/**
* Marlin 3 D Printer Firmware
* Copyright ( C ) 2019 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( C ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*
*/
# pragma once
/**
* stepper_indirection . h - stepper motor driver indirection macros
* to allow some stepper functions to be done via SPI / I2c instead of direct pin manipulation
* Part of Marlin
*
* Copyright ( c ) 2015 Dominik Wenger
*
* Marlin is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* at your option ) any later version .
*
* Marlin is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with Marlin . If not , see < http : //www.gnu.org/licenses/>.
*/
# include "../inc/MarlinConfig.h"
// TMC26X drivers have STEP/DIR on normal pins, but ENABLE via SPI
# if HAS_DRIVER(TMC26X)
# include <SPI.h>
# ifdef STM32F7
# include "../HAL/HAL_STM32F7/TMC2660.h"
# else
# include <TMC26XStepper.h>
# endif
void tmc26x_init_to_defaults ( ) ;
# endif
# if HAS_TRINAMIC
# include <TMCStepper.h>
# include "../feature/tmc_util.h"
# if TMCSTEPPER_VERSION < 0x000202
# error "Update TMCStepper library to 0.2.2 or newer."
# endif
# define ____TMC_CLASS(MODEL, A, I) TMCMarlin<TMC##MODEL##Stepper, A, I>
# define ___TMC_CLASS(MODEL, A, I) ____TMC_CLASS(MODEL, A, I)
# define __TMC_CLASS(MODEL, A, I) ___TMC_CLASS(_##MODEL, A, I)
# define _TMC_CLASS(MODEL, L) __TMC_CLASS(MODEL, L)
# define TMC_CLASS(ST) _TMC_CLASS(ST##_DRIVER_TYPE, TMC_##ST##_LABEL)
typedef struct {
uint8_t toff ;
int8_t hend ;
uint8_t hstrt ;
} chopper_timing_t ;
static constexpr chopper_timing_t chopper_timing = CHOPPER_TIMING ;
# if HAS_DRIVER(TMC2208)
void tmc2208_serial_begin ( ) ;
# endif
# endif
// L6470 has STEP on normal pins, but DIR/ENABLE via SPI
# if HAS_DRIVER(L6470)
# include "L6470/L6470_Marlin.h"
# define L6470_WRITE_DIR_COMMAND(STATE,Q) do{ L6470_dir_commands[Q] = (STATE ? dSPIN_STEP_CLOCK_REV : dSPIN_STEP_CLOCK_FWD); }while(0)
# endif
void restore_stepper_drivers ( ) ; // Called by PSU_ON
void reset_stepper_drivers ( ) ; // Called by settings.load / settings.reset
// X Stepper
# if AXIS_DRIVER_TYPE_X(L6470)
extern L6470 stepperX ;
# define X_ENABLE_INIT NOOP
# define X_ENABLE_WRITE(STATE) NOOP
# define X_ENABLE_READ (stepperX.getStatus() & STATUS_HIZ)
# define X_DIR_INIT NOOP
# define X_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,X)
# define X_DIR_READ (stepperX.getStatus() & STATUS_DIR)
# else
# if AXIS_IS_TMC(X)
extern TMC_CLASS ( X ) stepperX ;
# endif
# if AXIS_DRIVER_TYPE_X(TMC26X)
extern TMC26XStepper stepperX ;
# define X_ENABLE_INIT NOOP
# define X_ENABLE_WRITE(STATE) stepperX.setEnabled(STATE)
# define X_ENABLE_READ stepperX.isEnabled()
# elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(X)
# define X_ENABLE_INIT NOOP
# define X_ENABLE_WRITE(STATE) stepperX.toff((STATE)==X_ENABLE_ON ? chopper_timing.toff : 0)
# define X_ENABLE_READ stepperX.isEnabled()
# else
# define X_ENABLE_INIT SET_OUTPUT(X_ENABLE_PIN)
# define X_ENABLE_WRITE(STATE) WRITE(X_ENABLE_PIN,STATE)
# define X_ENABLE_READ READ(X_ENABLE_PIN)
# endif
# define X_DIR_INIT SET_OUTPUT(X_DIR_PIN)
# define X_DIR_WRITE(STATE) WRITE(X_DIR_PIN,STATE)
# define X_DIR_READ READ(X_DIR_PIN)
# endif
# define X_STEP_INIT SET_OUTPUT(X_STEP_PIN)
# define X_STEP_WRITE(STATE) WRITE(X_STEP_PIN,STATE)
# define X_STEP_READ READ(X_STEP_PIN)
// Y Stepper
# if AXIS_DRIVER_TYPE_Y(L6470)
extern L6470 stepperY ;
# define Y_ENABLE_INIT NOOP
# define Y_ENABLE_WRITE(STATE) NOOP
# define Y_ENABLE_READ (stepperY.getStatus() & STATUS_HIZ)
# define Y_DIR_INIT NOOP
# define Y_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,Y)
# define Y_DIR_READ (stepperY.getStatus() & STATUS_DIR)
# else
# if AXIS_IS_TMC(Y)
extern TMC_CLASS ( Y ) stepperY ;
# endif
# if AXIS_DRIVER_TYPE_Y(TMC26X)
extern TMC26XStepper stepperY ;
# define Y_ENABLE_INIT NOOP
# define Y_ENABLE_WRITE(STATE) stepperY.setEnabled(STATE)
# define Y_ENABLE_READ stepperY.isEnabled()
# elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(Y)
# define Y_ENABLE_INIT NOOP
# define Y_ENABLE_WRITE(STATE) stepperY.toff((STATE)==Y_ENABLE_ON ? chopper_timing.toff : 0)
# define Y_ENABLE_READ stepperY.isEnabled()
# else
# define Y_ENABLE_INIT SET_OUTPUT(Y_ENABLE_PIN)
# define Y_ENABLE_WRITE(STATE) WRITE(Y_ENABLE_PIN,STATE)
# define Y_ENABLE_READ READ(Y_ENABLE_PIN)
# endif
# define Y_DIR_INIT SET_OUTPUT(Y_DIR_PIN)
# define Y_DIR_WRITE(STATE) WRITE(Y_DIR_PIN,STATE)
# define Y_DIR_READ READ(Y_DIR_PIN)
# endif
# define Y_STEP_INIT SET_OUTPUT(Y_STEP_PIN)
# define Y_STEP_WRITE(STATE) WRITE(Y_STEP_PIN,STATE)
# define Y_STEP_READ READ(Y_STEP_PIN)
// Z Stepper
# if AXIS_DRIVER_TYPE_Z(L6470)
extern L6470 stepperZ ;
# define Z_ENABLE_INIT NOOP
# define Z_ENABLE_WRITE(STATE) NOOP
# define Z_ENABLE_READ (stepperZ.getStatus() & STATUS_HIZ)
# define Z_DIR_INIT NOOP
# define Z_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,Z)
# define Z_DIR_READ (stepperZ.getStatus() & STATUS_DIR)
# else
# if AXIS_IS_TMC(Z)
extern TMC_CLASS ( Z ) stepperZ ;
# endif
# if AXIS_DRIVER_TYPE_Z(TMC26X)
extern TMC26XStepper stepperZ ;
# define Z_ENABLE_INIT NOOP
# define Z_ENABLE_WRITE(STATE) stepperZ.setEnabled(STATE)
# define Z_ENABLE_READ stepperZ.isEnabled()
# elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(Z)
# define Z_ENABLE_INIT NOOP
# define Z_ENABLE_WRITE(STATE) stepperZ.toff((STATE)==Z_ENABLE_ON ? chopper_timing.toff : 0)
# define Z_ENABLE_READ stepperZ.isEnabled()
# else
# define Z_ENABLE_INIT SET_OUTPUT(Z_ENABLE_PIN)
# define Z_ENABLE_WRITE(STATE) WRITE(Z_ENABLE_PIN,STATE)
# define Z_ENABLE_READ READ(Z_ENABLE_PIN)
# endif
# define Z_DIR_INIT SET_OUTPUT(Z_DIR_PIN)
# define Z_DIR_WRITE(STATE) WRITE(Z_DIR_PIN,STATE)
# define Z_DIR_READ READ(Z_DIR_PIN)
# endif
# define Z_STEP_INIT SET_OUTPUT(Z_STEP_PIN)
# define Z_STEP_WRITE(STATE) WRITE(Z_STEP_PIN,STATE)
# define Z_STEP_READ READ(Z_STEP_PIN)
// X2 Stepper
# if HAS_X2_ENABLE
# if AXIS_DRIVER_TYPE_X2(L6470)
extern L6470 stepperX2 ;
# define X2_ENABLE_INIT NOOP
# define X2_ENABLE_WRITE(STATE) NOOP
# define X2_ENABLE_READ (stepperX2.getStatus() & STATUS_HIZ)
# define X2_DIR_INIT NOOP
# define X2_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,X2)
# define X2_DIR_READ (stepperX2.getStatus() & STATUS_DIR)
# else
# if AXIS_IS_TMC(X2)
extern TMC_CLASS ( X2 ) stepperX2 ;
# endif
# if AXIS_DRIVER_TYPE_X2(TMC26X)
extern TMC26XStepper stepperX2 ;
# define X2_ENABLE_INIT NOOP
# define X2_ENABLE_WRITE(STATE) stepperX2.setEnabled(STATE)
# define X2_ENABLE_READ stepperX2.isEnabled()
# elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(X2)
# define X2_ENABLE_INIT NOOP
# define X2_ENABLE_WRITE(STATE) stepperX2.toff((STATE)==X_ENABLE_ON ? chopper_timing.toff : 0)
# define X2_ENABLE_READ stepperX2.isEnabled()
# else
# define X2_ENABLE_INIT SET_OUTPUT(X2_ENABLE_PIN)
# define X2_ENABLE_WRITE(STATE) WRITE(X2_ENABLE_PIN,STATE)
# define X2_ENABLE_READ READ(X2_ENABLE_PIN)
# endif
# define X2_DIR_INIT SET_OUTPUT(X2_DIR_PIN)
# define X2_DIR_WRITE(STATE) WRITE(X2_DIR_PIN,STATE)
# define X2_DIR_READ READ(X2_DIR_PIN)
# endif
# define X2_STEP_INIT SET_OUTPUT(X2_STEP_PIN)
# define X2_STEP_WRITE(STATE) WRITE(X2_STEP_PIN,STATE)
# define X2_STEP_READ READ(X2_STEP_PIN)
# endif
// Y2 Stepper
# if HAS_Y2_ENABLE
# if AXIS_DRIVER_TYPE_Y2(L6470)
extern L6470 stepperY2 ;
# define Y2_ENABLE_INIT NOOP
# define Y2_ENABLE_WRITE(STATE) NOOP
# define Y2_ENABLE_READ (stepperY2.getStatus() & STATUS_HIZ)
# define Y2_DIR_INIT NOOP
# define Y2_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,Y2)
# define Y2_DIR_READ (stepperY2.getStatus() & STATUS_DIR)
# else
# if AXIS_IS_TMC(Y2)
extern TMC_CLASS ( Y2 ) stepperY2 ;
# endif
# if AXIS_DRIVER_TYPE_Y2(TMC26X)
extern TMC26XStepper stepperY2 ;
# define Y2_ENABLE_INIT NOOP
# define Y2_ENABLE_WRITE(STATE) stepperY2.setEnabled(STATE)
# define Y2_ENABLE_READ stepperY2.isEnabled()
# elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(Y2)
# define Y2_ENABLE_INIT NOOP
# define Y2_ENABLE_WRITE(STATE) stepperY2.toff((STATE)==Y_ENABLE_ON ? chopper_timing.toff : 0)
# define Y2_ENABLE_READ stepperY2.isEnabled()
# else
# define Y2_ENABLE_INIT SET_OUTPUT(Y2_ENABLE_PIN)
# define Y2_ENABLE_WRITE(STATE) WRITE(Y2_ENABLE_PIN,STATE)
# define Y2_ENABLE_READ READ(Y2_ENABLE_PIN)
# endif
# define Y2_DIR_INIT SET_OUTPUT(Y2_DIR_PIN)
# define Y2_DIR_WRITE(STATE) WRITE(Y2_DIR_PIN,STATE)
# define Y2_DIR_READ READ(Y2_DIR_PIN)
# endif
# define Y2_STEP_INIT SET_OUTPUT(Y2_STEP_PIN)
# define Y2_STEP_WRITE(STATE) WRITE(Y2_STEP_PIN,STATE)
# define Y2_STEP_READ READ(Y2_STEP_PIN)
# else
# define Y2_DIR_WRITE(STATE) NOOP
# endif
// Z2 Stepper
# if HAS_Z2_ENABLE
# if AXIS_DRIVER_TYPE_Z2(L6470)
extern L6470 stepperZ2 ;
# define Z2_ENABLE_INIT NOOP
# define Z2_ENABLE_WRITE(STATE) NOOP
# define Z2_ENABLE_READ (stepperZ2.getStatus() & STATUS_HIZ)
# define Z2_DIR_INIT NOOP
# define Z2_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,Z2)
# define Z2_DIR_READ (stepperZ2.getStatus() & STATUS_DIR)
# else
# if AXIS_IS_TMC(Z2)
extern TMC_CLASS ( Z2 ) stepperZ2 ;
# endif
# if AXIS_DRIVER_TYPE_Z2(TMC26X)
extern TMC26XStepper stepperZ2 ;
# define Z2_ENABLE_INIT NOOP
# define Z2_ENABLE_WRITE(STATE) stepperZ2.setEnabled(STATE)
# define Z2_ENABLE_READ stepperZ2.isEnabled()
# elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(Z2)
# define Z2_ENABLE_INIT NOOP
# define Z2_ENABLE_WRITE(STATE) stepperZ2.toff((STATE)==Z_ENABLE_ON ? chopper_timing.toff : 0)
# define Z2_ENABLE_READ stepperZ2.isEnabled()
# else
# define Z2_ENABLE_INIT SET_OUTPUT(Z2_ENABLE_PIN)
# define Z2_ENABLE_WRITE(STATE) WRITE(Z2_ENABLE_PIN,STATE)
# define Z2_ENABLE_READ READ(Z2_ENABLE_PIN)
# endif
# define Z2_DIR_INIT SET_OUTPUT(Z2_DIR_PIN)
# define Z2_DIR_WRITE(STATE) WRITE(Z2_DIR_PIN,STATE)
# define Z2_DIR_READ READ(Z2_DIR_PIN)
# endif
# define Z2_STEP_INIT SET_OUTPUT(Z2_STEP_PIN)
# define Z2_STEP_WRITE(STATE) WRITE(Z2_STEP_PIN,STATE)
# define Z2_STEP_READ READ(Z2_STEP_PIN)
# else
# define Z2_DIR_WRITE(STATE) NOOP
# endif
// Z3 Stepper
# if HAS_Z3_ENABLE
# if AXIS_DRIVER_TYPE_Z3(L6470)
extern L6470 stepperZ3 ;
# define Z3_ENABLE_INIT NOOP
# define Z3_ENABLE_WRITE(STATE) NOOP
# define Z3_ENABLE_READ (stepperZ3.getStatus() & STATUS_HIZ)
# define Z3_DIR_INIT NOOP
# define Z3_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,Z3)
# define Z3_DIR_READ (stepperZ3.getStatus() & STATUS_DIR)
# else
# if AXIS_IS_TMC(Z3)
extern TMC_CLASS ( Z3 ) stepperZ3 ;
# endif
# if ENABLED(Z3_IS_TMC26X)
extern TMC26XStepper stepperZ3 ;
# define Z3_ENABLE_INIT NOOP
# define Z3_ENABLE_WRITE(STATE) stepperZ3.setEnabled(STATE)
# define Z3_ENABLE_READ stepperZ3.isEnabled()
# elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(Z3)
# define Z3_ENABLE_INIT NOOP
# define Z3_ENABLE_WRITE(STATE) stepperZ3.toff((STATE)==Z_ENABLE_ON ? chopper_timing.toff : 0)
# define Z3_ENABLE_READ stepperZ3.isEnabled()
# else
# define Z3_ENABLE_INIT SET_OUTPUT(Z3_ENABLE_PIN)
# define Z3_ENABLE_WRITE(STATE) WRITE(Z3_ENABLE_PIN,STATE)
# define Z3_ENABLE_READ READ(Z3_ENABLE_PIN)
# endif
# define Z3_DIR_INIT SET_OUTPUT(Z3_DIR_PIN)
# define Z3_DIR_WRITE(STATE) WRITE(Z3_DIR_PIN,STATE)
# define Z3_DIR_READ READ(Z3_DIR_PIN)
# endif
# define Z3_STEP_INIT SET_OUTPUT(Z3_STEP_PIN)
# define Z3_STEP_WRITE(STATE) WRITE(Z3_STEP_PIN,STATE)
# define Z3_STEP_READ READ(Z3_STEP_PIN)
# else
# define Z3_DIR_WRITE(STATE) NOOP
# endif
// E0 Stepper
# if AXIS_DRIVER_TYPE_E0(L6470)
extern L6470 stepperE0 ;
# define E0_ENABLE_INIT NOOP
# define E0_ENABLE_WRITE(STATE) NOOP
# define E0_ENABLE_READ (stepperE0.getStatus() & STATUS_HIZ)
# define E0_DIR_INIT NOOP
# define E0_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E0)
# define E0_DIR_READ (stepperE0.getStatus() & STATUS_DIR)
# else
# if AXIS_IS_TMC(E0)
extern TMC_CLASS ( E0 ) stepperE0 ;
# endif
# if AXIS_DRIVER_TYPE_E0(TMC26X)
extern TMC26XStepper stepperE0 ;
# define E0_ENABLE_INIT NOOP
# define E0_ENABLE_WRITE(STATE) stepperE0.setEnabled(STATE)
# define E0_ENABLE_READ stepperE0.isEnabled()
# elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(E0)
# define E0_ENABLE_INIT NOOP
# define E0_ENABLE_WRITE(STATE) stepperE0.toff((STATE)==E_ENABLE_ON ? chopper_timing.toff : 0)
# define E0_ENABLE_READ stepperE0.isEnabled()
# else
# define E0_ENABLE_INIT SET_OUTPUT(E0_ENABLE_PIN)
# define E0_ENABLE_WRITE(STATE) WRITE(E0_ENABLE_PIN,STATE)
# define E0_ENABLE_READ READ(E0_ENABLE_PIN)
# endif
# define E0_DIR_INIT SET_OUTPUT(E0_DIR_PIN)
# define E0_DIR_WRITE(STATE) WRITE(E0_DIR_PIN,STATE)
# define E0_DIR_READ READ(E0_DIR_PIN)
# endif
# define E0_STEP_INIT SET_OUTPUT(E0_STEP_PIN)
# define E0_STEP_WRITE(STATE) WRITE(E0_STEP_PIN,STATE)
# define E0_STEP_READ READ(E0_STEP_PIN)
// E1 Stepper
# if AXIS_DRIVER_TYPE_E1(L6470)
extern L6470 stepperE1 ;
# define E1_ENABLE_INIT NOOP
# define E1_ENABLE_WRITE(STATE) NOOP
# define E1_ENABLE_READ (stepperE1.getStatus() & STATUS_HIZ)
# define E1_DIR_INIT NOOP
# define E1_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E1)
# define E1_DIR_READ (stepperE1.getStatus() & STATUS_DIR)
# else
# if AXIS_IS_TMC(E1)
extern TMC_CLASS ( E1 ) stepperE1 ;
# endif
# if AXIS_DRIVER_TYPE_E1(TMC26X)
extern TMC26XStepper stepperE1 ;
# define E1_ENABLE_INIT NOOP
# define E1_ENABLE_WRITE(STATE) stepperE1.setEnabled(STATE)
# define E1_ENABLE_READ stepperE1.isEnabled()
# elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(E1)
# define E1_ENABLE_INIT NOOP
# define E1_ENABLE_WRITE(STATE) stepperE1.toff((STATE)==E_ENABLE_ON ? chopper_timing.toff : 0)
# define E1_ENABLE_READ stepperE1.isEnabled()
# else
# define E1_ENABLE_INIT SET_OUTPUT(E1_ENABLE_PIN)
# define E1_ENABLE_WRITE(STATE) WRITE(E1_ENABLE_PIN,STATE)
# define E1_ENABLE_READ READ(E1_ENABLE_PIN)
# endif
# define E1_DIR_INIT SET_OUTPUT(E1_DIR_PIN)
# define E1_DIR_WRITE(STATE) WRITE(E1_DIR_PIN,STATE)
# define E1_DIR_READ READ(E1_DIR_PIN)
# endif
# define E1_STEP_INIT SET_OUTPUT(E1_STEP_PIN)
# define E1_STEP_WRITE(STATE) WRITE(E1_STEP_PIN,STATE)
# define E1_STEP_READ READ(E1_STEP_PIN)
// E2 Stepper
# if AXIS_DRIVER_TYPE_E2(L6470)
extern L6470 stepperE2 ;
# define E2_ENABLE_INIT NOOP
# define E2_ENABLE_WRITE(STATE) NOOP
# define E2_ENABLE_READ (stepperE2.getStatus() & STATUS_HIZ)
# define E2_DIR_INIT NOOP
# define E2_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E2)
# define E2_DIR_READ (stepperE2.getStatus() & STATUS_DIR)
# else
# if AXIS_IS_TMC(E2)
extern TMC_CLASS ( E2 ) stepperE2 ;
# endif
# if AXIS_DRIVER_TYPE_E2(TMC26X)
extern TMC26XStepper stepperE2 ;
# define E2_ENABLE_INIT NOOP
# define E2_ENABLE_WRITE(STATE) stepperE2.setEnabled(STATE)
# define E2_ENABLE_READ stepperE2.isEnabled()
# elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(E2)
# define E2_ENABLE_INIT NOOP
# define E2_ENABLE_WRITE(STATE) stepperE2.toff((STATE)==E_ENABLE_ON ? chopper_timing.toff : 0)
# define E2_ENABLE_READ stepperE2.isEnabled()
# else
# define E2_ENABLE_INIT SET_OUTPUT(E2_ENABLE_PIN)
# define E2_ENABLE_WRITE(STATE) WRITE(E2_ENABLE_PIN,STATE)
# define E2_ENABLE_READ READ(E2_ENABLE_PIN)
# endif
# define E2_DIR_INIT SET_OUTPUT(E2_DIR_PIN)
# define E2_DIR_WRITE(STATE) WRITE(E2_DIR_PIN,STATE)
# define E2_DIR_READ READ(E2_DIR_PIN)
# endif
# define E2_STEP_INIT SET_OUTPUT(E2_STEP_PIN)
# define E2_STEP_WRITE(STATE) WRITE(E2_STEP_PIN,STATE)
# define E2_STEP_READ READ(E2_STEP_PIN)
// E3 Stepper
# if AXIS_DRIVER_TYPE_E3(L6470)
extern L6470 stepperE3 ;
# define E3_ENABLE_INIT NOOP
# define E3_ENABLE_WRITE(STATE) NOOP
# define E3_ENABLE_READ (stepperE3.getStatus() & STATUS_HIZ)
# define E3_DIR_INIT NOOP
# define E3_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E3)
# define E3_DIR_READ (stepperE3.getStatus() & STATUS_DIR)
# else
# if AXIS_IS_TMC(E3)
extern TMC_CLASS ( E3 ) stepperE3 ;
# endif
# if AXIS_DRIVER_TYPE_E3(TMC26X)
extern TMC26XStepper stepperE3 ;
# define E3_ENABLE_INIT NOOP
# define E3_ENABLE_WRITE(STATE) stepperE3.setEnabled(STATE)
# define E3_ENABLE_READ stepperE3.isEnabled()
# elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(E3)
# define E3_ENABLE_INIT NOOP
# define E3_ENABLE_WRITE(STATE) stepperE3.toff((STATE)==E_ENABLE_ON ? chopper_timing.toff : 0)
# define E3_ENABLE_READ stepperE3.isEnabled()
# else
# define E3_ENABLE_INIT SET_OUTPUT(E3_ENABLE_PIN)
# define E3_ENABLE_WRITE(STATE) WRITE(E3_ENABLE_PIN,STATE)
# define E3_ENABLE_READ READ(E3_ENABLE_PIN)
# endif
# define E3_DIR_INIT SET_OUTPUT(E3_DIR_PIN)
# define E3_DIR_WRITE(STATE) WRITE(E3_DIR_PIN,STATE)
# define E3_DIR_READ READ(E3_DIR_PIN)
# endif
# define E3_STEP_INIT SET_OUTPUT(E3_STEP_PIN)
# define E3_STEP_WRITE(STATE) WRITE(E3_STEP_PIN,STATE)
# define E3_STEP_READ READ(E3_STEP_PIN)
// E4 Stepper
# if AXIS_DRIVER_TYPE_E4(L6470)
extern L6470 stepperE4 ;
# define E4_ENABLE_INIT NOOP
# define E4_ENABLE_WRITE(STATE) NOOP
# define E4_ENABLE_READ (stepperE4.getStatus() & STATUS_HIZ)
# define E4_DIR_INIT NOOP
# define E4_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E4)
# define E4_DIR_READ (stepperE4.getStatus() & STATUS_DIR)
# else
# if AXIS_IS_TMC(E4)
extern TMC_CLASS ( E4 ) stepperE4 ;
# endif
# if AXIS_DRIVER_TYPE_E4(TMC26X)
extern TMC26XStepper stepperE4 ;
# define E4_ENABLE_INIT NOOP
# define E4_ENABLE_WRITE(STATE) stepperE4.setEnabled(STATE)
# define E4_ENABLE_READ stepperE4.isEnabled()
# elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(E4)
# define E4_ENABLE_INIT NOOP
# define E4_ENABLE_WRITE(STATE) stepperE4.toff((STATE)==E_ENABLE_ON ? chopper_timing.toff : 0)
# define E4_ENABLE_READ stepperE4.isEnabled()
# else
# define E4_ENABLE_INIT SET_OUTPUT(E4_ENABLE_PIN)
# define E4_ENABLE_WRITE(STATE) WRITE(E4_ENABLE_PIN,STATE)
# define E4_ENABLE_READ READ(E4_ENABLE_PIN)
# endif
# define E4_DIR_INIT SET_OUTPUT(E4_DIR_PIN)
# define E4_DIR_WRITE(STATE) WRITE(E4_DIR_PIN,STATE)
# define E4_DIR_READ READ(E4_DIR_PIN)
# endif
# define E4_STEP_INIT SET_OUTPUT(E4_STEP_PIN)
# define E4_STEP_WRITE(STATE) WRITE(E4_STEP_PIN,STATE)
# define E4_STEP_READ READ(E4_STEP_PIN)
// E5 Stepper
# if AXIS_DRIVER_TYPE_E5(L6470)
extern L6470 stepperE5 ;
# define E5_ENABLE_INIT NOOP
# define E5_ENABLE_WRITE(STATE) NOOP
# define E5_ENABLE_READ (stepperE5.getStatus() & STATUS_HIZ)
# define E5_DIR_INIT NOOP
# define E5_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E5)
# define E5_DIR_READ (stepperE5.getStatus() & STATUS_DIR)
# else
# if AXIS_IS_TMC(E5)
extern TMC_CLASS ( E5 ) stepperE5 ;
# endif
# if AXIS_DRIVER_TYPE_E5(TMC26X)
extern TMC26XStepper stepperE5 ;
# define E5_ENABLE_INIT NOOP
# define E5_ENABLE_WRITE(STATE) stepperE5.setEnabled(STATE)
# define E5_ENABLE_READ stepperE5.isEnabled()
# elif ENABLED(SOFTWARE_DRIVER_ENABLE) && AXIS_IS_TMC(E5)
# define E5_ENABLE_INIT NOOP
# define E5_ENABLE_WRITE(STATE) stepperE5.toff((STATE)==E_ENABLE_ON ? chopper_timing.toff : 0)
# define E5_ENABLE_READ stepperE5.isEnabled()
# else
# define E5_ENABLE_INIT SET_OUTPUT(E5_ENABLE_PIN)
# define E5_ENABLE_WRITE(STATE) WRITE(E5_ENABLE_PIN,STATE)
# define E5_ENABLE_READ READ(E5_ENABLE_PIN)
# endif
# define E5_DIR_INIT SET_OUTPUT(E5_DIR_PIN)
# define E5_DIR_WRITE(STATE) WRITE(E5_DIR_PIN,STATE)
# define E5_DIR_READ READ(E5_DIR_PIN)
# endif
# define E5_STEP_INIT SET_OUTPUT(E5_STEP_PIN)
# define E5_STEP_WRITE(STATE) WRITE(E5_STEP_PIN,STATE)
# define E5_STEP_READ READ(E5_STEP_PIN)
/**
* Extruder indirection for the single E axis
*/
# if ENABLED(SWITCHING_EXTRUDER) // One stepper driver per two extruders, reversed on odd index
# if EXTRUDERS > 5
# define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else if (E < 4) { E1_STEP_WRITE(V); } else { E2_STEP_WRITE(V); } }while(0)
# define NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; case 2: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 3: E1_DIR_WRITE( INVERT_E1_DIR); break; case 4: E2_DIR_WRITE(!INVERT_E2_DIR); case 5: E2_DIR_WRITE( INVERT_E2_DIR); } }while(0)
# define REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 2: E1_DIR_WRITE( INVERT_E1_DIR); break; case 3: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 4: E2_DIR_WRITE( INVERT_E2_DIR); case 5: E2_DIR_WRITE(!INVERT_E2_DIR); } }while(0)
# elif EXTRUDERS > 4
# define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else if (E < 4) { E1_STEP_WRITE(V); } else { E2_STEP_WRITE(V); } }while(0)
# define NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; case 2: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 3: E1_DIR_WRITE( INVERT_E1_DIR); break; case 4: E2_DIR_WRITE(!INVERT_E2_DIR); } }while(0)
# define REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 2: E1_DIR_WRITE( INVERT_E1_DIR); break; case 3: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 4: E2_DIR_WRITE( INVERT_E2_DIR); } }while(0)
# elif EXTRUDERS > 3
# define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else { E1_STEP_WRITE(V); } }while(0)
# define NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; case 2: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 3: E1_DIR_WRITE( INVERT_E1_DIR); } }while(0)
# define REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 2: E1_DIR_WRITE( INVERT_E1_DIR); break; case 3: E1_DIR_WRITE(!INVERT_E1_DIR); } }while(0)
# elif EXTRUDERS > 2
# define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else { E1_STEP_WRITE(V); } }while(0)
# define NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E0_DIR_WRITE( INVERT_E0_DIR); break; case 2: E1_DIR_WRITE(!INVERT_E1_DIR); } }while(0)
# define REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 2: E1_DIR_WRITE( INVERT_E1_DIR); } }while(0)
# else
# define E_STEP_WRITE(E,V) E0_STEP_WRITE(V)
# define NORM_E_DIR(E) do{ E0_DIR_WRITE(E ? INVERT_E0_DIR : !INVERT_E0_DIR); }while(0)
# define REV_E_DIR(E) do{ E0_DIR_WRITE(E ? !INVERT_E0_DIR : INVERT_E0_DIR); }while(0)
# endif
# elif ENABLED(PRUSA_MMU2)
# define E_STEP_WRITE(E,V) E0_STEP_WRITE(V)
# define NORM_E_DIR(E) E0_DIR_WRITE(!INVERT_E0_DIR)
# define REV_E_DIR(E) E0_DIR_WRITE( INVERT_E0_DIR)
# elif ENABLED(MK2_MULTIPLEXER) // One multiplexed stepper driver, reversed on odd index
# define E_STEP_WRITE(E,V) E0_STEP_WRITE(V)
# define NORM_E_DIR(E) do{ E0_DIR_WRITE(TEST(E, 0) ? !INVERT_E0_DIR: INVERT_E0_DIR); }while(0)
# define REV_E_DIR(E) do{ E0_DIR_WRITE(TEST(E, 0) ? INVERT_E0_DIR: !INVERT_E0_DIR); }while(0)
# elif E_STEPPERS > 1
# if E_STEPPERS > 5
# define _E_STEP_WRITE(E,V) do{ switch (E) { case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); break; case 3: E3_STEP_WRITE(V); break; case 4: E4_STEP_WRITE(V); case 5: E5_STEP_WRITE(V); } }while(0)
# define _NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(!INVERT_E3_DIR); break; case 4: E4_DIR_WRITE(!INVERT_E4_DIR); case 5: E5_DIR_WRITE(!INVERT_E5_DIR); } }while(0)
# define _REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; case 2: E2_DIR_WRITE( INVERT_E2_DIR); break; case 3: E3_DIR_WRITE( INVERT_E3_DIR); break; case 4: E4_DIR_WRITE( INVERT_E4_DIR); case 5: E5_DIR_WRITE( INVERT_E5_DIR); } }while(0)
# elif E_STEPPERS > 4
# define _E_STEP_WRITE(E,V) do{ switch (E) { case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); break; case 3: E3_STEP_WRITE(V); break; case 4: E4_STEP_WRITE(V); } }while(0)
# define _NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(!INVERT_E3_DIR); break; case 4: E4_DIR_WRITE(!INVERT_E4_DIR); } }while(0)
# define _REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; case 2: E2_DIR_WRITE( INVERT_E2_DIR); break; case 3: E3_DIR_WRITE( INVERT_E3_DIR); break; case 4: E4_DIR_WRITE( INVERT_E4_DIR); } }while(0)
# elif E_STEPPERS > 3
# define _E_STEP_WRITE(E,V) do{ switch (E) { case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); break; case 3: E3_STEP_WRITE(V); } }while(0)
# define _NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(!INVERT_E3_DIR); } }while(0)
# define _REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; case 2: E2_DIR_WRITE( INVERT_E2_DIR); break; case 3: E3_DIR_WRITE( INVERT_E3_DIR); } }while(0)
# elif E_STEPPERS > 2
# define _E_STEP_WRITE(E,V) do{ switch (E) { case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); } }while(0)
# define _NORM_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(!INVERT_E2_DIR); } }while(0)
# define _REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE( INVERT_E0_DIR); break; case 1: E1_DIR_WRITE( INVERT_E1_DIR); break; case 2: E2_DIR_WRITE( INVERT_E2_DIR); } }while(0)
# else
# define _E_STEP_WRITE(E,V) do{ if (E == 0) { E0_STEP_WRITE(V); } else { E1_STEP_WRITE(V); } }while(0)
# define _NORM_E_DIR(E) do{ if (E == 0) { E0_DIR_WRITE(!INVERT_E0_DIR); } else { E1_DIR_WRITE(!INVERT_E1_DIR); } }while(0)
# define _REV_E_DIR(E) do{ if (E == 0) { E0_DIR_WRITE( INVERT_E0_DIR); } else { E1_DIR_WRITE( INVERT_E1_DIR); } }while(0)
# endif
# if ENABLED(DUAL_X_CARRIAGE) || ENABLED(MULTI_NOZZLE_DUPLICATION)
# define NDIR(N) _DUPE(DIR,!INVERT_E##N##_DIR)
# define RDIR(N) _DUPE(DIR, INVERT_E##N##_DIR)
# define E_STEP_WRITE(E,V) do{ if (extruder_duplication_enabled) { DUPE(STEP,V); } else _E_STEP_WRITE(E,V); }while(0)
# if E_STEPPERS > 2
# define _DUPE(N,T,V) do{ if (duplication_e_mask <= (N)) E##N##_##T##_WRITE(V); }while(0)
# if E_STEPPERS > 5
# define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); _DUPE(3,T,V); _DUPE(4,T,V); _DUPE(5,T,V); }while(0)
# define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); NDIR(3); NDIR(4); NDIR(5); } else _NORM_E_DIR(E); }while(0)
# define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); RDIR(3); RDIR(4); RDIR(5); } else _REV_E_DIR(E); }while(0)
# elif E_STEPPERS > 4
# define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); _DUPE(3,T,V); _DUPE(4,T,V); }while(0)
# define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); NDIR(3); NDIR(4); } else _NORM_E_DIR(E); }while(0)
# define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); RDIR(3); RDIR(4); } else _REV_E_DIR(E); }while(0)
# elif E_STEPPERS > 3
# define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); _DUPE(3,T,V); }while(0)
# define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); NDIR(3); } else _NORM_E_DIR(E); }while(0)
# define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); RDIR(3); } else _REV_E_DIR(E); }while(0)
# else
# define DUPE(T,V) do{ _DUPE(0,T,V); _DUPE(1,T,V); _DUPE(2,T,V); }while(0)
# define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); NDIR(2); } else _NORM_E_DIR(E); }while(0)
# define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); RDIR(2); } else _REV_E_DIR(E); }while(0)
# endif
# else
# define _DUPE(T,V) do{ E0_##T##_WRITE(V); E1_##T##_WRITE(V); }while(0)
# define DUPE(T,V) _DUPE(T,V)
# define NORM_E_DIR(E) do{ if (extruder_duplication_enabled) { NDIR(0); NDIR(1); } else _NORM_E_DIR(E); }while(0)
# define REV_E_DIR(E) do{ if (extruder_duplication_enabled) { RDIR(0); RDIR(1); } else _REV_E_DIR(E); }while(0)
# endif
# else
# define E_STEP_WRITE(E,V) _E_STEP_WRITE(E,V)
# define NORM_E_DIR(E) _NORM_E_DIR(E)
# define REV_E_DIR(E) _REV_E_DIR(E)
# endif
# elif E_STEPPERS
# define E_STEP_WRITE(E,V) E0_STEP_WRITE(V)
# define NORM_E_DIR(E) E0_DIR_WRITE(!INVERT_E0_DIR)
# define REV_E_DIR(E) E0_DIR_WRITE( INVERT_E0_DIR)
# else
# define E_STEP_WRITE(E,V) NOOP
# define NORM_E_DIR(E) NOOP
# define REV_E_DIR(E) NOOP
# endif