|
|
|
@ -475,30 +475,17 @@
|
|
|
|
|
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
|
|
|
|
|
// so we call _buffer_line directly here. Per-segmented leveling and kinematics performed first.
|
|
|
|
|
|
|
|
|
|
inline void _O2 ubl_buffer_segment_raw(const float &rx, const float &ry, const float rz, const float &e, const float &fr) {
|
|
|
|
|
inline void _O2 ubl_buffer_segment_raw(const float raw[XYZE], const float &fr) {
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA) // apply delta inverse_kinematics
|
|
|
|
|
|
|
|
|
|
const float delta_A = rz + SQRT( delta_diagonal_rod_2_tower[A_AXIS]
|
|
|
|
|
- HYPOT2( delta_tower[A_AXIS][X_AXIS] - rx,
|
|
|
|
|
delta_tower[A_AXIS][Y_AXIS] - ry ));
|
|
|
|
|
|
|
|
|
|
const float delta_B = rz + SQRT( delta_diagonal_rod_2_tower[B_AXIS]
|
|
|
|
|
- HYPOT2( delta_tower[B_AXIS][X_AXIS] - rx,
|
|
|
|
|
delta_tower[B_AXIS][Y_AXIS] - ry ));
|
|
|
|
|
|
|
|
|
|
const float delta_C = rz + SQRT( delta_diagonal_rod_2_tower[C_AXIS]
|
|
|
|
|
- HYPOT2( delta_tower[C_AXIS][X_AXIS] - rx,
|
|
|
|
|
delta_tower[C_AXIS][Y_AXIS] - ry ));
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(delta_A, delta_B, delta_C, e, fr, active_extruder);
|
|
|
|
|
DELTA_RAW_IK();
|
|
|
|
|
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], fr, active_extruder);
|
|
|
|
|
|
|
|
|
|
#elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
|
|
|
|
|
|
|
|
|
|
const float lseg[XYZ] = { rx, ry, rz };
|
|
|
|
|
|
|
|
|
|
inverse_kinematics(lseg); // this writes delta[ABC] from lseg[XYZ]
|
|
|
|
|
// should move the feedrate scaling to scara inverse_kinematics
|
|
|
|
|
inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
|
|
|
|
|
// should move the feedrate scaling to scara inverse_kinematics
|
|
|
|
|
|
|
|
|
|
const float adiff = FABS(delta[A_AXIS] - scara_oldA),
|
|
|
|
|
bdiff = FABS(delta[B_AXIS] - scara_oldB);
|
|
|
|
@ -506,11 +493,11 @@
|
|
|
|
|
scara_oldB = delta[B_AXIS];
|
|
|
|
|
float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], e, s_feedrate, active_extruder);
|
|
|
|
|
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], s_feedrate, active_extruder);
|
|
|
|
|
|
|
|
|
|
#else // CARTESIAN
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(rx, ry, rz, e, fr, active_extruder);
|
|
|
|
|
planner._buffer_line(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], raw[E_AXIS], fr, active_extruder);
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
@ -528,12 +515,14 @@
|
|
|
|
|
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
|
|
|
|
|
return true; // did not move, so current_position still accurate
|
|
|
|
|
|
|
|
|
|
const float tot_dx = rtarget[X_AXIS] - current_position[X_AXIS],
|
|
|
|
|
tot_dy = rtarget[Y_AXIS] - current_position[Y_AXIS],
|
|
|
|
|
tot_dz = rtarget[Z_AXIS] - current_position[Z_AXIS],
|
|
|
|
|
tot_de = rtarget[E_AXIS] - current_position[E_AXIS];
|
|
|
|
|
const float total[XYZE] = {
|
|
|
|
|
rtarget[X_AXIS] - current_position[X_AXIS],
|
|
|
|
|
rtarget[Y_AXIS] - current_position[Y_AXIS],
|
|
|
|
|
rtarget[Z_AXIS] - current_position[Z_AXIS],
|
|
|
|
|
rtarget[E_AXIS] - current_position[E_AXIS]
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
const float cartesian_xy_mm = HYPOT(tot_dx, tot_dy); // total horizontal xy distance
|
|
|
|
|
const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
|
|
|
|
|
|
|
|
|
|
#if IS_KINEMATIC
|
|
|
|
|
const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
|
|
|
|
@ -553,41 +542,30 @@
|
|
|
|
|
scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
const float seg_dx = tot_dx * inv_segments,
|
|
|
|
|
seg_dy = tot_dy * inv_segments,
|
|
|
|
|
seg_dz = tot_dz * inv_segments,
|
|
|
|
|
seg_de = tot_de * inv_segments;
|
|
|
|
|
const float diff[XYZE] = {
|
|
|
|
|
total[X_AXIS] * inv_segments,
|
|
|
|
|
total[Y_AXIS] * inv_segments,
|
|
|
|
|
total[Z_AXIS] * inv_segments,
|
|
|
|
|
total[E_AXIS] * inv_segments
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Note that E segment distance could vary slightly as z mesh height
|
|
|
|
|
// changes for each segment, but small enough to ignore.
|
|
|
|
|
|
|
|
|
|
float seg_rx = current_position[X_AXIS],
|
|
|
|
|
seg_ry = current_position[Y_AXIS],
|
|
|
|
|
seg_rz = current_position[Z_AXIS],
|
|
|
|
|
seg_le = current_position[E_AXIS];
|
|
|
|
|
float raw[XYZE] = {
|
|
|
|
|
current_position[X_AXIS],
|
|
|
|
|
current_position[Y_AXIS],
|
|
|
|
|
current_position[Z_AXIS],
|
|
|
|
|
current_position[E_AXIS]
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Only compute leveling per segment if ubl active and target below z_fade_height.
|
|
|
|
|
|
|
|
|
|
if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
|
|
|
|
|
|
|
|
|
|
do {
|
|
|
|
|
|
|
|
|
|
if (--segments) { // not the last segment
|
|
|
|
|
seg_rx += seg_dx;
|
|
|
|
|
seg_ry += seg_dy;
|
|
|
|
|
seg_rz += seg_dz;
|
|
|
|
|
seg_le += seg_de;
|
|
|
|
|
} else { // last segment, use exact destination
|
|
|
|
|
seg_rx = rtarget[X_AXIS];
|
|
|
|
|
seg_ry = rtarget[Y_AXIS];
|
|
|
|
|
seg_rz = rtarget[Z_AXIS];
|
|
|
|
|
seg_le = rtarget[E_AXIS];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ubl_buffer_segment_raw(seg_rx, seg_ry, seg_rz, seg_le, feedrate);
|
|
|
|
|
|
|
|
|
|
} while (segments);
|
|
|
|
|
|
|
|
|
|
while (--segments) {
|
|
|
|
|
LOOP_XYZE(i) raw[i] += diff[i];
|
|
|
|
|
ubl_buffer_segment_raw(raw, feedrate);
|
|
|
|
|
}
|
|
|
|
|
ubl_buffer_segment_raw(rtarget, feedrate);
|
|
|
|
|
return false; // moved but did not set_current_from_destination();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -598,10 +576,7 @@
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// increment to first segment destination
|
|
|
|
|
seg_rx += seg_dx;
|
|
|
|
|
seg_ry += seg_dy;
|
|
|
|
|
seg_rz += seg_dz;
|
|
|
|
|
seg_le += seg_de;
|
|
|
|
|
LOOP_XYZE(i) raw[i] += diff[i];
|
|
|
|
|
|
|
|
|
|
for(;;) { // for each mesh cell encountered during the move
|
|
|
|
|
|
|
|
|
@ -612,8 +587,8 @@
|
|
|
|
|
// in top of loop and again re-find same adjacent cell and use it, just less efficient
|
|
|
|
|
// for mesh inset area.
|
|
|
|
|
|
|
|
|
|
int8_t cell_xi = (seg_rx - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
|
|
|
|
|
cell_yi = (seg_ry - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
|
|
|
|
|
int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
|
|
|
|
|
cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
|
|
|
|
|
|
|
|
|
|
cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
|
|
|
|
|
cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
|
|
|
|
@ -631,8 +606,8 @@
|
|
|
|
|
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
|
|
|
|
|
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
|
|
|
|
|
|
|
|
|
|
float cx = seg_rx - x0, // cell-relative x and y
|
|
|
|
|
cy = seg_ry - y0;
|
|
|
|
|
float cx = raw[X_AXIS] - x0, // cell-relative x and y
|
|
|
|
|
cy = raw[Y_AXIS] - y0;
|
|
|
|
|
|
|
|
|
|
const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
|
|
|
|
|
z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
|
|
|
|
@ -650,40 +625,34 @@
|
|
|
|
|
// and the z_cxym slope will change, both as a function of cx within the cell, and
|
|
|
|
|
// each change by a constant for fixed segment lengths.
|
|
|
|
|
|
|
|
|
|
const float z_sxy0 = z_xmy0 * seg_dx, // per-segment adjustment to z_cxy0
|
|
|
|
|
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * seg_dx; // per-segment adjustment to z_cxym
|
|
|
|
|
const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
|
|
|
|
|
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
|
|
|
|
|
|
|
|
|
|
for(;;) { // for all segments within this mesh cell
|
|
|
|
|
|
|
|
|
|
float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy
|
|
|
|
|
if (--segments == 0) // if this is last segment, use rtarget for exact
|
|
|
|
|
COPY(raw, rtarget);
|
|
|
|
|
|
|
|
|
|
float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy
|
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
|
|
z_cxcy *= fade_scaling_factor; // apply fade factor to interpolated mesh height
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if (--segments == 0) { // if this is last segment, use rtarget for exact
|
|
|
|
|
seg_rx = rtarget[X_AXIS];
|
|
|
|
|
seg_ry = rtarget[Y_AXIS];
|
|
|
|
|
seg_rz = rtarget[Z_AXIS];
|
|
|
|
|
seg_le = rtarget[E_AXIS];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ubl_buffer_segment_raw(seg_rx, seg_ry, seg_rz + z_cxcy, seg_le, feedrate);
|
|
|
|
|
const float z = raw[Z_AXIS];
|
|
|
|
|
raw[Z_AXIS] += z_cxcy;
|
|
|
|
|
ubl_buffer_segment_raw(raw, feedrate);
|
|
|
|
|
raw[Z_AXIS] = z;
|
|
|
|
|
|
|
|
|
|
if (segments == 0) // done with last segment
|
|
|
|
|
return false; // did not set_current_from_destination()
|
|
|
|
|
|
|
|
|
|
seg_rx += seg_dx;
|
|
|
|
|
seg_ry += seg_dy;
|
|
|
|
|
seg_rz += seg_dz;
|
|
|
|
|
seg_le += seg_de;
|
|
|
|
|
LOOP_XYZE(i) raw[i] += diff[i];
|
|
|
|
|
|
|
|
|
|
cx += seg_dx;
|
|
|
|
|
cy += seg_dy;
|
|
|
|
|
cx += diff[X_AXIS];
|
|
|
|
|
cy += diff[Y_AXIS];
|
|
|
|
|
|
|
|
|
|
if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) { // done within this cell, break to next
|
|
|
|
|
if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Next segment still within same mesh cell, adjust the per-segment
|
|
|
|
|
// slope and intercept to compute next z height.
|
|
|
|
|