You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1408 lines
47 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* motion.cpp
*/
#include "motion.h"
#include "endstops.h"
#include "stepper.h"
#include "planner.h"
#include "temperature.h"
#include "../gcode/gcode.h"
#include "../inc/MarlinConfig.h"
#if IS_SCARA
#include "../libs/buzzer.h"
#include "../lcd/ultralcd.h"
#endif
#if HAS_BED_PROBE
#include "probe.h"
#endif
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#endif
#if HAS_AXIS_UNHOMED_ERR && ENABLED(ULTRA_LCD)
#include "../lcd/ultralcd.h"
#endif
#if ENABLED(SENSORLESS_HOMING)
#include "../feature/tmc_util.h"
#endif
#if ENABLED(FWRETRACT)
#include "../feature/fwretract.h"
#endif
#define XYZ_CONSTS(type, array, CONFIG) const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }
XYZ_CONSTS(float, base_min_pos, MIN_POS);
XYZ_CONSTS(float, base_max_pos, MAX_POS);
XYZ_CONSTS(float, base_home_pos, HOME_POS);
XYZ_CONSTS(float, max_length, MAX_LENGTH);
XYZ_CONSTS(float, home_bump_mm, HOME_BUMP_MM);
XYZ_CONSTS(signed char, home_dir, HOME_DIR);
// Relative Mode. Enable with G91, disable with G90.
bool relative_mode; // = false;
/**
* Cartesian Current Position
* Used to track the native machine position as moves are queued.
* Used by 'buffer_line_to_current_position' to do a move after changing it.
* Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
*/
float current_position[XYZE] = { 0.0 };
/**
* Cartesian Destination
* The destination for a move, filled in by G-code movement commands,
* and expected by functions like 'prepare_move_to_destination'.
* Set with 'gcode_get_destination' or 'set_destination_from_current'.
*/
float destination[XYZE] = { 0.0 };
// The active extruder (tool). Set with T<extruder> command.
uint8_t active_extruder; // = 0;
// Extruder offsets
#if HOTENDS > 1
float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
#endif
// The feedrate for the current move, often used as the default if
// no other feedrate is specified. Overridden for special moves.
// Set by the last G0 through G5 command's "F" parameter.
// Functions that override this for custom moves *must always* restore it!
float feedrate_mm_s = MMM_TO_MMS(1500.0);
int16_t feedrate_percentage = 100;
// Homing feedrate is const progmem - compare to constexpr in the header
const float homing_feedrate_mm_s[4] PROGMEM = {
#if ENABLED(DELTA)
MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
#else
MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
#endif
MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
};
// Cartesian conversion result goes here:
float cartes[XYZ];
// Until kinematics.cpp is created, create this here
#if IS_KINEMATIC
float delta[ABC];
#endif
/**
* The workspace can be offset by some commands, or
* these offsets may be omitted to save on computation.
*/
#if HAS_WORKSPACE_OFFSET
#if HAS_POSITION_SHIFT
// The distance that XYZ has been offset by G92. Reset by G28.
float position_shift[XYZ] = { 0 };
#endif
#if HAS_HOME_OFFSET
// This offset is added to the configured home position.
// Set by M206, M428, or menu item. Saved to EEPROM.
float home_offset[XYZ] = { 0 };
#endif
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
// The above two are combined to save on computes
float workspace_offset[XYZ] = { 0 };
#endif
#endif
#if OLDSCHOOL_ABL
float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
#endif
/**
* Output the current position to serial
*/
void report_current_position() {
SERIAL_PROTOCOLPGM("X:");
SERIAL_PROTOCOL(LOGICAL_X_POSITION(current_position[X_AXIS]));
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(LOGICAL_Y_POSITION(current_position[Y_AXIS]));
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(LOGICAL_Z_POSITION(current_position[Z_AXIS]));
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL(current_position[E_AXIS]);
stepper.report_positions();
#if IS_SCARA
scara_report_positions();
#endif
}
/**
* sync_plan_position
*
* Set the planner/stepper positions directly from current_position with
* no kinematic translation. Used for homing axes and cartesian/core syncing.
*/
void sync_plan_position() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
#endif
planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
/**
* Get the stepper positions in the cartes[] array.
* Forward kinematics are applied for DELTA and SCARA.
*
* The result is in the current coordinate space with
* leveling applied. The coordinates need to be run through
* unapply_leveling to obtain the "ideal" coordinates
* suitable for current_position, etc.
*/
void get_cartesian_from_steppers() {
#if ENABLED(DELTA)
forward_kinematics_DELTA(
stepper.get_axis_position_mm(A_AXIS),
stepper.get_axis_position_mm(B_AXIS),
stepper.get_axis_position_mm(C_AXIS)
);
#else
#if IS_SCARA
forward_kinematics_SCARA(
stepper.get_axis_position_degrees(A_AXIS),
stepper.get_axis_position_degrees(B_AXIS)
);
#else
cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
#endif
cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
#endif
}
/**
* Set the current_position for an axis based on
* the stepper positions, removing any leveling that
* may have been applied.
*
* To prevent small shifts in axis position always call
* SYNC_PLAN_POSITION_KINEMATIC after updating axes with this.
*
* To keep hosts in sync, always call report_current_position
* after updating the current_position.
*/
void set_current_from_steppers_for_axis(const AxisEnum axis) {
get_cartesian_from_steppers();
#if PLANNER_LEVELING
planner.unapply_leveling(cartes);
#endif
if (axis == ALL_AXES)
COPY(current_position, cartes);
else
current_position[axis] = cartes[axis];
}
/**
* Move the planner to the current position from wherever it last moved
* (or from wherever it has been told it is located).
*/
void line_to_current_position() {
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
}
/**
* Move the planner to the position stored in the destination array, which is
* used by G0/G1/G2/G3/G5 and many other functions to set a destination.
*/
void buffer_line_to_destination(const float fr_mm_s) {
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
}
#if IS_KINEMATIC
void sync_plan_position_kinematic() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
#endif
planner.set_position_mm_kinematic(current_position);
}
/**
* Calculate delta, start a line, and set current_position to destination
*/
void prepare_uninterpolated_move_to_destination(const float fr_mm_s/*=0.0*/) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
#endif
#if UBL_SEGMENTED
// ubl segmented line will do z-only moves in single segment
ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
#else
if ( current_position[X_AXIS] == destination[X_AXIS]
&& current_position[Y_AXIS] == destination[Y_AXIS]
&& current_position[Z_AXIS] == destination[Z_AXIS]
&& current_position[E_AXIS] == destination[E_AXIS]
) return;
planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
#endif
set_current_from_destination();
}
#endif // IS_KINEMATIC
/**
* Plan a move to (X, Y, Z) and set the current_position
* The final current_position may not be the one that was requested
*/
void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s/*=0.0*/) {
const float old_feedrate_mm_s = feedrate_mm_s;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, rx, ry, rz);
#endif
const float z_feedrate = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
#if ENABLED(DELTA)
if (!position_is_reachable(rx, ry)) return;
feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
set_destination_from_current(); // sync destination at the start
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_from_current", destination);
#endif
// when in the danger zone
if (current_position[Z_AXIS] > delta_clip_start_height) {
if (rz > delta_clip_start_height) { // staying in the danger zone
destination[X_AXIS] = rx; // move directly (uninterpolated)
destination[Y_AXIS] = ry;
destination[Z_AXIS] = rz;
prepare_uninterpolated_move_to_destination(); // set_current_from_destination()
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
#endif
return;
}
destination[Z_AXIS] = delta_clip_start_height;
prepare_uninterpolated_move_to_destination(); // set_current_from_destination()
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
#endif
}
if (rz > current_position[Z_AXIS]) { // raising?
destination[Z_AXIS] = rz;
prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination()
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
#endif
}
destination[X_AXIS] = rx;
destination[Y_AXIS] = ry;
prepare_move_to_destination(); // set_current_from_destination()
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
#endif
if (rz < current_position[Z_AXIS]) { // lowering?
destination[Z_AXIS] = rz;
prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination()
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
#endif
}
#elif IS_SCARA
if (!position_is_reachable(rx, ry)) return;
set_destination_from_current();
// If Z needs to raise, do it before moving XY
if (destination[Z_AXIS] < rz) {
destination[Z_AXIS] = rz;
prepare_uninterpolated_move_to_destination(z_feedrate);
}
destination[X_AXIS] = rx;
destination[Y_AXIS] = ry;
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
// If Z needs to lower, do it after moving XY
if (destination[Z_AXIS] > rz) {
destination[Z_AXIS] = rz;
prepare_uninterpolated_move_to_destination(z_feedrate);
}
#else
// If Z needs to raise, do it before moving XY
if (current_position[Z_AXIS] < rz) {
feedrate_mm_s = z_feedrate;
current_position[Z_AXIS] = rz;
line_to_current_position();
}
feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
current_position[X_AXIS] = rx;
current_position[Y_AXIS] = ry;
line_to_current_position();
// If Z needs to lower, do it after moving XY
if (current_position[Z_AXIS] > rz) {
feedrate_mm_s = z_feedrate;
current_position[Z_AXIS] = rz;
line_to_current_position();
}
#endif
stepper.synchronize();
feedrate_mm_s = old_feedrate_mm_s;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
#endif
}
void do_blocking_move_to_x(const float &rx, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(rx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
}
void do_blocking_move_to_z(const float &rz, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], rz, fr_mm_s);
}
void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s/*=0.0*/) {
do_blocking_move_to(rx, ry, current_position[Z_AXIS], fr_mm_s);
}
//
// Prepare to do endstop or probe moves
// with custom feedrates.
//
// - Save current feedrates
// - Reset the rate multiplier
// - Reset the command timeout
// - Enable the endstops (for endstop moves)
//
void bracket_probe_move(const bool before) {
static float saved_feedrate_mm_s;
static int16_t saved_feedrate_percentage;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("bracket_probe_move", current_position);
#endif
if (before) {
saved_feedrate_mm_s = feedrate_mm_s;
saved_feedrate_percentage = feedrate_percentage;
feedrate_percentage = 100;
}
else {
feedrate_mm_s = saved_feedrate_mm_s;
feedrate_percentage = saved_feedrate_percentage;
}
}
void setup_for_endstop_or_probe_move() { bracket_probe_move(true); }
void clean_up_after_endstop_or_probe_move() { bracket_probe_move(false); }
// Software Endstops are based on the configured limits.
float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
#if HAS_SOFTWARE_ENDSTOPS
// Software Endstops are based on the configured limits.
bool soft_endstops_enabled = true;
#if IS_KINEMATIC
float soft_endstop_radius, soft_endstop_radius_2;
#endif
/**
* Constrain the given coordinates to the software endstops.
*
* For DELTA/SCARA the XY constraint is based on the smallest
* radius within the set software endstops.
*/
void clamp_to_software_endstops(float target[XYZ]) {
if (!soft_endstops_enabled) return;
#if IS_KINEMATIC
const float dist_2 = HYPOT2(target[X_AXIS], target[Y_AXIS]);
if (dist_2 > soft_endstop_radius_2) {
const float ratio = soft_endstop_radius / SQRT(dist_2); // 200 / 300 = 0.66
target[X_AXIS] *= ratio;
target[Y_AXIS] *= ratio;
}
#else
#if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
#endif
#if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
#endif
#endif
#if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
#endif
}
#endif
#if !UBL_SEGMENTED
#if IS_KINEMATIC
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#if ENABLED(DELTA)
#define ADJUST_DELTA(V) \
if (planner.leveling_active) { \
const float zadj = bilinear_z_offset(V); \
delta[A_AXIS] += zadj; \
delta[B_AXIS] += zadj; \
delta[C_AXIS] += zadj; \
}
#else
#define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }
#endif
#else
#define ADJUST_DELTA(V) NOOP
#endif
/**
* Prepare a linear move in a DELTA or SCARA setup.
*
* Called from prepare_move_to_destination as the
* default Delta/SCARA segmenter.
*
* This calls planner.buffer_line several times, adding
* small incremental moves for DELTA or SCARA.
*
* For Unified Bed Leveling (Delta or Segmented Cartesian)
* the ubl.prepare_segmented_line_to method replaces this.
*
* For Auto Bed Leveling (Bilinear) with SEGMENT_LEVELED_MOVES
* this is replaced by segmented_line_to_destination below.
*/
inline bool prepare_kinematic_move_to(const float (&rtarget)[XYZE]) {
// Get the top feedrate of the move in the XY plane
const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
const float xdiff = rtarget[X_AXIS] - current_position[X_AXIS],
ydiff = rtarget[Y_AXIS] - current_position[Y_AXIS];
// If the move is only in Z/E don't split up the move
if (!xdiff && !ydiff) {
planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
return false; // caller will update current_position
}
// Fail if attempting move outside printable radius
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) return true;
// Remaining cartesian distances
const float zdiff = rtarget[Z_AXIS] - current_position[Z_AXIS],
ediff = rtarget[E_AXIS] - current_position[E_AXIS];
// Get the linear distance in XYZ
float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
// If the move is very short, check the E move distance
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(ediff);
// No E move either? Game over.
if (UNEAR_ZERO(cartesian_mm)) return true;
// Minimum number of seconds to move the given distance
const float seconds = cartesian_mm / _feedrate_mm_s;
// The number of segments-per-second times the duration
// gives the number of segments
uint16_t segments = delta_segments_per_second * seconds;
// For SCARA minimum segment size is 0.25mm
#if IS_SCARA
NOMORE(segments, cartesian_mm * 4);
#endif
// At least one segment is required
NOLESS(segments, 1);
// The approximate length of each segment
const float inv_segments = 1.0 / float(segments),
cartesian_segment_mm = cartesian_mm * inv_segments,
segment_distance[XYZE] = {
xdiff * inv_segments,
ydiff * inv_segments,
zdiff * inv_segments,
ediff * inv_segments
};
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
// SERIAL_ECHOPAIR(" seconds=", seconds);
// SERIAL_ECHOLNPAIR(" segments=", segments);
// SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm);
// Get the current position as starting point
float raw[XYZE];
COPY(raw, current_position);
// Calculate and execute the segments
while (--segments) {
static millis_t next_idle_ms = millis() + 200UL;
thermalManager.manage_heater(); // This returns immediately if not really needed.
if (ELAPSED(millis(), next_idle_ms)) {
next_idle_ms = millis() + 200UL;
idle();
}
LOOP_XYZE(i) raw[i] += segment_distance[i];
#if ENABLED(DELTA) && HOTENDS < 2
DELTA_IK(raw); // Delta can inline its kinematics
#else
inverse_kinematics(raw);
#endif
ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder, cartesian_segment_mm);
}
// Ensure last segment arrives at target location.
planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder, cartesian_segment_mm);
return false; // caller will update current_position
}
#else // !IS_KINEMATIC
#if ENABLED(SEGMENT_LEVELED_MOVES)
/**
* Prepare a segmented move on a CARTESIAN setup.
*
* This calls planner.buffer_line several times, adding
* small incremental moves. This allows the planner to
* apply more detailed bed leveling to the full move.
*/
inline void segmented_line_to_destination(const float &fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) {
const float xdiff = destination[X_AXIS] - current_position[X_AXIS],
ydiff = destination[Y_AXIS] - current_position[Y_AXIS];
// If the move is only in Z/E don't split up the move
if (!xdiff && !ydiff) {
planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder);
return;
}
// Remaining cartesian distances
const float zdiff = destination[Z_AXIS] - current_position[Z_AXIS],
ediff = destination[E_AXIS] - current_position[E_AXIS];
// Get the linear distance in XYZ
// If the move is very short, check the E move distance
// No E move either? Game over.
float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff));
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(ediff);
if (UNEAR_ZERO(cartesian_mm)) return;
// The length divided by the segment size
// At least one segment is required
uint16_t segments = cartesian_mm / segment_size;
NOLESS(segments, 1);
// The approximate length of each segment
const float inv_segments = 1.0 / float(segments),
cartesian_segment_mm = cartesian_mm * inv_segments,
segment_distance[XYZE] = {
xdiff * inv_segments,
ydiff * inv_segments,
zdiff * inv_segments,
ediff * inv_segments
};
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
// SERIAL_ECHOLNPAIR(" segments=", segments);
// SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm);
// Get the raw current position as starting point
float raw[XYZE];
COPY(raw, current_position);
// Calculate and execute the segments
while (--segments) {
static millis_t next_idle_ms = millis() + 200UL;
thermalManager.manage_heater(); // This returns immediately if not really needed.
if (ELAPSED(millis(), next_idle_ms)) {
next_idle_ms = millis() + 200UL;
idle();
}
LOOP_XYZE(i) raw[i] += segment_distance[i];
planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder, cartesian_segment_mm);
}
// Since segment_distance is only approximate,
// the final move must be to the exact destination.
planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder, cartesian_segment_mm);
}
#endif // SEGMENT_LEVELED_MOVES
/**
* Prepare a linear move in a Cartesian setup.
*
* When a mesh-based leveling system is active, moves are segmented
* according to the configuration of the leveling system.
*
* Returns true if current_position[] was set to destination[]
*/
inline bool prepare_move_to_destination_cartesian() {
#if HAS_MESH
if (planner.leveling_active && planner.leveling_active_at_z(destination[Z_AXIS])) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
ubl.line_to_destination_cartesian(MMS_SCALED(feedrate_mm_s), active_extruder); // UBL's motion routine needs to know about
return true; // all moves, including Z-only moves.
#elif ENABLED(SEGMENT_LEVELED_MOVES)
segmented_line_to_destination(MMS_SCALED(feedrate_mm_s));
return false; // caller will update current_position
#else
/**
* For MBL and ABL-BILINEAR only segment moves when X or Y are involved.
* Otherwise fall through to do a direct single move.
*/
if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {
#if ENABLED(MESH_BED_LEVELING)
mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
#endif
return true;
}
#endif
}
#endif // HAS_MESH
buffer_line_to_destination(MMS_SCALED(feedrate_mm_s));
return false; // caller will update current_position
}
#endif // !IS_KINEMATIC
#endif // !UBL_SEGMENTED
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
bool extruder_duplication_enabled = false; // Used in Dual X mode 2
#endif
#if ENABLED(DUAL_X_CARRIAGE)
DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
float inactive_extruder_x_pos = X2_MAX_POS, // used in mode 0 & 1
raised_parked_position[XYZE], // used in mode 1
duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
bool active_extruder_parked = false; // used in mode 1 & 2
millis_t delayed_move_time = 0; // used in mode 1
int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
float x_home_pos(const int extruder) {
if (extruder == 0)
return base_home_pos(X_AXIS);
else
/**
* In dual carriage mode the extruder offset provides an override of the
* second X-carriage position when homed - otherwise X2_HOME_POS is used.
* This allows soft recalibration of the second extruder home position
* without firmware reflash (through the M218 command).
*/
return hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
}
/**
* Prepare a linear move in a dual X axis setup
*
* Return true if current_position[] was set to destination[]
*/
inline bool dual_x_carriage_unpark() {
if (active_extruder_parked) {
switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE:
break;
case DXC_AUTO_PARK_MODE:
if (current_position[E_AXIS] == destination[E_AXIS]) {
// This is a travel move (with no extrusion)
// Skip it, but keep track of the current position
// (so it can be used as the start of the next non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL) {
set_current_from_destination();
NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
delayed_move_time = millis();
return true;
}
}
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
for (uint8_t i = 0; i < 3; i++)
planner.buffer_line(
i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
current_position[E_AXIS],
i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
active_extruder
);
delayed_move_time = 0;
active_extruder_parked = false;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
#endif
break;
case DXC_DUPLICATION_MODE:
if (active_extruder == 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Set planner X", inactive_extruder_x_pos);
SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
}
#endif
// move duplicate extruder into correct duplication position.
planner.set_position_mm(
inactive_extruder_x_pos,
current_position[Y_AXIS],
current_position[Z_AXIS],
current_position[E_AXIS]
);
planner.buffer_line(
current_position[X_AXIS] + duplicate_extruder_x_offset,
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
planner.max_feedrate_mm_s[X_AXIS], 1
);
SYNC_PLAN_POSITION_KINEMATIC();
stepper.synchronize();
extruder_duplication_enabled = true;
active_extruder_parked = false;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
#endif
}
else {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
#endif
}
break;
}
}
return false;
}
#endif // DUAL_X_CARRIAGE
/**
* Prepare a single move and get ready for the next one
*
* This may result in several calls to planner.buffer_line to
* do smaller moves for DELTA, SCARA, mesh moves, etc.
*
* Make sure current_position[E] and destination[E] are good
* before calling or cold/lengthy extrusion may get missed.
*/
void prepare_move_to_destination() {
clamp_to_software_endstops(destination);
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (!DEBUGGING(DRYRUN)) {
if (destination[E_AXIS] != current_position[E_AXIS]) {
#if ENABLED(PREVENT_COLD_EXTRUSION)
if (thermalManager.tooColdToExtrude(active_extruder)) {
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
}
#endif // PREVENT_COLD_EXTRUSION
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (FABS(destination[E_AXIS] - current_position[E_AXIS]) * planner.e_factor[active_extruder] > (EXTRUDE_MAXLENGTH)) {
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
}
#endif // PREVENT_LENGTHY_EXTRUDE
}
}
#endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
#if ENABLED(DUAL_X_CARRIAGE)
if (dual_x_carriage_unpark()) return;
#endif
if (
#if UBL_SEGMENTED
ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s))
#elif IS_KINEMATIC
prepare_kinematic_move_to(destination)
#else
prepare_move_to_destination_cartesian()
#endif
) return;
set_current_from_destination();
}
#if HAS_AXIS_UNHOMED_ERR
bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
#if ENABLED(HOME_AFTER_DEACTIVATE)
const bool xx = x && !axis_known_position[X_AXIS],
yy = y && !axis_known_position[Y_AXIS],
zz = z && !axis_known_position[Z_AXIS];
#else
const bool xx = x && !axis_homed[X_AXIS],
yy = y && !axis_homed[Y_AXIS],
zz = z && !axis_homed[Z_AXIS];
#endif
if (xx || yy || zz) {
SERIAL_ECHO_START();
SERIAL_ECHOPGM(MSG_HOME " ");
if (xx) SERIAL_ECHOPGM(MSG_X);
if (yy) SERIAL_ECHOPGM(MSG_Y);
if (zz) SERIAL_ECHOPGM(MSG_Z);
SERIAL_ECHOLNPGM(" " MSG_FIRST);
#if ENABLED(ULTRA_LCD)
lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
#endif
return true;
}
return false;
}
#endif // HAS_AXIS_UNHOMED_ERR
/**
* The homing feedrate may vary
*/
inline float get_homing_bump_feedrate(const AxisEnum axis) {
static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
if (hbd < 1) {
hbd = 10;
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
}
return homing_feedrate(axis) / hbd;
}
#if ENABLED(SENSORLESS_HOMING)
/**
* Set sensorless homing if the axis has it, accounting for Core Kinematics.
*/
void sensorless_homing_per_axis(const AxisEnum axis, const bool enable/*=true*/) {
switch (axis) {
default: break;
#if X_SENSORLESS
case X_AXIS:
tmc_sensorless_homing(stepperX, enable);
#if CORE_IS_XY && Y_SENSORLESS
tmc_sensorless_homing(stepperY, enable);
#elif CORE_IS_XZ && Z_SENSORLESS
tmc_sensorless_homing(stepperZ, enable);
#endif
break;
#endif
#if Y_SENSORLESS
case Y_AXIS:
tmc_sensorless_homing(stepperY, enable);
#if CORE_IS_XY && X_SENSORLESS
tmc_sensorless_homing(stepperX, enable);
#elif CORE_IS_YZ && Z_SENSORLESS
tmc_sensorless_homing(stepperZ, enable);
#endif
break;
#endif
#if Z_SENSORLESS
case Z_AXIS:
tmc_sensorless_homing(stepperZ, enable);
#if CORE_IS_XZ && X_SENSORLESS
tmc_sensorless_homing(stepperX, enable);
#elif CORE_IS_YZ && Y_SENSORLESS
tmc_sensorless_homing(stepperY, enable);
#endif
break;
#endif
}
}
#endif // SENSORLESS_HOMING
/**
* Home an individual linear axis
*/
static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
SERIAL_ECHOPAIR(", ", distance);
SERIAL_ECHOPAIR(", ", fr_mm_s);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
if (deploy_bltouch) set_bltouch_deployed(true);
#endif
#if QUIET_PROBING
if (axis == Z_AXIS) probing_pause(true);
#endif
// Disable stealthChop if used. Enable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
sensorless_homing_per_axis(axis);
#endif
// Tell the planner the axis is at 0
current_position[axis] = 0;
#if IS_SCARA
SYNC_PLAN_POSITION_KINEMATIC();
current_position[axis] = distance;
inverse_kinematics(current_position);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
#else
sync_plan_position();
current_position[axis] = distance;
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
#endif
stepper.synchronize();
#if QUIET_PROBING
if (axis == Z_AXIS) probing_pause(false);
#endif
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
if (deploy_bltouch) set_bltouch_deployed(false);
#endif
endstops.hit_on_purpose();
// Re-enable stealthChop if used. Disable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
sensorless_homing_per_axis(axis, false);
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
}
/**
* Set an axis' current position to its home position (after homing).
*
* For Core and Cartesian robots this applies one-to-one when an
* individual axis has been homed.
*
* DELTA should wait until all homing is done before setting the XYZ
* current_position to home, because homing is a single operation.
* In the case where the axis positions are already known and previously
* homed, DELTA could home to X or Y individually by moving either one
* to the center. However, homing Z always homes XY and Z.
*
* SCARA should wait until all XY homing is done before setting the XY
* current_position to home, because neither X nor Y is at home until
* both are at home. Z can however be homed individually.
*
* Callers must sync the planner position after calling this!
*/
void set_axis_is_at_home(const AxisEnum axis) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
axis_known_position[axis] = axis_homed[axis] = true;
#if HAS_POSITION_SHIFT
position_shift[axis] = 0;
update_software_endstops(axis);
#endif
#if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
current_position[X_AXIS] = x_home_pos(active_extruder);
return;
}
#endif
#if ENABLED(MORGAN_SCARA)
scara_set_axis_is_at_home(axis);
#elif ENABLED(DELTA)
current_position[axis] = (axis == Z_AXIS ? delta_height : base_home_pos(axis));
#else
current_position[axis] = base_home_pos(axis);
#endif
/**
* Z Probe Z Homing? Account for the probe's Z offset.
*/
#if HAS_BED_PROBE && Z_HOME_DIR < 0
if (axis == Z_AXIS) {
#if HOMING_Z_WITH_PROBE
current_position[Z_AXIS] -= zprobe_zoffset;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
}
#endif
#elif ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
#endif
}
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
#if HAS_HOME_OFFSET
SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
#endif
DEBUG_POS("", current_position);
SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
#if ENABLED(I2C_POSITION_ENCODERS)
I2CPEM.homed(axis);
#endif
}
/**
* Home an individual "raw axis" to its endstop.
* This applies to XYZ on Cartesian and Core robots, and
* to the individual ABC steppers on DELTA and SCARA.
*
* At the end of the procedure the axis is marked as
* homed and the current position of that axis is updated.
* Kinematic robots should wait till all axes are homed
* before updating the current position.
*/
void homeaxis(const AxisEnum axis) {
#if IS_SCARA
// Only Z homing (with probe) is permitted
if (axis != Z_AXIS) { BUZZ(100, 880); return; }
#else
#define CAN_HOME(A) \
(axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
const int axis_home_dir =
#if ENABLED(DUAL_X_CARRIAGE)
(axis == X_AXIS) ? x_home_dir(active_extruder) :
#endif
home_dir(axis);
// Homing Z towards the bed? Deploy the Z probe or endstop.
#if HOMING_Z_WITH_PROBE
if (axis == Z_AXIS && DEPLOY_PROBE()) return;
#endif
// Set flags for X, Y, Z motor locking
#if ENABLED(X_DUAL_ENDSTOPS)
if (axis == X_AXIS) stepper.set_homing_flag_x(true);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
if (axis == Y_AXIS) stepper.set_homing_flag_y(true);
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
if (axis == Z_AXIS) stepper.set_homing_flag_z(true);
#endif
// Fast move towards endstop until triggered
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
#endif
do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
// When homing Z with probe respect probe clearance
const float bump = axis_home_dir * (
#if HOMING_Z_WITH_PROBE
(axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
#endif
home_bump_mm(axis)
);
// If a second homing move is configured...
if (bump) {
// Move away from the endstop by the axis HOME_BUMP_MM
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
#endif
do_homing_move(axis, -bump);
// Slow move towards endstop until triggered
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
#endif
do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
}
#if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
const bool pos_dir = axis_home_dir > 0;
#if ENABLED(X_DUAL_ENDSTOPS)
if (axis == X_AXIS) {
const bool lock_x1 = pos_dir ? (endstops.x_endstop_adj > 0) : (endstops.x_endstop_adj < 0);
float adj = FABS(endstops.x_endstop_adj);
if (pos_dir) adj = -adj;
if (lock_x1) stepper.set_x_lock(true); else stepper.set_x2_lock(true);
do_homing_move(axis, adj);
if (lock_x1) stepper.set_x_lock(false); else stepper.set_x2_lock(false);
stepper.set_homing_flag_x(false);
}
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
if (axis == Y_AXIS) {
const bool lock_y1 = pos_dir ? (endstops.y_endstop_adj > 0) : (endstops.y_endstop_adj < 0);
float adj = FABS(endstops.y_endstop_adj);
if (pos_dir) adj = -adj;
if (lock_y1) stepper.set_y_lock(true); else stepper.set_y2_lock(true);
do_homing_move(axis, adj);
if (lock_y1) stepper.set_y_lock(false); else stepper.set_y2_lock(false);
stepper.set_homing_flag_y(false);
}
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
if (axis == Z_AXIS) {
const bool lock_z1 = pos_dir ? (endstops.z_endstop_adj > 0) : (endstops.z_endstop_adj < 0);
float adj = FABS(endstops.z_endstop_adj);
if (pos_dir) adj = -adj;
if (lock_z1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
do_homing_move(axis, adj);
if (lock_z1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
stepper.set_homing_flag_z(false);
}
#endif
#endif
#if IS_SCARA
set_axis_is_at_home(axis);
SYNC_PLAN_POSITION_KINEMATIC();
#elif ENABLED(DELTA)
// Delta has already moved all three towers up in G28
// so here it re-homes each tower in turn.
// Delta homing treats the axes as normal linear axes.
// retrace by the amount specified in delta_endstop_adj + additional 0.1mm in order to have minimum steps
if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:");
#endif
do_homing_move(axis, delta_endstop_adj[axis] - 0.1 * Z_HOME_DIR);
}
#else
// For cartesian/core machines,
// set the axis to its home position
set_axis_is_at_home(axis);
sync_plan_position();
destination[axis] = current_position[axis];
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
#endif
#endif
// Put away the Z probe
#if HOMING_Z_WITH_PROBE
if (axis == Z_AXIS && STOW_PROBE()) return;
#endif
// Clear z_lift if homing the Z axis
#if ENABLED(FWRETRACT)
if (axis == Z_AXIS)
fwretract.hop_amount = 0.0;
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
} // homeaxis()
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
/**
* Software endstops can be used to monitor the open end of
* an axis that has a hardware endstop on the other end. Or
* they can prevent axes from moving past endstops and grinding.
*
* To keep doing their job as the coordinate system changes,
* the software endstop positions must be refreshed to remain
* at the same positions relative to the machine.
*/
void update_software_endstops(const AxisEnum axis) {
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
workspace_offset[axis] = home_offset[axis] + position_shift[axis];
#endif
#if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS) {
// In Dual X mode hotend_offset[X] is T1's home position
float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
if (active_extruder != 0) {
// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
soft_endstop_min[X_AXIS] = X2_MIN_POS;
soft_endstop_max[X_AXIS] = dual_max_x;
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
// In Duplication Mode, T0 can move as far left as X_MIN_POS
// but not so far to the right that T1 would move past the end
soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS);
soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset);
}
else {
// In other modes, T0 can move from X_MIN_POS to X_MAX_POS
soft_endstop_min[axis] = base_min_pos(axis);
soft_endstop_max[axis] = base_max_pos(axis);
}
}
#elif ENABLED(DELTA)
soft_endstop_min[axis] = base_min_pos(axis);
soft_endstop_max[axis] = (axis == Z_AXIS ? delta_height : base_max_pos(axis));
#else
soft_endstop_min[axis] = base_min_pos(axis);
soft_endstop_max[axis] = base_max_pos(axis);
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("For ", axis_codes[axis]);
#if HAS_HOME_OFFSET
SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
#endif
#if HAS_POSITION_SHIFT
SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
#endif
SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
}
#endif
#if ENABLED(DELTA)
switch(axis) {
#if HAS_SOFTWARE_ENDSTOPS
case X_AXIS:
case Y_AXIS:
// Get a minimum radius for clamping
soft_endstop_radius = MIN3(FABS(max(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]);
soft_endstop_radius_2 = sq(soft_endstop_radius);
break;
#endif
case Z_AXIS:
delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
default: break;
}
#endif
}
#endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE || DELTA
#if HAS_M206_COMMAND
/**
* Change the home offset for an axis.
* Also refreshes the workspace offset.
*/
void set_home_offset(const AxisEnum axis, const float v) {
home_offset[axis] = v;
update_software_endstops(axis);
}
#endif // HAS_M206_COMMAND