Replace division in planner with multiplication

2.0.x
Scott Lahteine 8 years ago
parent b921f6b69d
commit f8b5749235

@ -911,16 +911,15 @@ void setup() {
// Send "ok" after commands by default
for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
// Load data from EEPROM if available (or use defaults)
// This also updates variables in the planner, elsewhere
Config_RetrieveSettings();
// Initialize current position based on home_offset
memcpy(current_position, home_offset, sizeof(home_offset));
#if ENABLED(DELTA) || ENABLED(SCARA)
// Vital to init kinematic equivalent for X0 Y0 Z0
SYNC_PLAN_POSITION_KINEMATIC();
#endif
// Vital to init stepper/planner equivalent for current_position
SYNC_PLAN_POSITION_KINEMATIC();
thermalManager.init(); // Initialize temperature loop
@ -5148,6 +5147,7 @@ inline void gcode_M92() {
}
}
}
planner.refresh_positioning();
}
/**

@ -171,10 +171,16 @@ void Config_Postprocess() {
// steps per s2 needs to be updated to agree with units per s2
planner.reset_acceleration_rates();
// Make sure delta kinematics are updated before refreshing the
// planner position so the stepper counts will be set correctly.
#if ENABLED(DELTA)
recalc_delta_settings(delta_radius, delta_diagonal_rod);
#endif
// Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
// and init stepper.count[], planner.position[] with current_position
planner.refresh_positioning();
#if ENABLED(PIDTEMP)
thermalManager.updatePID();
#endif

@ -82,6 +82,7 @@ volatile uint8_t Planner::block_buffer_tail = 0;
float Planner::max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second
float Planner::axis_steps_per_mm[NUM_AXIS];
float Planner::steps_to_mm[NUM_AXIS];
unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS];
unsigned long Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
@ -783,23 +784,23 @@ void Planner::check_axes_activity() {
#if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
float delta_mm[6];
#if ENABLED(COREXY)
delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
delta_mm[Y_HEAD] = dy / axis_steps_per_mm[B_AXIS];
delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_mm[A_AXIS];
delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_mm[B_AXIS];
delta_mm[X_HEAD] = dx * steps_to_mm[A_AXIS];
delta_mm[Y_HEAD] = dy * steps_to_mm[B_AXIS];
delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS];
delta_mm[A_AXIS] = (dx + dy) * steps_to_mm[A_AXIS];
delta_mm[B_AXIS] = (dx - dy) * steps_to_mm[B_AXIS];
#elif ENABLED(COREXZ)
delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_mm[A_AXIS];
delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_mm[C_AXIS];
delta_mm[X_HEAD] = dx * steps_to_mm[A_AXIS];
delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS];
delta_mm[Z_HEAD] = dz * steps_to_mm[C_AXIS];
delta_mm[A_AXIS] = (dx + dz) * steps_to_mm[A_AXIS];
delta_mm[C_AXIS] = (dx - dz) * steps_to_mm[C_AXIS];
#elif ENABLED(COREYZ)
delta_mm[X_AXIS] = dx / axis_steps_per_mm[X_AXIS];
delta_mm[Y_HEAD] = dy / axis_steps_per_mm[B_AXIS];
delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
delta_mm[B_AXIS] = (dy + dz) / axis_steps_per_mm[B_AXIS];
delta_mm[C_AXIS] = (dy - dz) / axis_steps_per_mm[C_AXIS];
delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS];
delta_mm[Y_HEAD] = dy * steps_to_mm[B_AXIS];
delta_mm[Z_HEAD] = dz * steps_to_mm[C_AXIS];
delta_mm[B_AXIS] = (dy + dz) * steps_to_mm[B_AXIS];
delta_mm[C_AXIS] = (dy - dz) * steps_to_mm[C_AXIS];
#endif
#else
float delta_mm[4];
@ -808,12 +809,12 @@ void Planner::check_axes_activity() {
// so calculate distance in steps first, then do one division
// at the end to get millimeters
#else
delta_mm[X_AXIS] = dx / axis_steps_per_mm[X_AXIS];
delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS];
delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS];
delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS];
#endif
#endif
delta_mm[E_AXIS] = (de / axis_steps_per_mm[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
delta_mm[E_AXIS] = (de * steps_to_mm[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
block->millimeters = fabs(delta_mm[E_AXIS]);
@ -833,7 +834,7 @@ void Planner::check_axes_activity() {
#endif
)
#if ENABLED(DELTA)
/ axis_steps_per_mm[X_AXIS]
* steps_to_mm[X_AXIS]
#endif
;
}
@ -1176,6 +1177,7 @@ void Planner::check_axes_activity() {
void Planner::set_e_position_mm(const float& e) {
position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
stepper.set_e_position(position[E_AXIS]);
previous_speed[E_AXIS] = 0.0;
}
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
@ -1184,6 +1186,13 @@ void Planner::reset_acceleration_rates() {
max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
}
// Recalculate position, steps_to_mm if axis_steps_per_mm changes!
void Planner::refresh_positioning() {
LOOP_XYZE(i) planner.steps_to_mm[i] = 1.0 / planner.axis_steps_per_mm[i];
set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
reset_acceleration_rates();
}
#if ENABLED(AUTOTEMP)
void Planner::autotemp_M109() {

@ -121,6 +121,7 @@ class Planner {
static float max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second
static float axis_steps_per_mm[NUM_AXIS];
static float steps_to_mm[NUM_AXIS];
static unsigned long max_acceleration_steps_per_s2[NUM_AXIS];
static unsigned long max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
@ -142,7 +143,7 @@ class Planner {
/**
* The current position of the tool in absolute steps
* Reclculated if any axis_steps_per_mm are changed by gcode
* Recalculated if any axis_steps_per_mm are changed by gcode
*/
static long position[NUM_AXIS];
@ -187,6 +188,7 @@ class Planner {
*/
static void reset_acceleration_rates();
static void refresh_positioning();
// Manage fans, paste pressure, etc.
static void check_axes_activity();

@ -951,7 +951,7 @@ float Stepper::get_axis_position_mm(AxisEnum axis) {
#else
axis_steps = position(axis);
#endif
return axis_steps / planner.axis_steps_per_mm[axis];
return axis_steps * planner.steps_to_mm[axis];
}
void Stepper::finish_and_disable() {

@ -262,7 +262,7 @@ class Stepper {
// Triggered position of an axis in mm (not core-savvy)
//
static FORCE_INLINE float triggered_position_mm(AxisEnum axis) {
return endstops_trigsteps[axis] / planner.axis_steps_per_mm[axis];
return endstops_trigsteps[axis] * planner.steps_to_mm[axis];
}
#if ENABLED(LIN_ADVANCE)

@ -572,7 +572,7 @@ float Temperature::get_pid_output(int e) {
lpq[lpq_ptr] = 0;
}
if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] / planner.axis_steps_per_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
pid_output += cTerm[HOTEND_INDEX];
}
#endif //PID_ADD_EXTRUSION_RATE

@ -678,7 +678,7 @@ void kill_screen(const char* lcd_msg) {
}
if (lcdDrawUpdate)
lcd_implementation_drawedit(msg, ftostr43sign(
((1000 * babysteps_done) / planner.axis_steps_per_mm[axis]) * 0.001f
((1000 * babysteps_done) * planner.steps_to_mm[axis]) * 0.001f
));
}
@ -1769,6 +1769,7 @@ void kill_screen(const char* lcd_msg) {
}
static void _reset_acceleration_rates() { planner.reset_acceleration_rates(); }
static void _planner_refresh_positioning() { planner.refresh_positioning(); }
/**
*
@ -1805,14 +1806,14 @@ void kill_screen(const char* lcd_msg) {
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &planner.max_acceleration_mm_per_s2[E_AXIS], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &planner.retract_acceleration, 100, 99000);
MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &planner.travel_acceleration, 100, 99000);
MENU_ITEM_EDIT(float52, MSG_XSTEPS, &planner.axis_steps_per_mm[X_AXIS], 5, 9999);
MENU_ITEM_EDIT(float52, MSG_YSTEPS, &planner.axis_steps_per_mm[Y_AXIS], 5, 9999);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_XSTEPS, &planner.axis_steps_per_mm[X_AXIS], 5, 9999, _planner_refresh_positioning);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_YSTEPS, &planner.axis_steps_per_mm[Y_AXIS], 5, 9999, _planner_refresh_positioning);
#if ENABLED(DELTA)
MENU_ITEM_EDIT(float52, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999, _planner_refresh_positioning);
#else
MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999);
MENU_ITEM_EDIT_CALLBACK(float51, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999, _planner_refresh_positioning);
#endif
MENU_ITEM_EDIT(float51, MSG_ESTEPS, &planner.axis_steps_per_mm[E_AXIS], 5, 9999);
MENU_ITEM_EDIT_CALLBACK(float51, MSG_ESTEPS, &planner.axis_steps_per_mm[E_AXIS], 5, 9999, _planner_refresh_positioning);
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &stepper.abort_on_endstop_hit);
#endif

Loading…
Cancel
Save