UBL_G26_MESH_VALIDATION)
case 26: // G26: Mesh Validation Pattern generation
gcode_G26();
G26();
break;
#endif // AUTO_BED_LEVELING_UBL
@ -361,13 +353,13 @@ void GcodeSuite::process_next_command() {
#endif // NOZZLE_PARK_FEATURE
case 28: // G28: Home all axes, one at a time
gcode_G28(false);
G28(false);
break;
#if HAS_LEVELING
case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
// or provides access to the UBL System if enabled.
gcode_G29();
G29();
break;
#endif // HAS_LEVELING
@ -391,17 +383,11 @@ void GcodeSuite::process_next_command() {
#endif // HAS_BED_PROBE
#if PROBE_SELECTED
#if ENABLED(DELTA_AUTO_CALIBRATION)
case 33: // G33: Delta Auto-Calibration
gcode_G33();
break;
#endif // DELTA_AUTO_CALIBRATION
#endif // PROBE_SELECTED
#if ENABLED(DELTA_AUTO_CALIBRATION)
case 33: // G33: Delta Auto-Calibration
G33();
break;
#endif // DELTA_AUTO_CALIBRATION
#if ENABLED(G38_PROBE_TARGET)
case 38: // G38.2 & G38.3
@ -516,11 +502,9 @@ void GcodeSuite::process_next_command() {
break;
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
case 49: // M49: Turn on or off G26 debug flag for verbose output
gcode_M49();
break;
#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
#if ENABLED(UBL_G26_MESH_VALIDATION)
case 49: M49(); break; // M49: Turn on or off G26 debug flag for verbose output
#endif
case 75: // M75: Start print timer
gcode_M75(); break;
@ -901,13 +885,13 @@ void GcodeSuite::process_next_command() {
#if HAS_LEVELING
case 420: // M420: Enable/Disable Bed Leveling
gcode_M420();
M420();
break;
#endif
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
#if HAS_MESH
case 421: // M421: Set a Mesh Bed Leveling Z coordinate
gcode_M421();
M421();
break;
#endif
@ -941,7 +925,7 @@ void GcodeSuite::process_next_command() {
#if HAS_BED_PROBE
case 851: // M851: Set Z Probe Z Offset
gcode_M851();
M851();
break;
#endif // HAS_BED_PROBE

@ -20,43 +20,15 @@
*
*/
void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
static float last_zoffset = NAN;
#include "../../inc/MarlinConfig.h"
if (!isnan(last_zoffset)) {
#if HAS_BED_PROBE
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
const float diff = zprobe_zoffset - last_zoffset;
#endif
#include "../gcode.h"
#include "../../feature/bedlevel/bedlevel.h"
#include "../../module/probe.h"
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Correct bilinear grid for new probe offset
if (diff) {
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
z_values[x][y] -= diff;
}
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bed_level_virt_interpolate();
#endif
#endif
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
if (!no_babystep && leveling_is_active())
thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
#else
UNUSED(no_babystep);
#endif
#if ENABLED(DELTA) // correct the delta_height
home_offset[Z_AXIS] -= diff;
#endif
}
last_zoffset = zprobe_zoffset;
}
void gcode_M851() {
void GcodeSuite::M851() {
SERIAL_ECHO_START();
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
if (parser.seen('Z')) {
@ -74,3 +46,5 @@ void gcode_M851() {
SERIAL_EOL();
}
#endif // HAS_BED_PROBE

@ -31,6 +31,7 @@
#include "../module/planner.h"
#include "../module/stepper.h"
#include "../module/motion.h"
#include "../module/probe.h"
#include "../gcode/gcode.h"
#include "../gcode/queue.h"
#include "../module/configuration_store.h"
@ -173,7 +174,7 @@ uint16_t max_display_update_time = 0;
#endif
#if ENABLED(MESH_BED_LEVELING) && ENABLED(LCD_BED_LEVELING)
#include "../feature/mbl/mesh_bed_leveling.h"
#include "../feature/bedlevel/mbl/mesh_bed_leveling.h"
extern void mesh_probing_done();
#endif
@ -1021,7 +1022,7 @@ void kill_screen(const char* lcd_msg) {
const float new_zoffset = zprobe_zoffset + planner.steps_to_mm[Z_AXIS] * babystep_increment;
if (WITHIN(new_zoffset, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
if (planner.abl_enabled)
if (leveling_is_active())
thermalManager.babystep_axis(Z_AXIS, babystep_increment);
zprobe_zoffset = new_zoffset;
@ -2635,9 +2636,9 @@ void kill_screen(const char* lcd_msg) {
MENU_ITEM_EDIT(float52, MSG_DELTA_DIAG_ROG, &delta_diagonal_rod, DELTA_DIAGONAL_ROD - 5.0, DELTA_DIAGONAL_ROD + 5.0);
_delta_height = DELTA_HEIGHT + home_offset[Z_AXIS];
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float52, MSG_DELTA_HEIGHT, &_delta_height, _delta_height - 10.0, _delta_height + 10.0, _lcd_set_delta_height);
MENU_ITEM_EDIT(float43, "Ex", &endstop_adj[A_AXIS], -5.0, 5.0);
MENU_ITEM_EDIT(float43, "Ey", &endstop_adj[B_AXIS], -5.0, 5.0);
MENU_ITEM_EDIT(float43, "Ez", &endstop_adj[C_AXIS], -5.0, 5.0);
MENU_ITEM_EDIT(float43, "Ex", &delta_endstop_adj[A_AXIS], -5.0, 5.0);
MENU_ITEM_EDIT(float43, "Ey", &delta_endstop_adj[B_AXIS], -5.0, 5.0);
MENU_ITEM_EDIT(float43, "Ez", &delta_endstop_adj[C_AXIS], -5.0, 5.0);
MENU_ITEM_EDIT(float52, MSG_DELTA_RADIUS, &delta_radius, DELTA_RADIUS - 5.0, DELTA_RADIUS + 5.0);
MENU_ITEM_EDIT(float43, "Tx", &delta_tower_angle_trim[A_AXIS], -5.0, 5.0);
MENU_ITEM_EDIT(float43, "Ty", &delta_tower_angle_trim[B_AXIS], -5.0, 5.0);

@ -52,7 +52,7 @@
#include <U8glib.h>
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "../feature/ubl/ubl.h"
#include "../feature/bedlevel/ubl/ubl.h"
#endif
#if ENABLED(SHOW_BOOTSCREEN) && ENABLED(SHOW_CUSTOM_BOOTSCREEN)

@ -35,7 +35,7 @@
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "../feature/ubl/ubl.h"
#include "../feature/bedlevel/ubl/ubl.h"
#if ENABLED(ULTIPANEL)
#define ULTRA_X_PIXELS_PER_CHAR 5

@ -93,7 +93,7 @@
* 329 G29 S ubl.state.storage_slot (int8_t)
*
* DELTA: 48 bytes
* 348 M666 XYZ endstop_adj (float x3)
* 348 M666 XYZ delta_endstop_adj (float x3)
* 360 M665 R delta_radius (float)
* 364 M665 L delta_diagonal_rod (float)
* 368 M665 S delta_segments_per_second (float)
@ -187,6 +187,10 @@ MarlinSettings settings;
#include "../gcode/parser.h"
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#endif
#if HAS_BED_PROBE
#include "../module/probe.h"
#endif
@ -199,14 +203,6 @@ MarlinSettings settings;
#include "../feature/fwretract.h"
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
extern void refresh_bed_level();
#endif
#if ENABLED(FWRETRACT)
#include "../gcode/feature/fwretract/fwretract.h"
#endif
/**
* Post-process after Retrieve or Reset
*/
@ -421,7 +417,7 @@ void MarlinSettings::postprocess() {
// 9 floats for DELTA / Z_DUAL_ENDSTOPS
#if ENABLED(DELTA)
EEPROM_WRITE(endstop_adj); // 3 floats
EEPROM_WRITE(delta_endstop_adj); // 3 floats
EEPROM_WRITE(delta_radius); // 1 float
EEPROM_WRITE(delta_diagonal_rod); // 1 float
EEPROM_WRITE(delta_segments_per_second); // 1 float
@ -806,7 +802,7 @@ void MarlinSettings::postprocess() {
#endif // AUTO_BED_LEVELING_UBL
#if ENABLED(DELTA)
EEPROM_READ(endstop_adj); // 3 floats
EEPROM_READ(delta_endstop_adj); // 3 floats
EEPROM_READ(delta_radius); // 1 float
EEPROM_READ(delta_diagonal_rod); // 1 float
EEPROM_READ(delta_segments_per_second); // 1 float
@ -1196,7 +1192,7 @@ void MarlinSettings::reset() {
#if ENABLED(DELTA)
const float adj[ABC] = DELTA_ENDSTOP_ADJ,
dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
COPY(endstop_adj, adj);
COPY(delta_endstop_adj, adj);
delta_radius = DELTA_RADIUS;
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
@ -1602,9 +1598,9 @@ void MarlinSettings::reset() {
SERIAL_ECHOLNPGM("Endstop adjustment:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(endstop_adj[X_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstop_adj[Y_AXIS]));
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(endstop_adj[Z_AXIS]));
SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");

@ -0,0 +1,269 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* delta.cpp
*/
#include "../inc/MarlinConfig.h"
#if ENABLED(DELTA)
#include "delta.h"
#include "motion.h"
// For homing:
#include "stepper.h"
#include "endstops.h"
#include "../lcd/ultralcd.h"
#include "../Marlin.h"
// Initialized by settings.load()
float delta_endstop_adj[ABC] = { 0 },
delta_radius,
delta_diagonal_rod,
delta_segments_per_second,
delta_calibration_radius,
delta_tower_angle_trim[2];
float delta_tower[ABC][2],
delta_diagonal_rod_2_tower[ABC],
delta_clip_start_height = Z_MAX_POS;
float delta_safe_distance_from_top();
/**
* Recalculate factors used for delta kinematics whenever
* settings have been changed (e.g., by M665).
*/
void recalc_delta_settings(float radius, float diagonal_rod) {
const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
}
/**
* Delta Inverse Kinematics
*
* Calculate the tower positions for a given logical
* position, storing the result in the delta[] array.
*
* This is an expensive calculation, requiring 3 square
* roots per segmented linear move, and strains the limits
* of a Mega2560 with a Graphical Display.
*
* Suggested optimizations include:
*
* - Disable the home_offset (M206) and/or position_shift (G92)
* features to remove up to 12 float additions.
*
* - Use a fast-inverse-sqrt function and add the reciprocal.
* (see above)
*/
#if ENABLED(DELTA_FAST_SQRT) && defined(ARDUINO_ARCH_AVR)
/**
* Fast inverse sqrt from Quake III Arena
* See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
*/
float Q_rsqrt(float number) {
long i;
float x2, y;
const float threehalfs = 1.5f;
x2 = number * 0.5f;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5F3759DF - ( i >> 1 ); // what the f***?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
return y;
}
#endif
#define DELTA_DEBUG() do { \
SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
}while(0)
void inverse_kinematics(const float logical[XYZ]) {
DELTA_LOGICAL_IK();
// DELTA_DEBUG();
}
/**
* Calculate the highest Z position where the
* effector has the full range of XY motion.
*/
float delta_safe_distance_from_top() {
float cartesian[XYZ] = {
LOGICAL_X_POSITION(0),
LOGICAL_Y_POSITION(0),
LOGICAL_Z_POSITION(0)
};
inverse_kinematics(cartesian);
float distance = delta[A_AXIS];
cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
inverse_kinematics(cartesian);
return FABS(distance - delta[A_AXIS]);
}
/**
* Delta Forward Kinematics
*
* See the Wikipedia article "Trilateration"
* https://en.wikipedia.org/wiki/Trilateration
*
* Establish a new coordinate system in the plane of the
* three carriage points. This system has its origin at
* tower1, with tower2 on the X axis. Tower3 is in the X-Y
* plane with a Z component of zero.
* We will define unit vectors in this coordinate system
* in our original coordinate system. Then when we calculate
* the Xnew, Ynew and Znew values, we can translate back into
* the original system by moving along those unit vectors
* by the corresponding values.
*
* Variable names matched to Marlin, c-version, and avoid the
* use of any vector library.
*
* by Andreas Hardtung 2016-06-07
* based on a Java function from "Delta Robot Kinematics V3"
* by Steve Graves
*
* The result is stored in the cartes[] array.
*/
void forward_kinematics_DELTA(float z1, float z2, float z3) {
// Create a vector in old coordinates along x axis of new coordinate
float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
// Get the Magnitude of vector.
float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
// Create unit vector by dividing by magnitude.
float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
// Get the vector from the origin of the new system to the third point.
float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
// Use the dot product to find the component of this vector on the X axis.
float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
// Create a vector along the x axis that represents the x component of p13.
float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
// Subtract the X component from the original vector leaving only Y. We use the
// variable that will be the unit vector after we scale it.
float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
// The magnitude of Y component
float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
// Convert to a unit vector
ey[0] /= j; ey[1] /= j; ey[2] /= j;
// The cross product of the unit x and y is the unit z
// float[] ez = vectorCrossProd(ex, ey);
float ez[3] = {
ex[1] * ey[2] - ex[2] * ey[1],
ex[2] * ey[0] - ex[0] * ey[2],
ex[0] * ey[1] - ex[1] * ey[0]
};
// We now have the d, i and j values defined in Wikipedia.
// Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
// Start from the origin of the old coordinates and add vectors in the
// old coords that represent the Xnew, Ynew and Znew to find the point
// in the old system.
cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
}
/**
* A delta can only safely home all axes at the same time
* This is like quick_home_xy() but for 3 towers.
*/
bool home_delta() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
#endif
// Init the current position of all carriages to 0,0,0
ZERO(current_position);
sync_plan_position();
// Move all carriages together linearly until an endstop is hit.
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (DELTA_HEIGHT + home_offset[Z_AXIS] + 10);
feedrate_mm_s = homing_feedrate(X_AXIS);
line_to_current_position();
stepper.synchronize();
// If an endstop was not hit, then damage can occur if homing is continued.
// This can occur if the delta height (DELTA_HEIGHT + home_offset[Z_AXIS]) is
// not set correctly.
if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
return false;
}
endstops.hit_on_purpose(); // clear endstop hit flags
// At least one carriage has reached the top.
// Now re-home each carriage separately.
HOMEAXIS(A);
HOMEAXIS(B);
HOMEAXIS(C);
// Set all carriages to their home positions
// Do this here all at once for Delta, because
// XYZ isn't ABC. Applying this per-tower would
// give the impression that they are the same.
LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
SYNC_PLAN_POSITION_KINEMATIC();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
#endif
return true;
}
#endif // DELTA

@ -0,0 +1,141 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* delta.h - Delta-specific functions
*/
#ifndef __DELTA_H__
#define __DELTA_H__
extern float delta_endstop_adj[ABC],
delta_radius,
delta_diagonal_rod,
delta_segments_per_second,
delta_calibration_radius,
delta_tower_angle_trim[2];
extern float delta_tower[ABC][2],
delta_diagonal_rod_2_tower[ABC],
delta_clip_start_height;
/**
* Recalculate factors used for delta kinematics whenever
* settings have been changed (e.g., by M665).
*/
void recalc_delta_settings(float radius, float diagonal_rod);
/**
* Delta Inverse Kinematics
*
* Calculate the tower positions for a given logical
* position, storing the result in the delta[] array.
*
* This is an expensive calculation, requiring 3 square
* roots per segmented linear move, and strains the limits
* of a Mega2560 with a Graphical Display.
*
* Suggested optimizations include:
*
* - Disable the home_offset (M206) and/or position_shift (G92)
* features to remove up to 12 float additions.
*
* - Use a fast-inverse-sqrt function and add the reciprocal.
* (see above)
*/
#if ENABLED(DELTA_FAST_SQRT) && defined(ARDUINO_ARCH_AVR)
/**
* Fast inverse sqrt from Quake III Arena
* See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
*/
float Q_rsqrt(float number);
#define _SQRT(n) (1.0f / Q_rsqrt(n))
#else
#define _SQRT(n) SQRT(n)
#endif
// Macro to obtain the Z position of an individual tower
#define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
delta_diagonal_rod_2_tower[T] - HYPOT2( \
delta_tower[T][X_AXIS] - raw[X_AXIS], \
delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
) \
)
#define DELTA_RAW_IK() do { \
delta[A_AXIS] = DELTA_Z(A_AXIS); \
delta[B_AXIS] = DELTA_Z(B_AXIS); \
delta[C_AXIS] = DELTA_Z(C_AXIS); \
}while(0)
#define DELTA_LOGICAL_IK() do { \
const float raw[XYZ] = { \
RAW_X_POSITION(logical[X_AXIS]), \
RAW_Y_POSITION(logical[Y_AXIS]), \
RAW_Z_POSITION(logical[Z_AXIS]) \
}; \
DELTA_RAW_IK(); \
}while(0)
void inverse_kinematics(const float logical[XYZ]);
/**
* Calculate the highest Z position where the
* effector has the full range of XY motion.
*/
float delta_safe_distance_from_top();
/**
* Delta Forward Kinematics
*
* See the Wikipedia article "Trilateration"
* https://en.wikipedia.org/wiki/Trilateration
*
* Establish a new coordinate system in the plane of the
* three carriage points. This system has its origin at
* tower1, with tower2 on the X axis. Tower3 is in the X-Y
* plane with a Z component of zero.
* We will define unit vectors in this coordinate system
* in our original coordinate system. Then when we calculate
* the Xnew, Ynew and Znew values, we can translate back into
* the original system by moving along those unit vectors
* by the corresponding values.
*
* Variable names matched to Marlin, c-version, and avoid the
* use of any vector library.
*
* by Andreas Hardtung 2016-06-07
* based on a Java function from "Delta Robot Kinematics V3"
* by Steve Graves
*
* The result is stored in the cartes[] array.
*/
void forward_kinematics_DELTA(float z1, float z2, float z3);
FORCE_INLINE void forward_kinematics_DELTA(float point[ABC]) {
forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
}
bool home_delta();
#endif // __DELTA_H__

@ -25,23 +25,38 @@
*/
#include "motion.h"
#include "endstops.h"
#include "stepper.h"
#include "planner.h"
#include "temperature.h"
#include "../gcode/gcode.h"
// #include "../module/planner.h"
// #include "../Marlin.h"
// #include "../inc/MarlinConfig.h"
#include "../core/serial.h"
#include "../module/stepper.h"
#include "../module/temperature.h"
#include "../inc/MarlinConfig.h"
#if IS_SCARA
#include "../libs/buzzer.h"
#include "../lcd/ultralcd.h"
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "../feature/ubl/ubl.h"
// #if ENABLED(DUAL_X_CARRIAGE)
// #include "tool_change.h"
// #endif
#if HAS_BED_PROBE
#include "probe.h"
#endif
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#endif
#if NEED_UNHOMED_ERR && ENABLED(ULTRA_LCD)
#include "../lcd/ultralcd.h"
#endif
#if ENABLED(SENSORLESS_HOMING)
#include "../feature/tmc2130.h"
#endif
#define XYZ_CONSTS(type, array, CONFIG) const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }
@ -72,15 +87,85 @@ float current_position[XYZE] = { 0.0 };
*/
float destination[XYZE] = { 0.0 };
// The active extruder (tool). Set with T<extruder> command.
uint8_t active_extruder = 0;
// Extruder offsets
#if HOTENDS > 1
float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
#endif
// The feedrate for the current move, often used as the default if
// no other feedrate is specified. Overridden for special moves.
// Set by the last G0 through G5 command's "F" parameter.
// Functions that override this for custom moves *must always* restore it!
float feedrate_mm_s = MMM_TO_MMS(1500.0);
int16_t feedrate_percentage = 100;
// Homing feedrate is const progmem - compare to constexpr in the header
const float homing_feedrate_mm_s[4] PROGMEM = {
#if ENABLED(DELTA)
MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
#else
MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
#endif
MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
};
// Cartesian conversion result goes here:
float cartes[XYZ];
// Until kinematics.cpp is created, create this here
#if IS_KINEMATIC
float delta[ABC];
#endif
/**
* The workspace can be offset by some commands, or
* these offsets may be omitted to save on computation.
*/
#if HAS_WORKSPACE_OFFSET
#if HAS_POSITION_SHIFT
// The distance that XYZ has been offset by G92. Reset by G28.
float position_shift[XYZ] = { 0 };
#endif
#if HAS_HOME_OFFSET
// This offset is added to the configured home position.
// Set by M206, M428, or menu item. Saved to EEPROM.
float home_offset[XYZ] = { 0 };
#endif
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
// The above two are combined to save on computes
float workspace_offset[XYZ] = { 0 };
#endif
#endif
#if OLDSCHOOL_ABL
float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
#endif
/**
* Output the current position to serial
*/
void report_current_position() {
SERIAL_PROTOCOLPGM("X:");
SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(current_position[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(current_position[Z_AXIS]);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL(current_position[E_AXIS]);
stepper.report_positions();
#if IS_SCARA
scara_report_positions();
#endif
}
/**
* sync_plan_position
*
@ -96,6 +181,56 @@ void sync_plan_position() {
void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
/**
* Get the stepper positions in the cartes[] array.
* Forward kinematics are applied for DELTA and SCARA.
*
* The result is in the current coordinate space with
* leveling applied. The coordinates need to be run through
* unapply_leveling to obtain the "ideal" coordinates
* suitable for current_position, etc.
*/
void get_cartesian_from_steppers() {
#if ENABLED(DELTA)
forward_kinematics_DELTA(
stepper.get_axis_position_mm(A_AXIS),
stepper.get_axis_position_mm(B_AXIS),
stepper.get_axis_position_mm(C_AXIS)
);
cartes[X_AXIS] += LOGICAL_X_POSITION(0);
cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
#elif IS_SCARA
forward_kinematics_SCARA(
stepper.get_axis_position_degrees(A_AXIS),
stepper.get_axis_position_degrees(B_AXIS)
);
cartes[X_AXIS] += LOGICAL_X_POSITION(0);
cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
#else
cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
#endif
}
/**
* Set the current_position for an axis based on
* the stepper positions, removing any leveling that
* may have been applied.
*/
void set_current_from_steppers_for_axis(const AxisEnum axis) {
get_cartesian_from_steppers();
#if PLANNER_LEVELING
planner.unapply_leveling(cartes);
#endif
if (axis == ALL_AXES)
COPY(current_position, cartes);
else
current_position[axis] = cartes[axis];
}
/**
* Move the planner to the current position from wherever it last moved
* (or from wherever it has been told it is located).
@ -149,6 +284,167 @@ void line_to_destination(const float fr_mm_s) {
#endif // IS_KINEMATIC
/**
* Plan a move to (X, Y, Z) and set the current_position
* The final current_position may not be the one that was requested
*/
void do_blocking_move_to(const float &lx, const float &ly, const float &lz, const float &fr_mm_s/*=0.0*/) {
const float old_feedrate_mm_s = feedrate_mm_s;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, lx, ly, lz);
#endif
#if ENABLED(DELTA)
if (!position_is_reachable_xy(lx, ly)) return;
feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
set_destination_to_current(); // sync destination at the start
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
#endif
// when in the danger zone
if (current_position[Z_AXIS] > delta_clip_start_height) {
if (lz > delta_clip_start_height) { // staying in the danger zone
destination[X_AXIS] = lx; // move directly (uninterpolated)
destination[Y_AXIS] = ly;
destination[Z_AXIS] = lz;
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
#endif
return;
}
else {
destination[Z_AXIS] = delta_clip_start_height;
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
#endif
}
}
if (lz > current_position[Z_AXIS]) { // raising?
destination[Z_AXIS] = lz;
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
#endif
}
destination[X_AXIS] = lx;
destination[Y_AXIS] = ly;
prepare_move_to_destination(); // set_current_to_destination
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
#endif
if (lz < current_position[Z_AXIS]) { // lowering?
destination[Z_AXIS] = lz;
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
#endif
}
#elif IS_SCARA
if (!position_is_reachable_xy(lx, ly)) return;
set_destination_to_current();
// If Z needs to raise, do it before moving XY
if (destination[Z_AXIS] < lz) {
destination[Z_AXIS] = lz;
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
}
destination[X_AXIS] = lx;
destination[Y_AXIS] = ly;
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
// If Z needs to lower, do it after moving XY
if (destination[Z_AXIS] > lz) {
destination[Z_AXIS] = lz;
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
}
#else
// If Z needs to raise, do it before moving XY
if (current_position[Z_AXIS] < lz) {
feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
current_position[Z_AXIS] = lz;
line_to_current_position();
}
feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
current_position[X_AXIS] = lx;
current_position[Y_AXIS] = ly;
line_to_current_position();
// If Z needs to lower, do it after moving XY
if (current_position[Z_AXIS] > lz) {
feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
current_position[Z_AXIS] = lz;
line_to_current_position();
}
#endif
stepper.synchronize();
feedrate_mm_s = old_feedrate_mm_s;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
#endif
}
void do_blocking_move_to_x(const float &lx, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(lx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
}
void do_blocking_move_to_z(const float &lz, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], lz, fr_mm_s);
}
void do_blocking_move_to_xy(const float &lx, const float &ly, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(lx, ly, current_position[Z_AXIS], fr_mm_s);
}
//
// Prepare to do endstop or probe moves
// with custom feedrates.
//
// - Save current feedrates
// - Reset the rate multiplier
// - Reset the command timeout
// - Enable the endstops (for endstop moves)
//
void bracket_probe_move(const bool before) {
static float saved_feedrate_mm_s;
static int16_t saved_feedrate_percentage;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("bracket_probe_move", current_position);
#endif
if (before) {
saved_feedrate_mm_s = feedrate_mm_s;
saved_feedrate_percentage = feedrate_percentage;
feedrate_percentage = 100;
gcode.refresh_cmd_timeout();
}
else {
feedrate_mm_s = saved_feedrate_mm_s;
feedrate_percentage = saved_feedrate_percentage;
gcode.refresh_cmd_timeout();
}
}
void setup_for_endstop_or_probe_move() { bracket_probe_move(true); }
void clean_up_after_endstop_or_probe_move() { bracket_probe_move(false); }
// Software Endstops are based on the configured limits.
float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
@ -189,73 +485,24 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
#define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
/**
* Prepare a bilinear-leveled linear move on Cartesian,
* splitting the move where it crosses grid borders.
*/
void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits=0xFFFF, uint16_t y_splits=0xFFFF);
int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
cx2 = CELL_INDEX(X, destination[X_AXIS]),
cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
if (cx1 == cx2 && cy1 == cy2) {
// Start and end on same mesh square
line_to_destination(fr_mm_s);
set_current_to_destination();
return;
}
#define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
float normalized_dist, end[XYZE];
// Split at the left/front border of the right/top square
const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
if (cx2 != cx1 && TEST(x_splits, gcx)) {
COPY(end, destination);
destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = LINE_SEGMENT_END(Y);
CBI(x_splits, gcx);
}
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
COPY(end, destination);
destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = LINE_SEGMENT_END(X);
CBI(y_splits, gcy);
}
else {
// Already split on a border
line_to_destination(fr_mm_s);
set_current_to_destination();
return;
}
destination[Z_AXIS] = LINE_SEGMENT_END(Z);
destination[E_AXIS] = LINE_SEGMENT_END(E);
// Do the split and look for more borders
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
// Restore destination from stack
COPY(destination, end);
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
}
#endif // AUTO_BED_LEVELING_BILINEAR
#if IS_KINEMATIC && !UBL_DELTA
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#if ENABLED(DELTA)
#define ADJUST_DELTA(V) \
if (planner.abl_enabled) { \
const float zadj = bilinear_z_offset(V); \
delta[A_AXIS] += zadj; \
delta[B_AXIS] += zadj; \
delta[C_AXIS] += zadj; \
}
#else
#define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
#endif
#else
#define ADJUST_DELTA(V) NOOP
#endif
/**
* Prepare a linear move in a DELTA or SCARA setup.
*
@ -572,3 +819,453 @@ void prepare_move_to_destination() {
set_current_to_destination();
}
#if NEED_UNHOMED_ERR
bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
#if ENABLED(HOME_AFTER_DEACTIVATE)
const bool xx = x && !axis_known_position[X_AXIS],
yy = y && !axis_known_position[Y_AXIS],
zz = z && !axis_known_position[Z_AXIS];
#else
const bool xx = x && !axis_homed[X_AXIS],
yy = y && !axis_homed[Y_AXIS],
zz = z && !axis_homed[Z_AXIS];
#endif
if (xx || yy || zz) {
SERIAL_ECHO_START();
SERIAL_ECHOPGM(MSG_HOME " ");
if (xx) SERIAL_ECHOPGM(MSG_X);
if (yy) SERIAL_ECHOPGM(MSG_Y);
if (zz) SERIAL_ECHOPGM(MSG_Z);
SERIAL_ECHOLNPGM(" " MSG_FIRST);
#if ENABLED(ULTRA_LCD)
lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
#endif
return true;
}
return false;
}
#endif
/**
* The homing feedrate may vary
*/
inline float get_homing_bump_feedrate(const AxisEnum axis) {
static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
if (hbd < 1) {
hbd = 10;
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
}
return homing_feedrate(axis) / hbd;
}
/**
* Home an individual linear axis
*/
static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
SERIAL_ECHOPAIR(", ", distance);
SERIAL_ECHOPAIR(", ", fr_mm_s);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
if (deploy_bltouch) set_bltouch_deployed(true);
#endif
#if QUIET_PROBING
if (axis == Z_AXIS) probing_pause(true);
#endif
// Tell the planner we're at Z=0
current_position[axis] = 0;
#if IS_SCARA
SYNC_PLAN_POSITION_KINEMATIC();
current_position[axis] = distance;
inverse_kinematics(current_position);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
#else
sync_plan_position();
current_position[axis] = distance;
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
#endif
stepper.synchronize();
#if QUIET_PROBING
if (axis == Z_AXIS) probing_pause(false);
#endif
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
if (deploy_bltouch) set_bltouch_deployed(false);
#endif
endstops.hit_on_purpose();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
}
/**
* Set an axis' current position to its home position (after homing).
*
* For Core and Cartesian robots this applies one-to-one when an
* individual axis has been homed.
*
* DELTA should wait until all homing is done before setting the XYZ
* current_position to home, because homing is a single operation.
* In the case where the axis positions are already known and previously
* homed, DELTA could home to X or Y individually by moving either one
* to the center. However, homing Z always homes XY and Z.
*
* SCARA should wait until all XY homing is done before setting the XY
* current_position to home, because neither X nor Y is at home until
* both are at home. Z can however be homed individually.
*
* Callers must sync the planner position after calling this!
*/
void set_axis_is_at_home(const AxisEnum axis) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
axis_known_position[axis] = axis_homed[axis] = true;
#if HAS_POSITION_SHIFT
position_shift[axis] = 0;
update_software_endstops(axis);
#endif
#if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
current_position[X_AXIS] = x_home_pos(active_extruder);
return;
}
#endif
#if ENABLED(MORGAN_SCARA)
scara_set_axis_is_at_home(axis);
#else
current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
#endif
/**
* Z Probe Z Homing? Account for the probe's Z offset.
*/
#if HAS_BED_PROBE && Z_HOME_DIR < 0
if (axis == Z_AXIS) {
#if HOMING_Z_WITH_PROBE
current_position[Z_AXIS] -= zprobe_zoffset;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
}
#endif
#elif ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
#endif
}
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
#if HAS_HOME_OFFSET
SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
#endif
DEBUG_POS("", current_position);
SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
#if ENABLED(I2C_POSITION_ENCODERS)
I2CPEM.homed(axis);
#endif
}
/**
* Home an individual "raw axis" to its endstop.
* This applies to XYZ on Cartesian and Core robots, and
* to the individual ABC steppers on DELTA and SCARA.
*
* At the end of the procedure the axis is marked as
* homed and the current position of that axis is updated.
* Kinematic robots should wait till all axes are homed
* before updating the current position.
*/
void homeaxis(const AxisEnum axis) {
#if IS_SCARA
// Only Z homing (with probe) is permitted
if (axis != Z_AXIS) { BUZZ(100, 880); return; }
#else
#define CAN_HOME(A) \
(axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
const int axis_home_dir =
#if ENABLED(DUAL_X_CARRIAGE)
(axis == X_AXIS) ? x_home_dir(active_extruder) :
#endif
home_dir(axis);
// Homing Z towards the bed? Deploy the Z probe or endstop.
#if HOMING_Z_WITH_PROBE
if (axis == Z_AXIS && DEPLOY_PROBE()) return;
#endif
// Set a flag for Z motor locking
#if ENABLED(Z_DUAL_ENDSTOPS)
if (axis == Z_AXIS) stepper.set_homing_flag(true);
#endif
// Disable stealthChop if used. Enable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
#if ENABLED(X_IS_TMC2130)
if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
#endif
#if ENABLED(Y_IS_TMC2130)
if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
#endif
#endif
// Fast move towards endstop until triggered
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
#endif
do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
// When homing Z with probe respect probe clearance
const float bump = axis_home_dir * (
#if HOMING_Z_WITH_PROBE
(axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
#endif
home_bump_mm(axis)
);
// If a second homing move is configured...
if (bump) {
// Move away from the endstop by the axis HOME_BUMP_MM
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
#endif
do_homing_move(axis, -bump);
// Slow move towards endstop until triggered
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
#endif
do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
}
#if ENABLED(Z_DUAL_ENDSTOPS)
if (axis == Z_AXIS) {
float adj = FABS(z_endstop_adj);
bool lockZ1;
if (axis_home_dir > 0) {
adj = -adj;
lockZ1 = (z_endstop_adj > 0);
}
else
lockZ1 = (z_endstop_adj < 0);
if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
// Move to the adjusted endstop height
do_homing_move(axis, adj);
if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
stepper.set_homing_flag(false);
} // Z_AXIS
#endif
#if IS_SCARA
set_axis_is_at_home(axis);
SYNC_PLAN_POSITION_KINEMATIC();
#elif ENABLED(DELTA)
// Delta has already moved all three towers up in G28
// so here it re-homes each tower in turn.
// Delta homing treats the axes as normal linear axes.
// retrace by the amount specified in delta_endstop_adj + additional 0.1mm in order to have minimum steps
if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:");
#endif
do_homing_move(axis, delta_endstop_adj[axis] - 0.1);
}
#else
// For cartesian/core machines,
// set the axis to its home position
set_axis_is_at_home(axis);
sync_plan_position();
destination[axis] = current_position[axis];
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
#endif
#endif
// Re-enable stealthChop if used. Disable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
#if ENABLED(X_IS_TMC2130)
if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
#endif
#if ENABLED(Y_IS_TMC2130)
if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
#endif
#endif
// Put away the Z probe
#if HOMING_Z_WITH_PROBE
if (axis == Z_AXIS && STOW_PROBE()) return;
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
} // homeaxis()
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
/**
* Software endstops can be used to monitor the open end of
* an axis that has a hardware endstop on the other end. Or
* they can prevent axes from moving past endstops and grinding.
*
* To keep doing their job as the coordinate system changes,
* the software endstop positions must be refreshed to remain
* at the same positions relative to the machine.
*/
void update_software_endstops(const AxisEnum axis) {
const float offs = 0.0
#if HAS_HOME_OFFSET
+ home_offset[axis]
#endif
#if HAS_POSITION_SHIFT
+ position_shift[axis]
#endif
;
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
workspace_offset[axis] = offs;
#endif
#if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS) {
// In Dual X mode hotend_offset[X] is T1's home position
float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
if (active_extruder != 0) {
// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
soft_endstop_max[X_AXIS] = dual_max_x + offs;
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
// In Duplication Mode, T0 can move as far left as X_MIN_POS
// but not so far to the right that T1 would move past the end
soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
}
else {
// In other modes, T0 can move from X_MIN_POS to X_MAX_POS
soft_endstop_min[axis] = base_min_pos(axis) + offs;
soft_endstop_max[axis] = base_max_pos(axis) + offs;
}
}
#elif ENABLED(DELTA)
soft_endstop_min[axis] = base_min_pos(axis) + (axis == Z_AXIS ? 0 : offs);
soft_endstop_max[axis] = base_max_pos(axis) + offs;
#else
soft_endstop_min[axis] = base_min_pos(axis) + offs;
soft_endstop_max[axis] = base_max_pos(axis) + offs;
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("For ", axis_codes[axis]);
#if HAS_HOME_OFFSET
SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
#endif
#if HAS_POSITION_SHIFT
SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
#endif
SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
}
#endif
#if ENABLED(DELTA)
if (axis == Z_AXIS)
delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
#endif
}
#endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
#if HAS_M206_COMMAND
/**
* Change the home offset for an axis, update the current
* position and the software endstops to retain the same
* relative distance to the new home.
*
* Since this changes the current_position, code should
* call sync_plan_position soon after this.
*/
void set_home_offset(const AxisEnum axis, const float v) {
current_position[axis] += v - home_offset[axis];
home_offset[axis] = v;
update_software_endstops(axis);
}
#endif // HAS_M206_COMMAND

@ -32,20 +32,53 @@
#include "../inc/MarlinConfig.h"
//#include "../HAL/HAL.h"
// #if ENABLED(DELTA)
// #include "../module/delta.h"
// #endif
#if IS_SCARA
#include "../module/scara.h"
#endif
extern bool relative_mode;
extern float current_position[XYZE], destination[XYZE];
extern float current_position[XYZE], // High-level current tool position
destination[XYZE]; // Destination for a move
// Scratch space for a cartesian result
extern float cartes[XYZ];
// Until kinematics.cpp is created, declare this here
#if IS_KINEMATIC
extern float delta[ABC];
#endif
#if OLDSCHOOL_ABL
extern float xy_probe_feedrate_mm_s;
#define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
#elif defined(XY_PROBE_SPEED)
#define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
#else
#define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
#endif
/**
* Feed rates are often configured with mm/m
* but the planner and stepper like mm/s units.
*/
extern const float homing_feedrate_mm_s[4];
FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
extern float feedrate_mm_s;
/**
* Feedrate scaling and conversion
*/
extern int16_t feedrate_percentage;
#define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01)
extern uint8_t active_extruder;
#if HOTENDS > 1
extern float hotend_offset[XYZ][HOTENDS];
#endif
extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
@ -71,9 +104,14 @@ XYZ_DEFS(signed char, home_dir, HOME_DIR);
#define clamp_to_software_endstops(x) NOOP
#endif
void report_current_position();
inline void set_current_to_destination() { COPY(current_position, destination); }
inline void set_destination_to_current() { COPY(destination, current_position); }
void get_cartesian_from_steppers();
void set_current_from_steppers_for_axis(const AxisEnum axis);
/**
* sync_plan_position
*
@ -110,7 +148,35 @@ inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
void prepare_move_to_destination();
void clamp_to_software_endstops(float target[XYZ]);
/**
* Blocking movement and shorthand functions
*/
void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s=0.0);
void do_blocking_move_to_x(const float &x, const float &fr_mm_s=0.0);
void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0);
void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0);
void setup_for_endstop_or_probe_move();
void clean_up_after_endstop_or_probe_move();
void bracket_probe_move(const bool before);
void setup_for_endstop_or_probe_move();
void clean_up_after_endstop_or_probe_move();
//
// Homing
//
#define NEED_UNHOMED_ERR (HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION))
#if NEED_UNHOMED_ERR
bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true);
#endif
void set_axis_is_at_home(const AxisEnum axis);
void homeaxis(const AxisEnum axis);
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
//
// Macros
@ -162,10 +228,6 @@ void clamp_to_software_endstops(float target[XYZ]);
#if IS_KINEMATIC // (DELTA or SCARA)
#if IS_SCARA
extern const float L1, L2;
#endif
inline bool position_is_reachable_raw_xy(const float &rx, const float &ry) {
#if ENABLED(DELTA)
return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS);
@ -214,10 +276,16 @@ FORCE_INLINE bool position_is_reachable_xy(const float &lx, const float &ly) {
return position_is_reachable_raw_xy(RAW_X_POSITION(lx), RAW_Y_POSITION(ly));
}
/**
* Dual X Carriage / Dual Nozzle
*/
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
extern bool extruder_duplication_enabled; // Used in Dual X mode 2
#endif
/**
* Dual X Carriage
*/
#if ENABLED(DUAL_X_CARRIAGE)
extern DualXMode dual_x_carriage_mode;
@ -234,4 +302,12 @@ FORCE_INLINE bool position_is_reachable_xy(const float &lx, const float &ly) {
#endif // DUAL_X_CARRIAGE
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
void update_software_endstops(const AxisEnum axis);
#endif
#if HAS_M206_COMMAND
void set_home_offset(const AxisEnum axis, const float v);
#endif
#endif // MOTION_H

@ -64,13 +64,12 @@
#include "../module/temperature.h"
#include "../lcd/ultralcd.h"
#include "../core/language.h"
#include "../feature/ubl/ubl.h"
#include "../gcode/parser.h"
#include "../Marlin.h"
#if ENABLED(MESH_BED_LEVELING)
#include "../feature/mbl/mesh_bed_leveling.h"
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#endif
Planner planner;
@ -107,12 +106,11 @@ float Planner::min_feedrate_mm_s,
Planner::max_jerk[XYZE], // The largest speed change requiring no acceleration
Planner::min_travel_feedrate_mm_s;
#if HAS_ABL
#if OLDSCHOOL_ABL
bool Planner::abl_enabled = false; // Flag that auto bed leveling is enabled
#endif
#if ABL_PLANAR
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
#if ABL_PLANAR
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
#endif
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
@ -546,7 +544,7 @@ void Planner::check_axes_activity() {
#endif // FADE
#endif // UBL
#if HAS_ABL
#if OLDSCHOOL_ABL
if (!abl_enabled) return;
#endif
@ -634,7 +632,7 @@ void Planner::check_axes_activity() {
#endif
#if HAS_ABL
#if OLDSCHOOL_ABL
if (!abl_enabled) return;
#endif

@ -34,6 +34,12 @@
#include "../Marlin.h"
#include "motion.h"
#if ENABLED(DELTA)
#include "delta.h"
#endif
#if HAS_ABL
#include "../libs/vector_3.h"
#endif
@ -159,7 +165,7 @@ class Planner {
max_jerk[XYZE], // The largest speed change requiring no acceleration
min_travel_feedrate_mm_s;
#if HAS_ABL
#if OLDSCHOOL_ABL
static bool abl_enabled; // Flag that bed leveling is enabled
#if ABL_PLANAR
static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level

@ -0,0 +1,709 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* probe.cpp
*/
#include "../inc/MarlinConfig.h"
#if HAS_BED_PROBE
#include "probe.h"
#include "motion.h"
#include "temperature.h"
#include "endstops.h"
#include "../gcode/gcode.h"
#include "../lcd/ultralcd.h"
#include "../Marlin.h"
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#endif
#if ENABLED(DELTA)
#include "../module/delta.h"
#endif
float zprobe_zoffset; // Initialized by settings.load()
#if HAS_Z_SERVO_ENDSTOP
const int z_servo_angle[2] = Z_SERVO_ANGLES;
#endif
/**
* Raise Z to a minimum height to make room for a probe to move
*/
inline void do_probe_raise(const float z_raise) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
float z_dest = z_raise;
if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
if (z_dest > current_position[Z_AXIS])
do_blocking_move_to_z(z_dest);
}
#if ENABLED(Z_PROBE_SLED)
#ifndef SLED_DOCKING_OFFSET
#define SLED_DOCKING_OFFSET 0
#endif
/**
* Method to dock/undock a sled designed by Charles Bell.
*
* stow[in] If false, move to MAX_X and engage the solenoid
* If true, move to MAX_X and release the solenoid
*/
static void dock_sled(bool stow) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("dock_sled(", stow);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
// Dock sled a bit closer to ensure proper capturing
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
#if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
WRITE(SOL1_PIN, !stow); // switch solenoid
#endif
}
#elif ENABLED(Z_PROBE_ALLEN_KEY)
FORCE_INLINE void do_blocking_move_to(const float logical[XYZ], const float &fr_mm_s) {
do_blocking_move_to(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], fr_mm_s);
}
void run_deploy_moves_script() {
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
#endif
const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
#endif
const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
#endif
const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
#endif
const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
#endif
const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
#endif
}
void run_stow_moves_script() {
#if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
#define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
#define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
#define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
#endif
const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
#define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
#define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
#define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
#endif
const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
#define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
#define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
#define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
#endif
const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
#define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
#define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
#define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
#endif
const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
#endif
#if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
#define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
#define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
#define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
#endif
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
#endif
const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
#endif
}
#endif
#if ENABLED(PROBING_FANS_OFF)
void fans_pause(const bool p) {
if (p != fans_paused) {
fans_paused = p;
if (p)
for (uint8_t x = 0; x < FAN_COUNT; x++) {
paused_fanSpeeds[x] = fanSpeeds[x];
fanSpeeds[x] = 0;
}
else
for (uint8_t x = 0; x < FAN_COUNT; x++)
fanSpeeds[x] = paused_fanSpeeds[x];
}
}
#endif // PROBING_FANS_OFF
#if QUIET_PROBING
void probing_pause(const bool p) {
#if ENABLED(PROBING_HEATERS_OFF)
thermalManager.pause(p);
#endif
#if ENABLED(PROBING_FANS_OFF)
fans_pause(p);
#endif
if (p) safe_delay(
#if DELAY_BEFORE_PROBING > 25
DELAY_BEFORE_PROBING
#else
25
#endif
);
}
#endif // QUIET_PROBING
#if ENABLED(BLTOUCH)
void bltouch_command(const int angle) {
MOVE_SERVO(Z_ENDSTOP_SERVO_NR, angle); // Give the BL-Touch the command and wait
safe_delay(BLTOUCH_DELAY);
}
bool set_bltouch_deployed(const bool deploy) {
if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
bltouch_command(BLTOUCH_RESET); // try to reset it.
bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
safe_delay(1500); // Wait for internal self-test to complete.
// (Measured completion time was 0.65 seconds
// after reset, deploy, and stow sequence)
if (TEST_BLTOUCH()) { // If it still claims to be triggered...
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
stop(); // punt!
return true;
}
}
bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
return false;
}
#endif // BLTOUCH
// returns false for ok and true for failure
bool set_probe_deployed(const bool deploy) {
// Can be extended to servo probes, if needed.
#if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
#else
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
#endif
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
DEBUG_POS("set_probe_deployed", current_position);
SERIAL_ECHOLNPAIR("deploy: ", deploy);
}
#endif
if (endstops.z_probe_enabled == deploy) return false;
// Make room for probe
do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
#if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
#if ENABLED(Z_PROBE_SLED)
#define _AUE_ARGS true, false, false
#else
#define _AUE_ARGS
#endif
if (axis_unhomed_error(_AUE_ARGS)) {
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
stop();
return true;
}
#endif
const float oldXpos = current_position[X_AXIS],
oldYpos = current_position[Y_AXIS];
#ifdef _TRIGGERED_WHEN_STOWED_TEST
// If endstop is already false, the Z probe is deployed
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
// Would a goto be less ugly?
//while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
// for a triggered when stowed manual probe.
if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
// otherwise an Allen-Key probe can't be stowed.
#endif
#if ENABLED(SOLENOID_PROBE)
#if HAS_SOLENOID_1
WRITE(SOL1_PIN, deploy);
#endif
#elif ENABLED(Z_PROBE_SLED)
dock_sled(!deploy);
#elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
#elif ENABLED(Z_PROBE_ALLEN_KEY)
deploy ? run_deploy_moves_script() : run_stow_moves_script();
#endif
#ifdef _TRIGGERED_WHEN_STOWED_TEST
} // _TRIGGERED_WHEN_STOWED_TEST == deploy
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
if (IsRunning()) {
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM("Z-Probe failed");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
}
stop();
return true;
} // _TRIGGERED_WHEN_STOWED_TEST == deploy
#endif
do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
endstops.enable_z_probe(deploy);
return false;
}
/**
* @brief Used by run_z_probe to do a single Z probe move.
*
* @param z Z destination
* @param fr_mm_s Feedrate in mm/s
* @return true to indicate an error
*/
static bool do_probe_move(const float z, const float fr_mm_m) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
#endif
// Deploy BLTouch at the start of any probe
#if ENABLED(BLTOUCH)
if (set_bltouch_deployed(true)) return true;
#endif
#if QUIET_PROBING
probing_pause(true);
#endif
// Move down until probe triggered
do_blocking_move_to_z(z, MMM_TO_MMS(fr_mm_m));
// Check to see if the probe was triggered
const bool probe_triggered = TEST(Endstops::endstop_hit_bits,
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
Z_MIN
#else
Z_MIN_PROBE
#endif
);
#if QUIET_PROBING
probing_pause(false);
#endif
// Retract BLTouch immediately after a probe if it was triggered
#if ENABLED(BLTOUCH)
if (probe_triggered && set_bltouch_deployed(false)) return true;
#endif
// Clear endstop flags
endstops.hit_on_purpose();
// Get Z where the steppers were interrupted
set_current_from_steppers_for_axis(Z_AXIS);
// Tell the planner where we actually are
SYNC_PLAN_POSITION_KINEMATIC();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
#endif
return !probe_triggered;
}
/**
* @details Used by probe_pt to do a single Z probe.
* Leaves current_position[Z_AXIS] at the height where the probe triggered.
*
* @param short_move Flag for a shorter probe move towards the bed
* @return The raw Z position where the probe was triggered
*/
static float run_z_probe(const bool short_move=true) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
#endif
// Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
gcode.refresh_cmd_timeout();
#if ENABLED(PROBE_DOUBLE_TOUCH)
// Do a first probe at the fast speed
if (do_probe_move(-10, Z_PROBE_SPEED_FAST)) return NAN;
#if ENABLED(DEBUG_LEVELING_FEATURE)
float first_probe_z = current_position[Z_AXIS];
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
#endif
// move up to make clearance for the probe
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
#else
// If the nozzle is above the travel height then
// move down quickly before doing the slow probe
float z = Z_CLEARANCE_DEPLOY_PROBE;
if (zprobe_zoffset < 0) z -= zprobe_zoffset;
if (z < current_position[Z_AXIS]) {
// If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
if (!do_probe_move(z, Z_PROBE_SPEED_FAST))
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
}
#endif
// move down slowly to find bed
if (do_probe_move(-10 + (short_move ? 0 : -(Z_MAX_LENGTH)), Z_PROBE_SPEED_SLOW)) return NAN;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
#endif
// Debug: compare probe heights
#if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
}
#endif
return RAW_CURRENT_POSITION(Z) + zprobe_zoffset
#if ENABLED(DELTA)
+ home_offset[Z_AXIS] // Account for delta height adjustment
#endif
;
}
/**
* - Move to the given XY
* - Deploy the probe, if not already deployed
* - Probe the bed, get the Z position
* - Depending on the 'stow' flag
* - Stow the probe, or
* - Raise to the BETWEEN height
* - Return the probed Z position
*/
float probe_pt(const float &lx, const float &ly, const bool stow, const uint8_t verbose_level, const bool printable/*=true*/) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> probe_pt(", lx);
SERIAL_ECHOPAIR(", ", ly);
SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
SERIAL_ECHOLNPGM("stow)");
DEBUG_POS("", current_position);
}
#endif
const float nx = lx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ly - (Y_PROBE_OFFSET_FROM_EXTRUDER);
if (printable
? !position_is_reachable_xy(nx, ny)
: !position_is_reachable_by_probe_xy(lx, ly)
) return NAN;
const float old_feedrate_mm_s = feedrate_mm_s;
#if ENABLED(DELTA)
if (current_position[Z_AXIS] > delta_clip_start_height)
do_blocking_move_to_z(delta_clip_start_height);
#endif
#if HAS_SOFTWARE_ENDSTOPS
// Store the status of the soft endstops and disable if we're probing a non-printable location
static bool enable_soft_endstops = soft_endstops_enabled;
if (!printable) soft_endstops_enabled = false;
#endif
feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
// Move the probe to the given XY
do_blocking_move_to_xy(nx, ny);
float measured_z = NAN;
if (!DEPLOY_PROBE()) {
measured_z = run_z_probe(printable);
if (!stow)
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
else
if (STOW_PROBE()) measured_z = NAN;
}
#if HAS_SOFTWARE_ENDSTOPS
// Restore the soft endstop status
soft_endstops_enabled = enable_soft_endstops;
#endif
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Bed X: ");
SERIAL_PROTOCOL_F(lx, 3);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL_F(ly, 3);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL_F(measured_z, 3);
SERIAL_EOL();
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
#endif
feedrate_mm_s = old_feedrate_mm_s;
if (isnan(measured_z)) {
LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
SERIAL_ERROR_START();
SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
}
return measured_z;
}
void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
static float last_zoffset = NAN;
if (!isnan(last_zoffset)) {
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
const float diff = zprobe_zoffset - last_zoffset;
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Correct bilinear grid for new probe offset
if (diff) {
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
z_values[x][y] -= diff;
}
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bed_level_virt_interpolate();
#endif
#endif
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
if (!no_babystep && leveling_is_active())
thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
#else
UNUSED(no_babystep);
#endif
#if ENABLED(DELTA) // correct the delta_height
home_offset[Z_AXIS] -= diff;
#endif
}
last_zoffset = zprobe_zoffset;
}
#if HAS_Z_SERVO_ENDSTOP
void servo_probe_init() {
/**
* Set position of Z Servo Endstop
*
* The servo might be deployed and positioned too low to stow
* when starting up the machine or rebooting the board.
* There's no way to know where the nozzle is positioned until
* homing has been done - no homing with z-probe without init!
*
*/
STOW_Z_SERVO();
}
#endif // HAS_Z_SERVO_ENDSTOP
#endif // HAS_BED_PROBE

@ -0,0 +1,69 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* probe.h - Move, deploy, enable, etc.
*/
#ifndef PROBE_H
#define PROBE_H
#include "../inc/MarlinConfig.h"
bool set_probe_deployed(const bool deploy);
float probe_pt(const float &lx, const float &ly, const bool, const uint8_t, const bool printable=true);
#if HAS_BED_PROBE
extern float zprobe_zoffset;
void refresh_zprobe_zoffset(const bool no_babystep=false);
#define DEPLOY_PROBE() set_probe_deployed(true)
#define STOW_PROBE() set_probe_deployed(false)
#else
#define DEPLOY_PROBE()
#define STOW_PROBE()
#endif
#if HAS_Z_SERVO_ENDSTOP
extern const int z_servo_angle[2];
void servo_probe_init();
#endif
#if QUIET_PROBING
void probing_pause(const bool p);
#endif
#if ENABLED(PROBING_FANS_OFF)
void fans_pause(const bool p);
#endif
#if ENABLED(BLTOUCH)
void bltouch_command(int angle);
bool set_bltouch_deployed(const bool deploy);
FORCE_INLINE void bltouch_init() {
// Make sure any BLTouch error condition is cleared
bltouch_command(BLTOUCH_RESET);
set_bltouch_deployed(true);
set_bltouch_deployed(false);
}
#endif
#endif // PROBE_H

@ -0,0 +1,155 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* scara.cpp
*/
#include "../inc/MarlinConfig.h"
#if IS_SCARA
#include "scara.h"
#include "motion.h"
#include "stepper.h"
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
void scara_set_axis_is_at_home(const AxisEnum axis) {
if (axis == Z_AXIS)
current_position[Z_AXIS] = LOGICAL_POSITION(Z_HOME_POS, Z_AXIS);
else {
/**
* SCARA homes XY at the same time
*/
float homeposition[XYZ];
LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
// SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
// SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
/**
* Get Home position SCARA arm angles using inverse kinematics,
* and calculate homing offset using forward kinematics
*/
inverse_kinematics(homeposition);
forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
// SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
// SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
/**
* SCARA home positions are based on configuration since the actual
* limits are determined by the inverse kinematic transform.
*/
soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
}
}
/**
* Morgan SCARA Forward Kinematics. Results in cartes[].
* Maths and first version by QHARLEY.
* Integrated into Marlin and slightly restructured by Joachim Cerny.
*/
void forward_kinematics_SCARA(const float &a, const float &b) {
const float a_sin = sin(RADIANS(a)) * L1,
a_cos = cos(RADIANS(a)) * L1,
b_sin = sin(RADIANS(b)) * L2,
b_cos = cos(RADIANS(b)) * L2;
cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
/*
SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
SERIAL_ECHOPAIR(" b=", b);
SERIAL_ECHOPAIR(" a_sin=", a_sin);
SERIAL_ECHOPAIR(" a_cos=", a_cos);
SERIAL_ECHOPAIR(" b_sin=", b_sin);
SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
//*/
}
/**
* Morgan SCARA Inverse Kinematics. Results in delta[].
*
* See http://forums.reprap.org/read.php?185,283327
*
* Maths and first version by QHARLEY.
* Integrated into Marlin and slightly restructured by Joachim Cerny.
*/
void inverse_kinematics(const float logical[XYZ]) {
static float C2, S2, SK1, SK2, THETA, PSI;
float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
if (L1 == L2)
C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
else
C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
S2 = SQRT(1 - sq(C2));
// Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
SK1 = L1 + L2 * C2;
// Rotated Arm2 gives the distance from Arm1 to Arm2
SK2 = L2 * S2;
// Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
// Angle of Arm2
PSI = ATAN2(S2, C2);
delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
delta[C_AXIS] = logical[Z_AXIS];
/*
DEBUG_POS("SCARA IK", logical);
DEBUG_POS("SCARA IK", delta);
SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
SERIAL_ECHOPAIR(",", sy);
SERIAL_ECHOPAIR(" C2=", C2);
SERIAL_ECHOPAIR(" S2=", S2);
SERIAL_ECHOPAIR(" Theta=", THETA);
SERIAL_ECHOLNPAIR(" Phi=", PHI);
//*/
}
void scara_report_positions() {
SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
SERIAL_EOL();
}
#endif // IS_SCARA

@ -0,0 +1,46 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* scara.h - SCARA-specific functions
*/
#ifndef __SCARA_H__
#define __SCARA_H__
#include "../core/macros.h"
extern float delta_segments_per_second;
// Float constants for SCARA calculations
float constexpr L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
L2_2 = sq(float(L2));
void scara_set_axis_is_at_home(const AxisEnum axis);
void inverse_kinematics(const float logical[XYZ]);
void forward_kinematics_SCARA(const float &a, const float &b);
void scara_report_positions();
#endif // __SCARA_H__

@ -52,6 +52,7 @@
#include "endstops.h"
#include "planner.h"
#include "motion.h"
#include "../Marlin.h"
#include "../module/temperature.h"

Loading…
Cancel
Save