Defer updated ADC

2.0.x
Scott Lahteine 5 years ago
parent ddce1c6ef2
commit 4360142bd1

@ -2798,84 +2798,124 @@ void Temperature::tick() {
if ((do_buttons ^= true)) ui.update_buttons(); if ((do_buttons ^= true)) ui.update_buttons();
/** /**
* On each call to the ISR one sensor is Sampled and * One sensor is sampled on every other call of the ISR.
* the next sensor is Prepared. * Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
* *
* Sensors are read 16 (OVERSAMPLENR) times and the * On each Prepare pass, ADC is started for a sensor pin.
* final reading takes the average. * On the next pass, the ADC value is read and accumulated.
* *
* Extra do-nothing passes may exist when there are * This gives each ADC 0.9765ms to charge up.
* only a few sensors. This is set by MIN_ADC_ISR_LOOPS.
*
* The timing of this ISR gives ADCs 0.9765ms to charge up.
*/ */
#define ACCUMULATE_ADC(obj) do{ \ #define ACCUMULATE_ADC(obj) do{ \
if (HAL_ADC_READY()) \ if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; \
obj.sample(HAL_READ_ADC()); \ else obj.sample(HAL_READ_ADC()); \
else \
next_sensor_state = adc_sensor_state; \
}while(0) }while(0)
#define NEXT_ENUM(A) (typeof(A))(int(A) + 1) ADCSensorState next_sensor_state = adc_sensor_state < SensorsReady ? (ADCSensorState)(int(adc_sensor_state) + 1) : StartSampling;
#define NEXT_ADC_STATE(N) ((N) >= SensorsReady ? StartSampling : NEXT_ENUM(N))
// Assume the machine will go on to the next state
ADCSensorState next_sensor_state = NEXT_ADC_STATE(adc_sensor_state);
switch (adc_sensor_state) { switch (adc_sensor_state) {
default: break; case SensorsReady: {
// All sensors have been read. Stay in this state for a few
// ISRs to save on calls to temp update/checking code below.
constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
static uint8_t delay_count = 0;
if (extra_loops > 0) {
if (delay_count == 0) delay_count = extra_loops; // Init this delay
if (--delay_count) // While delaying...
next_sensor_state = SensorsReady; // retain this state (else, next state will be 0)
break;
}
else {
adc_sensor_state = StartSampling; // Fall-through to start sampling
next_sensor_state = (ADCSensorState)(int(StartSampling) + 1);
}
}
case StartSampling: // Start of sampling loops. Do updates/checks.
if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
temp_count = 0;
readings_ready();
}
break;
#if HAS_TEMP_ADC_0 #if HAS_TEMP_ADC_0
case PrepareTemp_0: HAL_START_ADC(TEMP_0_PIN); break;
case MeasureTemp_0: ACCUMULATE_ADC(temp_hotend[0]); break; case MeasureTemp_0: ACCUMULATE_ADC(temp_hotend[0]); break;
#endif #endif
#if HAS_HEATED_BED #if HAS_HEATED_BED
case PrepareTemp_BED: HAL_START_ADC(TEMP_BED_PIN); break;
case MeasureTemp_BED: ACCUMULATE_ADC(temp_bed); break; case MeasureTemp_BED: ACCUMULATE_ADC(temp_bed); break;
#endif #endif
#if HAS_TEMP_CHAMBER #if HAS_TEMP_CHAMBER
case PrepareTemp_CHAMBER: HAL_START_ADC(TEMP_CHAMBER_PIN); break;
case MeasureTemp_CHAMBER: ACCUMULATE_ADC(temp_chamber); break; case MeasureTemp_CHAMBER: ACCUMULATE_ADC(temp_chamber); break;
#endif #endif
#if HAS_TEMP_PROBE #if HAS_TEMP_PROBE
case PrepareTemp_PROBE: HAL_START_ADC(TEMP_PROBE_PIN); break;
case MeasureTemp_PROBE: ACCUMULATE_ADC(temp_probe); break; case MeasureTemp_PROBE: ACCUMULATE_ADC(temp_probe); break;
#endif #endif
#if HAS_TEMP_ADC_1 #if HAS_TEMP_ADC_1
case PrepareTemp_1: HAL_START_ADC(TEMP_1_PIN); break;
case MeasureTemp_1: ACCUMULATE_ADC(temp_hotend[1]); break; case MeasureTemp_1: ACCUMULATE_ADC(temp_hotend[1]); break;
#endif #endif
#if HAS_TEMP_ADC_2 #if HAS_TEMP_ADC_2
case PrepareTemp_2: HAL_START_ADC(TEMP_2_PIN); break;
case MeasureTemp_2: ACCUMULATE_ADC(temp_hotend[2]); break; case MeasureTemp_2: ACCUMULATE_ADC(temp_hotend[2]); break;
#endif #endif
#if HAS_TEMP_ADC_3 #if HAS_TEMP_ADC_3
case PrepareTemp_3: HAL_START_ADC(TEMP_3_PIN); break;
case MeasureTemp_3: ACCUMULATE_ADC(temp_hotend[3]); break; case MeasureTemp_3: ACCUMULATE_ADC(temp_hotend[3]); break;
#endif #endif
#if HAS_TEMP_ADC_4 #if HAS_TEMP_ADC_4
case PrepareTemp_4: HAL_START_ADC(TEMP_4_PIN); break;
case MeasureTemp_4: ACCUMULATE_ADC(temp_hotend[4]); break; case MeasureTemp_4: ACCUMULATE_ADC(temp_hotend[4]); break;
#endif #endif
#if HAS_TEMP_ADC_5 #if HAS_TEMP_ADC_5
case PrepareTemp_5: HAL_START_ADC(TEMP_5_PIN); break;
case MeasureTemp_5: ACCUMULATE_ADC(temp_hotend[5]); break; case MeasureTemp_5: ACCUMULATE_ADC(temp_hotend[5]); break;
#endif #endif
#if HAS_TEMP_ADC_6 #if HAS_TEMP_ADC_6
case PrepareTemp_6: HAL_START_ADC(TEMP_6_PIN); break;
case MeasureTemp_6: ACCUMULATE_ADC(temp_hotend[6]); break; case MeasureTemp_6: ACCUMULATE_ADC(temp_hotend[6]); break;
#endif #endif
#if HAS_TEMP_ADC_7 #if HAS_TEMP_ADC_7
case PrepareTemp_7: HAL_START_ADC(TEMP_7_PIN); break;
case MeasureTemp_7: ACCUMULATE_ADC(temp_hotend[7]); break; case MeasureTemp_7: ACCUMULATE_ADC(temp_hotend[7]); break;
#endif #endif
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
case Prepare_FILWIDTH: HAL_START_ADC(FILWIDTH_PIN); break;
case Measure_FILWIDTH: case Measure_FILWIDTH:
if (HAL_ADC_READY()) if (!HAL_ADC_READY())
filwidth.accumulate(HAL_READ_ADC());
else
next_sensor_state = adc_sensor_state; // redo this state next_sensor_state = adc_sensor_state; // redo this state
else
filwidth.accumulate(HAL_READ_ADC());
break; break;
#endif #endif
#if HAS_JOY_ADC_X #if HAS_JOY_ADC_X
case PrepareJoy_X: HAL_START_ADC(JOY_X_PIN); break;
case MeasureJoy_X: ACCUMULATE_ADC(joystick.x); break; case MeasureJoy_X: ACCUMULATE_ADC(joystick.x); break;
#endif #endif
#if HAS_JOY_ADC_Y #if HAS_JOY_ADC_Y
case PrepareJoy_Y: HAL_START_ADC(JOY_Y_PIN); break;
case MeasureJoy_Y: ACCUMULATE_ADC(joystick.y); break; case MeasureJoy_Y: ACCUMULATE_ADC(joystick.y); break;
#endif #endif
#if HAS_JOY_ADC_Z #if HAS_JOY_ADC_Z
case PrepareJoy_Z: HAL_START_ADC(JOY_Z_PIN); break;
case MeasureJoy_Z: ACCUMULATE_ADC(joystick.z); break; case MeasureJoy_Z: ACCUMULATE_ADC(joystick.z); break;
#endif #endif
@ -2883,123 +2923,29 @@ void Temperature::tick() {
#ifndef ADC_BUTTON_DEBOUNCE_DELAY #ifndef ADC_BUTTON_DEBOUNCE_DELAY
#define ADC_BUTTON_DEBOUNCE_DELAY 16 #define ADC_BUTTON_DEBOUNCE_DELAY 16
#endif #endif
case Measure_ADC_KEY: { case Prepare_ADC_KEY: HAL_START_ADC(ADC_KEYPAD_PIN); break;
if (HAL_ADC_READY()) { case Measure_ADC_KEY:
if (ADCKey_count < ADC_BUTTON_DEBOUNCE_DELAY) { if (!HAL_ADC_READY())
next_sensor_state = adc_sensor_state; // redo this state
else if (ADCKey_count < ADC_BUTTON_DEBOUNCE_DELAY) {
raw_ADCKey_value = HAL_READ_ADC(); raw_ADCKey_value = HAL_READ_ADC();
if (raw_ADCKey_value <= (HAL_ADC_RANGE) * 900UL / 1024UL) { if (raw_ADCKey_value <= 900UL * HAL_ADC_RANGE / 1024UL) {
NOMORE(current_ADCKey_raw, raw_ADCKey_value); NOMORE(current_ADCKey_raw, raw_ADCKey_value);
ADCKey_count++; ADCKey_count++;
} }
else { //ADC Key release else { //ADC Key release
if (ADCKey_count > 0) { if (ADCKey_count > 0) ADCKey_count++; else ADCKey_pressed = false;
if (ADCKey_pressed) { if (ADCKey_pressed) {
ADCKey_count = 0; ADCKey_count = 0;
current_ADCKey_raw = HAL_ADC_RANGE; current_ADCKey_raw = HAL_ADC_RANGE;
} }
else
ADCKey_count++;
} }
else
ADCKey_pressed = false;
} }
if (ADCKey_count == ADC_BUTTON_DEBOUNCE_DELAY) ADCKey_pressed = true; if (ADCKey_count == ADC_BUTTON_DEBOUNCE_DELAY) ADCKey_pressed = true;
} break;
}
else
next_sensor_state = adc_sensor_state; // redo this state
} break;
#endif // HAS_ADC_BUTTONS #endif // HAS_ADC_BUTTONS
} // switch(adc_sensor_state) case StartupDelay: break;
// Go to the next state (may be unchanged)
adc_sensor_state = next_sensor_state;
// Assume that the state advances
next_sensor_state = NEXT_ADC_STATE(adc_sensor_state);
switch (adc_sensor_state) {
default: break;
case SensorsReady: {
// All sensors have been read. Stay in this state for a few
// ISRs to save on calls to temp update/checking code below.
constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
static uint8_t delay_count = 0;
if (extra_loops > 0) {
if (delay_count == 0) delay_count = extra_loops; // Init this delay
if (--delay_count) // While delaying...
next_sensor_state = SensorsReady; // retain this state (else, next state will be 0)
break; // No fallthru
}
else {
adc_sensor_state = StartSampling; // Fall through to count up oversamples
next_sensor_state = NEXT_ENUM(StartSampling); // and possibly send the final readings.
}
}
// fallthru
case StartSampling: // Start of sampling loops. Do updates/checks.
if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1 / (16000000 / 64 / 256) = 164ms.
temp_count = 0;
readings_ready();
}
adc_sensor_state = NEXT_ENUM(StartSampling); // Do one Prepare phase before exiting
next_sensor_state = NEXT_ENUM(adc_sensor_state); // Also update the next state
// fallthru
#if HAS_TEMP_ADC_0
case PrepareTemp_0: HAL_START_ADC(TEMP_0_PIN); break;
#endif
#if HAS_HEATED_BED
case PrepareTemp_BED: HAL_START_ADC(TEMP_BED_PIN); break;
#endif
#if HAS_TEMP_CHAMBER
case PrepareTemp_CHAMBER: HAL_START_ADC(TEMP_CHAMBER_PIN); break;
#endif
#if HAS_TEMP_PROBE
case PrepareTemp_PROBE: HAL_START_ADC(TEMP_PROBE_PIN); break;
#endif
#if HAS_TEMP_ADC_1
case PrepareTemp_1: HAL_START_ADC(TEMP_1_PIN); break;
#endif
#if HAS_TEMP_ADC_2
case PrepareTemp_2: HAL_START_ADC(TEMP_2_PIN); break;
#endif
#if HAS_TEMP_ADC_3
case PrepareTemp_3: HAL_START_ADC(TEMP_3_PIN); break;
#endif
#if HAS_TEMP_ADC_4
case PrepareTemp_4: HAL_START_ADC(TEMP_4_PIN); break;
#endif
#if HAS_TEMP_ADC_5
case PrepareTemp_5: HAL_START_ADC(TEMP_5_PIN); break;
#endif
#if HAS_TEMP_ADC_6
case PrepareTemp_6: HAL_START_ADC(TEMP_6_PIN); break;
#endif
#if HAS_TEMP_ADC_7
case PrepareTemp_7: HAL_START_ADC(TEMP_7_PIN); break;
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
case Prepare_FILWIDTH: HAL_START_ADC(FILWIDTH_PIN); break;
#endif
#if HAS_JOY_ADC_X
case PrepareJoy_X: HAL_START_ADC(JOY_X_PIN); break;
#endif
#if HAS_JOY_ADC_Y
case PrepareJoy_Y: HAL_START_ADC(JOY_Y_PIN); break;
#endif
#if HAS_JOY_ADC_Z
case PrepareJoy_Z: HAL_START_ADC(JOY_Z_PIN); break;
#endif
#if HAS_ADC_BUTTONS
case Prepare_ADC_KEY: HAL_START_ADC(ADC_KEYPAD_PIN); break;
#endif
} // switch(adc_sensor_state) } // switch(adc_sensor_state)

Loading…
Cancel
Save