Cleanups for STM32F7

2.0.x
Scott Lahteine 7 years ago
parent a0246c5c96
commit 42933c804a

@ -109,7 +109,7 @@
#define analogInputToDigitalPin(p) (p)
#endif
#define CRITICAL_SECTION_START noInterrupts();
#define CRITICAL_SECTION_START noInterrupts();
#define CRITICAL_SECTION_END interrupts();
// On AVR this is in math.h?

@ -26,8 +26,8 @@
* These use GPIO functions instead of Direct Port Manipulation, as on AVR.
*/
#ifndef _FASTIO_STM32F1_H
#define _FASTIO_STM32F1_H
#ifndef _FASTIO_STM32F1_H
#define _FASTIO_STM32F1_H
#include <libmaple/gpio.h>
@ -49,9 +49,9 @@
#define GET_TIMER(IO) (PIN_MAP[IO].timer_device != NULL)
#define OUT_WRITE(IO, v) { _SET_OUTPUT(IO); WRITE(IO, v); }
/*
/**
* TODO: Write a macro to test if PIN is PWM or not.
*/
#define PWM_PIN(p) true
#endif /* _FASTIO_STM32F1_H */
#endif // _FASTIO_STM32F1_H

@ -78,8 +78,7 @@ static uint16_t EE_VerifyPageFullyErased(uint32_t Address);
* @retval - Flash error code: on write Flash error
* - FLASH_COMPLETE: on success
*/
uint16_t EE_Initialise(void)
{
uint16_t EE_Initialise(void) {
uint16_t PageStatus0 = 6, PageStatus1 = 6;
uint16_t VarIdx = 0;
uint16_t EepromStatus = 0, ReadStatus = 0;
@ -100,209 +99,141 @@ uint16_t EE_Initialise(void)
pEraseInit.VoltageRange = VOLTAGE_RANGE;
/* Check for invalid header states and repair if necessary */
switch (PageStatus0)
{
switch (PageStatus0) {
case ERASED:
if (PageStatus1 == VALID_PAGE) /* Page0 erased, Page1 valid */
{
if (PageStatus1 == VALID_PAGE) { /* Page0 erased, Page1 valid */
/* Erase Page0 */
if(!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS))
{
if(!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS)) {
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
if (FlashStatus != HAL_OK) {
return FlashStatus;
}
}
}
else if (PageStatus1 == RECEIVE_DATA) /* Page0 erased, Page1 receive */
{
else if (PageStatus1 == RECEIVE_DATA) { /* Page0 erased, Page1 receive */
/* Erase Page0 */
if(!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS))
{
if (!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS)) {
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
}
/* Mark Page1 as valid */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, PAGE1_BASE_ADDRESS, VALID_PAGE);
/* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
}
else /* First EEPROM access (Page0&1 are erased) or invalid state -> format EEPROM */
{
else { /* First EEPROM access (Page0&1 are erased) or invalid state -> format EEPROM */
/* Erase both Page0 and Page1 and set Page0 as valid page */
FlashStatus = EE_Format();
/* If erase/program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
}
break;
case RECEIVE_DATA:
if (PageStatus1 == VALID_PAGE) /* Page0 receive, Page1 valid */
{
if (PageStatus1 == VALID_PAGE) { /* Page0 receive, Page1 valid */
/* Transfer data from Page1 to Page0 */
for (VarIdx = 0; VarIdx < NB_OF_VAR; VarIdx++)
{
for (VarIdx = 0; VarIdx < NB_OF_VAR; VarIdx++) {
if (( *(__IO uint16_t*)(PAGE0_BASE_ADDRESS + 6)) == VirtAddVarTab[VarIdx])
{
x = VarIdx;
}
if (VarIdx != x)
{
if (VarIdx != x) {
/* Read the last variables' updates */
ReadStatus = EE_ReadVariable(VirtAddVarTab[VarIdx], &DataVar);
/* In case variable corresponding to the virtual address was found */
if (ReadStatus != 0x1)
{
if (ReadStatus != 0x1) {
/* Transfer the variable to the Page0 */
EepromStatus = EE_VerifyPageFullWriteVariable(VirtAddVarTab[VarIdx], DataVar);
/* If program operation was failed, a Flash error code is returned */
if (EepromStatus != HAL_OK)
{
return EepromStatus;
}
if (EepromStatus != HAL_OK) return EepromStatus;
}
}
}
/* Mark Page0 as valid */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, PAGE0_BASE_ADDRESS, VALID_PAGE);
/* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
pEraseInit.Sector = PAGE1_ID;
pEraseInit.NbSectors = 1;
pEraseInit.VoltageRange = VOLTAGE_RANGE;
/* Erase Page1 */
if(!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS))
{
if (!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS)) {
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
}
}
else if (PageStatus1 == ERASED) /* Page0 receive, Page1 erased */
{
else if (PageStatus1 == ERASED) { /* Page0 receive, Page1 erased */
pEraseInit.Sector = PAGE1_ID;
pEraseInit.NbSectors = 1;
pEraseInit.VoltageRange = VOLTAGE_RANGE;
/* Erase Page1 */
if(!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS))
{
if (!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS)) {
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
}
/* Mark Page0 as valid */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, PAGE0_BASE_ADDRESS, VALID_PAGE);
/* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
}
else /* Invalid state -> format eeprom */
{
else { /* Invalid state -> format eeprom */
/* Erase both Page0 and Page1 and set Page0 as valid page */
FlashStatus = EE_Format();
/* If erase/program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
}
break;
case VALID_PAGE:
if (PageStatus1 == VALID_PAGE) /* Invalid state -> format eeprom */
{
if (PageStatus1 == VALID_PAGE) { /* Invalid state -> format eeprom */
/* Erase both Page0 and Page1 and set Page0 as valid page */
FlashStatus = EE_Format();
/* If erase/program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
}
else if (PageStatus1 == ERASED) /* Page0 valid, Page1 erased */
{
else if (PageStatus1 == ERASED) { /* Page0 valid, Page1 erased */
pEraseInit.Sector = PAGE1_ID;
pEraseInit.NbSectors = 1;
pEraseInit.VoltageRange = VOLTAGE_RANGE;
/* Erase Page1 */
if(!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS))
{
if (!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS)) {
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
}
}
else /* Page0 valid, Page1 receive */
{
else { /* Page0 valid, Page1 receive */
/* Transfer data from Page0 to Page1 */
for (VarIdx = 0; VarIdx < NB_OF_VAR; VarIdx++)
{
for (VarIdx = 0; VarIdx < NB_OF_VAR; VarIdx++) {
if ((*(__IO uint16_t*)(PAGE1_BASE_ADDRESS + 6)) == VirtAddVarTab[VarIdx])
{
x = VarIdx;
}
if (VarIdx != x)
{
if (VarIdx != x) {
/* Read the last variables' updates */
ReadStatus = EE_ReadVariable(VirtAddVarTab[VarIdx], &DataVar);
/* In case variable corresponding to the virtual address was found */
if (ReadStatus != 0x1)
{
if (ReadStatus != 0x1) {
/* Transfer the variable to the Page1 */
EepromStatus = EE_VerifyPageFullWriteVariable(VirtAddVarTab[VarIdx], DataVar);
/* If program operation was failed, a Flash error code is returned */
if (EepromStatus != HAL_OK)
{
return EepromStatus;
}
if (EepromStatus != HAL_OK) return EepromStatus;
}
}
}
/* Mark Page1 as valid */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, PAGE1_BASE_ADDRESS, VALID_PAGE);
/* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
pEraseInit.Sector = PAGE0_ID;
pEraseInit.NbSectors = 1;
pEraseInit.VoltageRange = VOLTAGE_RANGE;
/* Erase Page0 */
if(!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS))
{
if (!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS)) {
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
}
}
break;
@ -311,10 +242,7 @@ uint16_t EE_Initialise(void)
/* Erase both Page0 and Page1 and set Page0 as valid page */
FlashStatus = EE_Format();
/* If erase/program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
break;
}
@ -322,55 +250,46 @@ uint16_t EE_Initialise(void)
}
/**
* @brief Verify if specified page is fully erased.
* @param Address: page address
* This parameter can be one of the following values:
* @arg PAGE0_BASE_ADDRESS: Page0 base address
* @arg PAGE1_BASE_ADDRESS: Page1 base address
* @retval page fully erased status:
* - 0: if Page not erased
* - 1: if Page erased
*/
uint16_t EE_VerifyPageFullyErased(uint32_t Address)
{
* @brief Verify if specified page is fully erased.
* @param Address: page address
* This parameter can be one of the following values:
* @arg PAGE0_BASE_ADDRESS: Page0 base address
* @arg PAGE1_BASE_ADDRESS: Page1 base address
* @retval page fully erased status:
* - 0: if Page not erased
* - 1: if Page erased
*/
uint16_t EE_VerifyPageFullyErased(uint32_t Address) {
uint32_t ReadStatus = 1;
uint16_t AddressValue = 0x5555;
/* Check each active page address starting from end */
while (Address <= PAGE0_END_ADDRESS)
{
while (Address <= PAGE0_END_ADDRESS) {
/* Get the current location content to be compared with virtual address */
AddressValue = (*(__IO uint16_t*)Address);
/* Compare the read address with the virtual address */
if (AddressValue != ERASED)
{
if (AddressValue != ERASED) {
/* In case variable value is read, reset ReadStatus flag */
ReadStatus = 0;
break;
}
/* Next address location */
Address = Address + 4;
Address += 4;
}
/* Return ReadStatus value: (0: Page not erased, 1: Sector erased) */
return ReadStatus;
}
/**
* @brief Returns the last stored variable data, if found, which correspond to
* the passed virtual address
* @param VirtAddress: Variable virtual address
* @param Data: Global variable contains the read variable value
* @retval Success or error status:
* - 0: if variable was found
* - 1: if the variable was not found
* - NO_VALID_PAGE: if no valid page was found.
*/
uint16_t EE_ReadVariable(uint16_t VirtAddress, uint16_t* Data)
{
* @brief Returns the last stored variable data, if found, which correspond to
* the passed virtual address
* @param VirtAddress: Variable virtual address
* @param Data: Global variable contains the read variable value
* @retval Success or error status:
* - 0: if variable was found
* - 1: if the variable was not found
* - NO_VALID_PAGE: if no valid page was found.
*/
uint16_t EE_ReadVariable(uint16_t VirtAddress, uint16_t* Data) {
uint16_t ValidPage = PAGE0;
uint16_t AddressValue = 0x5555, ReadStatus = 1;
uint32_t Address = EEPROM_START_ADDRESS, PageStartAddress = EEPROM_START_ADDRESS;
@ -379,10 +298,7 @@ uint16_t EE_ReadVariable(uint16_t VirtAddress, uint16_t* Data)
ValidPage = EE_FindValidPage(READ_FROM_VALID_PAGE);
/* Check if there is no valid page */
if (ValidPage == NO_VALID_PAGE)
{
return NO_VALID_PAGE;
}
if (ValidPage == NO_VALID_PAGE) return NO_VALID_PAGE;
/* Get the valid Page start Address */
PageStartAddress = (uint32_t)(EEPROM_START_ADDRESS + (uint32_t)(ValidPage * PAGE_SIZE));
@ -391,69 +307,54 @@ uint16_t EE_ReadVariable(uint16_t VirtAddress, uint16_t* Data)
Address = (uint32_t)((EEPROM_START_ADDRESS - 2) + (uint32_t)((1 + ValidPage) * PAGE_SIZE));
/* Check each active page address starting from end */
while (Address > (PageStartAddress + 2))
{
while (Address > (PageStartAddress + 2)) {
/* Get the current location content to be compared with virtual address */
AddressValue = (*(__IO uint16_t*)Address);
/* Compare the read address with the virtual address */
if (AddressValue == VirtAddress)
{
if (AddressValue == VirtAddress) {
/* Get content of Address-2 which is variable value */
*Data = (*(__IO uint16_t*)(Address - 2));
/* In case variable value is read, reset ReadStatus flag */
ReadStatus = 0;
break;
}
else
{
/* Next address location */
Address = Address - 4;
}
else /* Next address location */
Address -= 4;
}
/* Return ReadStatus value: (0: variable exist, 1: variable doesn't exist) */
return ReadStatus;
}
/**
* @brief Writes/upadtes variable data in EEPROM.
* @param VirtAddress: Variable virtual address
* @param Data: 16 bit data to be written
* @retval Success or error status:
* - FLASH_COMPLETE: on success
* - PAGE_FULL: if valid page is full
* - NO_VALID_PAGE: if no valid page was found
* - Flash error code: on write Flash error
*/
uint16_t EE_WriteVariable(uint16_t VirtAddress, uint16_t Data)
{
uint16_t Status = 0;
* @brief Writes/upadtes variable data in EEPROM.
* @param VirtAddress: Variable virtual address
* @param Data: 16 bit data to be written
* @retval Success or error status:
* - FLASH_COMPLETE: on success
* - PAGE_FULL: if valid page is full
* - NO_VALID_PAGE: if no valid page was found
* - Flash error code: on write Flash error
*/
uint16_t EE_WriteVariable(uint16_t VirtAddress, uint16_t Data) {
/* Write the variable virtual address and value in the EEPROM */
Status = EE_VerifyPageFullWriteVariable(VirtAddress, Data);
uint16_t Status = EE_VerifyPageFullWriteVariable(VirtAddress, Data);
/* In case the EEPROM active page is full */
if (Status == PAGE_FULL)
{
/* Perform Page transfer */
if (Status == PAGE_FULL) /* Perform Page transfer */
Status = EE_PageTransfer(VirtAddress, Data);
}
/* Return last operation status */
return Status;
}
/**
* @brief Erases PAGE and PAGE1 and writes VALID_PAGE header to PAGE
* @param None
* @retval Status of the last operation (Flash write or erase) done during
* EEPROM formating
*/
static HAL_StatusTypeDef EE_Format(void)
{
* @brief Erases PAGE and PAGE1 and writes VALID_PAGE header to PAGE
* @param None
* @retval Status of the last operation (Flash write or erase) done during
* EEPROM formating
*/
static HAL_StatusTypeDef EE_Format(void) {
HAL_StatusTypeDef FlashStatus = HAL_OK;
uint32_t SectorError = 0;
FLASH_EraseInitTypeDef pEraseInit;
@ -463,49 +364,37 @@ static HAL_StatusTypeDef EE_Format(void)
pEraseInit.NbSectors = 1;
pEraseInit.VoltageRange = VOLTAGE_RANGE;
/* Erase Page0 */
if(!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS))
{
if (!EE_VerifyPageFullyErased(PAGE0_BASE_ADDRESS)) {
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
}
/* Set Page0 as valid page: Write VALID_PAGE at Page0 base address */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, PAGE0_BASE_ADDRESS, VALID_PAGE);
/* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
pEraseInit.Sector = PAGE1_ID;
/* Erase Page1 */
if(!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS))
{
if (!EE_VerifyPageFullyErased(PAGE1_BASE_ADDRESS)) {
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
}
return HAL_OK;
}
/**
* @brief Find valid Page for write or read operation
* @param Operation: operation to achieve on the valid page.
* This parameter can be one of the following values:
* @arg READ_FROM_VALID_PAGE: read operation from valid page
* @arg WRITE_IN_VALID_PAGE: write operation from valid page
* @retval Valid page number (PAGE or PAGE1) or NO_VALID_PAGE in case
* of no valid page was found
*/
static uint16_t EE_FindValidPage(uint8_t Operation)
{
* @brief Find valid Page for write or read operation
* @param Operation: operation to achieve on the valid page.
* This parameter can be one of the following values:
* @arg READ_FROM_VALID_PAGE: read operation from valid page
* @arg WRITE_IN_VALID_PAGE: write operation from valid page
* @retval Valid page number (PAGE or PAGE1) or NO_VALID_PAGE in case
* of no valid page was found
*/
static uint16_t EE_FindValidPage(uint8_t Operation) {
uint16_t PageStatus0 = 6, PageStatus1 = 6;
/* Get Page0 actual status */
@ -515,51 +404,28 @@ static uint16_t EE_FindValidPage(uint8_t Operation)
PageStatus1 = (*(__IO uint16_t*)PAGE1_BASE_ADDRESS);
/* Write or read operation */
switch (Operation)
{
switch (Operation) {
case WRITE_IN_VALID_PAGE: /* ---- Write operation ---- */
if (PageStatus1 == VALID_PAGE)
{
if (PageStatus1 == VALID_PAGE) {
/* Page0 receiving data */
if (PageStatus0 == RECEIVE_DATA)
{
return PAGE0; /* Page0 valid */
}
else
{
return PAGE1; /* Page1 valid */
}
if (PageStatus0 == RECEIVE_DATA) return PAGE0; /* Page0 valid */
else return PAGE1; /* Page1 valid */
}
else if (PageStatus0 == VALID_PAGE)
{
else if (PageStatus0 == VALID_PAGE) {
/* Page1 receiving data */
if (PageStatus1 == RECEIVE_DATA)
{
return PAGE1; /* Page1 valid */
}
else
{
return PAGE0; /* Page0 valid */
}
if (PageStatus1 == RECEIVE_DATA) return PAGE1; /* Page1 valid */
else return PAGE0; /* Page0 valid */
}
else
{
return NO_VALID_PAGE; /* No valid Page */
}
case READ_FROM_VALID_PAGE: /* ---- Read operation ---- */
if (PageStatus0 == VALID_PAGE)
{
return PAGE0; /* Page0 valid */
}
else if (PageStatus1 == VALID_PAGE)
{
return PAGE1; /* Page1 valid */
}
else
{
return NO_VALID_PAGE ; /* No valid Page */
}
return NO_VALID_PAGE; /* No valid Page */
default:
return PAGE0; /* Page0 valid */
@ -567,17 +433,16 @@ static uint16_t EE_FindValidPage(uint8_t Operation)
}
/**
* @brief Verify if active page is full and Writes variable in EEPROM.
* @param VirtAddress: 16 bit virtual address of the variable
* @param Data: 16 bit data to be written as variable value
* @retval Success or error status:
* - FLASH_COMPLETE: on success
* - PAGE_FULL: if valid page is full
* - NO_VALID_PAGE: if no valid page was found
* - Flash error code: on write Flash error
*/
static uint16_t EE_VerifyPageFullWriteVariable(uint16_t VirtAddress, uint16_t Data)
{
* @brief Verify if active page is full and Writes variable in EEPROM.
* @param VirtAddress: 16 bit virtual address of the variable
* @param Data: 16 bit data to be written as variable value
* @retval Success or error status:
* - FLASH_COMPLETE: on success
* - PAGE_FULL: if valid page is full
* - NO_VALID_PAGE: if no valid page was found
* - Flash error code: on write Flash error
*/
static uint16_t EE_VerifyPageFullWriteVariable(uint16_t VirtAddress, uint16_t Data) {
HAL_StatusTypeDef FlashStatus = HAL_OK;
uint16_t ValidPage = PAGE0;
uint32_t Address = EEPROM_START_ADDRESS, PageEndAddress = EEPROM_START_ADDRESS+PAGE_SIZE;
@ -586,10 +451,7 @@ static uint16_t EE_VerifyPageFullWriteVariable(uint16_t VirtAddress, uint16_t Da
ValidPage = EE_FindValidPage(WRITE_IN_VALID_PAGE);
/* Check if there is no valid page */
if (ValidPage == NO_VALID_PAGE)
{
return NO_VALID_PAGE;
}
if (ValidPage == NO_VALID_PAGE) return NO_VALID_PAGE;
/* Get the valid Page start Address */
Address = (uint32_t)(EEPROM_START_ADDRESS + (uint32_t)(ValidPage * PAGE_SIZE));
@ -598,28 +460,20 @@ static uint16_t EE_VerifyPageFullWriteVariable(uint16_t VirtAddress, uint16_t Da
PageEndAddress = (uint32_t)((EEPROM_START_ADDRESS - 1) + (uint32_t)((ValidPage + 1) * PAGE_SIZE));
/* Check each active page address starting from begining */
while (Address < PageEndAddress)
{
while (Address < PageEndAddress) {
/* Verify if Address and Address+2 contents are 0xFFFFFFFF */
if ((*(__IO uint32_t*)Address) == 0xFFFFFFFF)
{
if ((*(__IO uint32_t*)Address) == 0xFFFFFFFF) {
/* Set variable data */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, Address, Data);
/* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
/* Set variable virtual address */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, Address + 2, VirtAddress);
/* Return program operation status */
return FlashStatus;
}
else
{
/* Next address location */
Address = Address + 4;
}
else /* Next address location */
Address += 4;
}
/* Return PAGE_FULL in case the valid page is full */
@ -627,18 +481,17 @@ static uint16_t EE_VerifyPageFullWriteVariable(uint16_t VirtAddress, uint16_t Da
}
/**
* @brief Transfers last updated variables data from the full Page to
* an empty one.
* @param VirtAddress: 16 bit virtual address of the variable
* @param Data: 16 bit data to be written as variable value
* @retval Success or error status:
* - FLASH_COMPLETE: on success
* - PAGE_FULL: if valid page is full
* - NO_VALID_PAGE: if no valid page was found
* - Flash error code: on write Flash error
*/
static uint16_t EE_PageTransfer(uint16_t VirtAddress, uint16_t Data)
{
* @brief Transfers last updated variables data from the full Page to
* an empty one.
* @param VirtAddress: 16 bit virtual address of the variable
* @param Data: 16 bit data to be written as variable value
* @retval Success or error status:
* - FLASH_COMPLETE: on success
* - PAGE_FULL: if valid page is full
* - NO_VALID_PAGE: if no valid page was found
* - Flash error code: on write Flash error
*/
static uint16_t EE_PageTransfer(uint16_t VirtAddress, uint16_t Data) {
HAL_StatusTypeDef FlashStatus = HAL_OK;
uint32_t NewPageAddress = EEPROM_START_ADDRESS;
uint16_t OldPageId=0;
@ -650,60 +503,42 @@ static uint16_t EE_PageTransfer(uint16_t VirtAddress, uint16_t Data)
/* Get active Page for read operation */
ValidPage = EE_FindValidPage(READ_FROM_VALID_PAGE);
if (ValidPage == PAGE1) /* Page1 valid */
{
if (ValidPage == PAGE1) { /* Page1 valid */
/* New page address where variable will be moved to */
NewPageAddress = PAGE0_BASE_ADDRESS;
/* Old page ID where variable will be taken from */
OldPageId = PAGE1_ID;
}
else if (ValidPage == PAGE0) /* Page0 valid */
{
else if (ValidPage == PAGE0) { /* Page0 valid */
/* New page address where variable will be moved to */
NewPageAddress = PAGE1_BASE_ADDRESS;
/* Old page ID where variable will be taken from */
OldPageId = PAGE0_ID;
}
else
{
return NO_VALID_PAGE; /* No valid Page */
}
/* Set the new Page status to RECEIVE_DATA status */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, NewPageAddress, RECEIVE_DATA);
/* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
/* Write the variable passed as parameter in the new active page */
EepromStatus = EE_VerifyPageFullWriteVariable(VirtAddress, Data);
/* If program operation was failed, a Flash error code is returned */
if (EepromStatus != HAL_OK)
{
return EepromStatus;
}
if (EepromStatus != HAL_OK) return EepromStatus;
/* Transfer process: transfer variables from old to the new active page */
for (VarIdx = 0; VarIdx < NB_OF_VAR; VarIdx++)
{
if (VirtAddVarTab[VarIdx] != VirtAddress) /* Check each variable except the one passed as parameter */
{
for (VarIdx = 0; VarIdx < NB_OF_VAR; VarIdx++) {
if (VirtAddVarTab[VarIdx] != VirtAddress) { /* Check each variable except the one passed as parameter */
/* Read the other last variable updates */
ReadStatus = EE_ReadVariable(VirtAddVarTab[VarIdx], &DataVar);
/* In case variable corresponding to the virtual address was found */
if (ReadStatus != 0x1)
{
if (ReadStatus != 0x1) {
/* Transfer the variable to the new active page */
EepromStatus = EE_VerifyPageFullWriteVariable(VirtAddVarTab[VarIdx], DataVar);
/* If program operation was failed, a Flash error code is returned */
if (EepromStatus != HAL_OK)
{
return EepromStatus;
}
if (EepromStatus != HAL_OK) return EepromStatus;
}
}
}
@ -716,18 +551,12 @@ static uint16_t EE_PageTransfer(uint16_t VirtAddress, uint16_t Data)
/* Erase the old Page: Set old Page status to ERASED status */
FlashStatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
/* If erase operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
/* Set new Page status to VALID_PAGE status */
FlashStatus = HAL_FLASH_Program(TYPEPROGRAM_HALFWORD, NewPageAddress, VALID_PAGE);
/* If program operation was failed, a Flash error code is returned */
if (FlashStatus != HAL_OK)
{
return FlashStatus;
}
if (FlashStatus != HAL_OK) return FlashStatus;
/* Return last operation flash status */
return FlashStatus;
@ -736,7 +565,7 @@ static uint16_t EE_PageTransfer(uint16_t VirtAddress, uint16_t Data)
#endif // STM32F7
/**
* @}
*/
* @}
*/
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/

@ -18,7 +18,7 @@
*/
#ifdef STM32F7
/**
* Description: functions for I2C connected external EEPROM.
* Not platform dependent.

@ -81,18 +81,17 @@ void sei(void) { interrupts(); }
void HAL_clear_reset_source(void) { __HAL_RCC_CLEAR_RESET_FLAGS(); }
uint8_t HAL_get_reset_source (void) {
if(__HAL_RCC_GET_FLAG(RCC_FLAG_IWDGRST) != RESET)
return RST_WATCHDOG;
if (__HAL_RCC_GET_FLAG(RCC_FLAG_IWDGRST) != RESET)
return RST_WATCHDOG;
if(__HAL_RCC_GET_FLAG(RCC_FLAG_SFTRST) != RESET)
return RST_SOFTWARE;
if (__HAL_RCC_GET_FLAG(RCC_FLAG_SFTRST) != RESET)
return RST_SOFTWARE;
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PINRST) != RESET)
return RST_EXTERNAL;
if (__HAL_RCC_GET_FLAG(RCC_FLAG_PINRST) != RESET)
return RST_EXTERNAL;
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PORRST) != RESET)
return RST_POWER_ON;
if (__HAL_RCC_GET_FLAG(RCC_FLAG_PORRST) != RESET)
return RST_POWER_ON;
return 0;
}
@ -102,8 +101,6 @@ extern "C" {
extern unsigned int _ebss; // end of bss section
}
// return free memory between end of heap (or end bss) and whatever is current
/*

@ -57,7 +57,7 @@
#error "SERIAL_PORT must be from -1 to 6"
#endif
#if SERIAL_PORT == -1
#define MYSERIAL0 SerialUSB
#define MYSERIAL0 SerialUSB
#elif SERIAL_PORT == 1
#define MYSERIAL0 SerialUART1
#elif SERIAL_PORT == 2
@ -79,7 +79,7 @@
#error "SERIAL_PORT_2 must be different than SERIAL_PORT"
#endif
#define NUM_SERIAL 2
#if SERIAL_PORT_2 == -1
#if SERIAL_PORT_2 == -1
#define MYSERIAL1 SerialUSB
#elif SERIAL_PORT_2 == 1
#define MYSERIAL1 SerialUART1
@ -98,7 +98,7 @@
#define NUM_SERIAL 1
#endif
#define _BV(bit) (1 << (bit))
#define _BV(bit) (1 << (bit))
/**
* TODO: review this to return 1 for pins that are not analog input
@ -107,7 +107,7 @@
#define analogInputToDigitalPin(p) (p)
#endif
#define CRITICAL_SECTION_START noInterrupts();
#define CRITICAL_SECTION_START noInterrupts();
#define CRITICAL_SECTION_END interrupts();
// On AVR this is in math.h?

@ -82,20 +82,17 @@ void spiBegin(void) {
#if !PIN_EXISTS(SS)
#error SS_PIN not defined!
#endif
SET_OUTPUT(SS_PIN);
WRITE(SS_PIN, HIGH);
}
/** Configure SPI for specified SPI speed */
void spiInit(uint8_t spiRate) {
// Use datarates Marlin uses
uint32_t clock;
switch (spiRate) {
case SPI_FULL_SPEED: clock = 20000000; break; //13.9mhz=20000000 6.75mhz=10000000 3.38mhz=5000000 .833mhz=1000000
case SPI_FULL_SPEED: clock = 20000000; break; // 13.9mhz=20000000 6.75mhz=10000000 3.38mhz=5000000 .833mhz=1000000
case SPI_HALF_SPEED: clock = 5000000; break;
case SPI_QUARTER_SPEED: clock = 2500000; break;
case SPI_EIGHTH_SPEED: clock = 1250000; break;
@ -108,8 +105,6 @@ void spiInit(uint8_t spiRate) {
SPI.begin();
}
/**
* @brief Receives a single byte from the SPI port.
*
@ -133,8 +128,6 @@ uint8_t spiRec(void) {
*
* @details Uses DMA
*/
void spiRead(uint8_t* buf, uint16_t nbyte) {
SPI.beginTransaction(spiConfig);
SPI.dmaTransfer(0, const_cast<uint8_t*>(buf), nbyte);
@ -162,8 +155,6 @@ void spiSend(uint8_t b) {
*
* @details Use DMA
*/
void spiSendBlock(uint8_t token, const uint8_t* buf) {
SPI.beginTransaction(spiConfig);
SPI.transfer(token);
@ -171,8 +162,6 @@ void spiSendBlock(uint8_t token, const uint8_t* buf) {
SPI.endTransaction();
}
#endif // SOFTWARE_SPI
#endif // STM32F7

@ -20,8 +20,8 @@
*
*/
#ifdef STM32F7
// --------------------------------------------------------------------------
// Includes
// --------------------------------------------------------------------------
@ -71,12 +71,12 @@ tTimerConfig timerConfig[NUM_HARDWARE_TIMERS];
bool timers_initialised[NUM_HARDWARE_TIMERS] = {false};
void HAL_timer_start(uint8_t timer_num, uint32_t frequency) {
void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) {
if(!timers_initialised[timer_num]) {
if (!timers_initialised[timer_num]) {
switch (timer_num) {
case STEP_TIMER_NUM:
//STEPPER TIMER TIM5 //use a 32bit timer
//STEPPER TIMER TIM5 //use a 32bit timer
__HAL_RCC_TIM5_CLK_ENABLE();
timerConfig[0].timerdef.Instance = TIM5;
timerConfig[0].timerdef.Init.Prescaler = (STEPPER_TIMER_PRESCALE);
@ -92,8 +92,8 @@ void HAL_timer_start(uint8_t timer_num, uint32_t frequency) {
//TEMP TIMER TIM7 // any available 16bit Timer (1 already used for PWM)
__HAL_RCC_TIM7_CLK_ENABLE();
timerConfig[1].timerdef.Instance = TIM7;
timerConfig[1].timerdef.Init.Prescaler = (TEMP_TIMER_PRESCALE);
timerConfig[1].timerdef.Init.CounterMode = TIM_COUNTERMODE_UP;
timerConfig[1].timerdef.Init.Prescaler = (TEMP_TIMER_PRESCALE);
timerConfig[1].timerdef.Init.CounterMode = TIM_COUNTERMODE_UP;
timerConfig[1].timerdef.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
timerConfig[1].IRQ_Id = TIM7_IRQn;
timerConfig[1].callback = (uint32_t)TC7_Handler;
@ -103,52 +103,48 @@ void HAL_timer_start(uint8_t timer_num, uint32_t frequency) {
timers_initialised[timer_num] = true;
}
timerConfig[timer_num].timerdef.Init.Period = ((HAL_TIMER_RATE / timerConfig[timer_num].timerdef.Init.Prescaler) / (frequency)) - 1;
timerConfig[timer_num].timerdef.Init.Period = (((HAL_TIMER_RATE) / timerConfig[timer_num].timerdef.Init.Prescaler) / frequency) - 1;
if(HAL_TIM_Base_Init(&timerConfig[timer_num].timerdef) == HAL_OK ){
if (HAL_TIM_Base_Init(&timerConfig[timer_num].timerdef) == HAL_OK)
HAL_TIM_Base_Start_IT(&timerConfig[timer_num].timerdef);
}
}
//forward the interrupt
extern "C" void TIM5_IRQHandler()
{
((void(*)(void))timerConfig[0].callback)();
extern "C" void TIM5_IRQHandler() {
((void(*)(void))timerConfig[0].callback)();
}
extern "C" void TIM7_IRQHandler()
{
((void(*)(void))timerConfig[1].callback)();
extern "C" void TIM7_IRQHandler() {
((void(*)(void))timerConfig[1].callback)();
}
void HAL_timer_set_count (uint8_t timer_num, uint32_t count) {
void HAL_timer_set_count(const uint8_t timer_num, const uint32_t count) {
__HAL_TIM_SetAutoreload(&timerConfig[timer_num].timerdef, count);
}
void HAL_timer_set_current_count (uint8_t timer_num, uint32_t count) {
void HAL_timer_set_current_count(const uint8_t timer_num, const uint32_t count) {
__HAL_TIM_SetAutoreload(&timerConfig[timer_num].timerdef, count);
}
void HAL_timer_enable_interrupt (uint8_t timer_num) {
void HAL_timer_enable_interrupt(const uint8_t timer_num) {
HAL_NVIC_EnableIRQ(timerConfig[timer_num].IRQ_Id);
}
void HAL_timer_disable_interrupt (uint8_t timer_num) {
void HAL_timer_disable_interrupt(const uint8_t timer_num) {
HAL_NVIC_DisableIRQ(timerConfig[timer_num].IRQ_Id);
}
hal_timer_t HAL_timer_get_count (uint8_t timer_num) {
hal_timer_t HAL_timer_get_count(const uint8_t timer_num) {
return __HAL_TIM_GetAutoreload(&timerConfig[timer_num].timerdef);
}
uint32_t HAL_timer_get_current_count(uint8_t timer_num) {
uint32_t HAL_timer_get_current_count(const uint8_t timer_num) {
return __HAL_TIM_GetCounter(&timerConfig[timer_num].timerdef);
}
void HAL_timer_isr_prologue (uint8_t timer_num) {
void HAL_timer_isr_prologue(const uint8_t timer_num) {
if (__HAL_TIM_GET_FLAG(&timerConfig[timer_num].timerdef, TIM_FLAG_UPDATE) == SET) {
__HAL_TIM_CLEAR_FLAG(&timerConfig[timer_num].timerdef, TIM_FLAG_UPDATE);
}
}
#endif
#endif // STM32F7

@ -20,8 +20,6 @@
*
*/
#ifndef _HAL_TIMERS_STM32F7_H
#define _HAL_TIMERS_STM32F7_H
@ -35,16 +33,15 @@
// Defines
// --------------------------------------------------------------------------
#define FORCE_INLINE __attribute__((always_inline)) inline
#define hal_timer_t uint32_t //hal_timer_t uint32_t //TODO: One is 16-bit, one 32-bit - does this need to be checked?
#define HAL_TIMER_TYPE_MAX 0xFFFF
#define hal_timer_t uint32_t // TODO: One is 16-bit, one 32-bit - does this need to be checked?
#define HAL_TIMER_TYPE_MAX 0xFFFF
#define STEP_TIMER_NUM 0 // index of timer to use for stepper
#define TEMP_TIMER_NUM 1 // index of timer to use for temperature
#define HAL_TIMER_RATE (HAL_RCC_GetSysClockFreq()/2) // frequency of timer peripherals
#define HAL_TIMER_RATE (HAL_RCC_GetSysClockFreq() / 2) // frequency of timer peripherals
#define STEPPER_TIMER_PRESCALE 54 // was 40,prescaler for setting stepper timer, 2Mhz
#define HAL_STEPPER_TIMER_RATE (HAL_TIMER_RATE / STEPPER_TIMER_PRESCALE) // frequency of stepper timer (HAL_TIMER_RATE / STEPPER_TIMER_PRESCALE)
#define HAL_TICKS_PER_US ((HAL_STEPPER_TIMER_RATE) / 1000000) // stepper timer ticks per us
@ -55,11 +52,11 @@
#define TEMP_TIMER_PRESCALE 1000 // prescaler for setting Temp timer, 72Khz
#define TEMP_TIMER_FREQUENCY 1000 // temperature interrupt frequency
#define ENABLE_STEPPER_DRIVER_INTERRUPT() HAL_timer_enable_interrupt (STEP_TIMER_NUM)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() HAL_timer_disable_interrupt (STEP_TIMER_NUM)
#define ENABLE_STEPPER_DRIVER_INTERRUPT() HAL_timer_enable_interrupt(STEP_TIMER_NUM)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() HAL_timer_disable_interrupt(STEP_TIMER_NUM)
#define ENABLE_TEMPERATURE_INTERRUPT() HAL_timer_enable_interrupt (TEMP_TIMER_NUM)
#define DISABLE_TEMPERATURE_INTERRUPT() HAL_timer_disable_interrupt (TEMP_TIMER_NUM)
#define ENABLE_TEMPERATURE_INTERRUPT() HAL_timer_enable_interrupt(TEMP_TIMER_NUM)
#define DISABLE_TEMPERATURE_INTERRUPT() HAL_timer_disable_interrupt(TEMP_TIMER_NUM)
#define HAL_ENABLE_ISRs() do { if (thermalManager.in_temp_isr)DISABLE_TEMPERATURE_INTERRUPT(); else ENABLE_TEMPERATURE_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
// TODO change this
@ -86,27 +83,23 @@ typedef struct {
//extern const tTimerConfig timerConfig[];
// --------------------------------------------------------------------------
// Public functions
// --------------------------------------------------------------------------
void HAL_timer_start (uint8_t timer_num, uint32_t frequency);
void HAL_timer_enable_interrupt(uint8_t timer_num);
void HAL_timer_disable_interrupt(uint8_t timer_num);
void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency);
void HAL_timer_enable_interrupt(const uint8_t timer_num);
void HAL_timer_disable_interrupt(const uint8_t timer_num);
void HAL_timer_set_count (uint8_t timer_num, uint32_t count);
hal_timer_t HAL_timer_get_count (uint8_t timer_num);
uint32_t HAL_timer_get_current_count(uint8_t timer_num);
void HAL_timer_set_count(const uint8_t timer_num, const uint32_t count);
hal_timer_t HAL_timer_get_count(const uint8_t timer_num);
uint32_t HAL_timer_get_current_count(const uint8_t timer_num);
void HAL_timer_set_current_count (uint8_t timer_num, uint32_t count); //New
void HAL_timer_set_current_count(const uint8_t timer_num, const uint32_t count); // New
/*FORCE_INLINE static void HAL_timer_set_current_count(const uint8_t timer_num, const hal_timer_t count) {
// To do ??
}*/
void HAL_timer_isr_prologue (uint8_t timer_num);
void HAL_timer_isr_prologue(const uint8_t timer_num);
#endif // _HAL_TIMERS_STM32F7_H

File diff suppressed because it is too large Load Diff

@ -1,37 +1,35 @@
/*
TMC26XStepper.cpp - - TMC26X Stepper library for Wiring/Arduino
based on the stepper library by Tom Igoe, et. al.
Copyright (c) 2011, Interactive Matter, Marcus Nowotny
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
/**
* TMC26XStepper.h - - TMC26X Stepper library for Wiring/Arduino
*
* based on the stepper library by Tom Igoe, et. al.
*
* Copyright (c) 2011, Interactive Matter, Marcus Nowotny
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "../../inc/MarlinConfig.h"
// ensure this library description is only included once
#ifndef TMC26XStepper_h
#define TMC26XStepper_h
#ifndef _TMC26XSTEPPER_H_
#define _TMC26XSTEPPER_H_
//! return value for TMC26XStepper.getOverTemperature() if there is a overtemperature situation in the TMC chip
/*!
@ -124,8 +122,8 @@ class TMC26XStepper {
* You can select a different stepping with setMicrosteps() to aa different value.
* \sa start(), setMicrosteps()
*/
TMC26XStepper(int number_of_steps, int cs_pin, int dir_pin, int step_pin, unsigned int current, unsigned int resistor=100); //resistor=150
TMC26XStepper(int number_of_steps, int cs_pin, int dir_pin, int step_pin, unsigned int current, unsigned int resistor=100); //resistor=150
/*!
* \brief configures and starts the TMC26X stepper driver. Before you called this function the stepper driver is in nonfunctional mode.
*
@ -133,7 +131,7 @@ class TMC26XStepper {
* Most member functions are non functional if the driver has not been started.
* Therefore it is best to call this in your Arduino setup() function.
*/
void start();
void start();
/*!
* \brief resets the stepper in unconfigured mode.
@ -145,7 +143,7 @@ class TMC26XStepper {
* this has to be configured back by yourself.
* (Hint: Normally you do not need this function)
*/
void un_start();
void un_start();
/*!
@ -168,9 +166,9 @@ class TMC26XStepper {
* If you give any other value it will be rounded to the next smaller number (3 would give a microstepping of 2).
* You can always check the current microstepping with getMicrosteps().
*/
void setMicrosteps(int number_of_steps);
void setMicrosteps(int number_of_steps);
/*!
/*!
* \brief returns the effective current number of microsteps selected.
*
* This function always returns the effective number of microsteps.
@ -178,7 +176,7 @@ class TMC26XStepper {
*
* \sa setMicrosteps()
*/
int getMicrosteps(void);
int getMicrosteps(void);
/*!
* \brief Initiate a movement for the given number of steps. Positive numbers move in one, negative numbers in the other direction.
@ -187,7 +185,7 @@ class TMC26XStepper {
* \return 0 if the motor was not moving and moves now. -1 if the motor is moving and the new steps could not be set.
*
* If the previous movement is not finished yet the function will return -1 and not change the steps to move the motor.
* If the motor does not move it return 0
* If the motor does not move it return 0
*
* The direction of the movement is indicated by the sign of the steps parameter. It is not determinable if positive values are right
* or left This depends on the internal construction of the motor and how you connected it to the stepper driver.
@ -264,7 +262,7 @@ class TMC26XStepper {
* \sa setSpreadCycleChoper() for other alternatives.
* \sa setRandomOffTime() for spreading the noise over a wider spectrum
*/
void setConstantOffTimeChopper(char constant_off_time, char blank_time, char fast_decay_time_setting, char sine_wave_offset, unsigned char use_current_comparator);
void setConstantOffTimeChopper(char constant_off_time, char blank_time, char fast_decay_time_setting, char sine_wave_offset, unsigned char use_current_comparator);
/*!
* \brief Sets and configures with spread cycle chopper.
@ -286,9 +284,9 @@ class TMC26XStepper {
*
* \sa setRandomOffTime() for spreading the noise over a wider spectrum
*/
void setSpreadCycleChopper(char constant_off_time, char blank_time, char hysteresis_start, char hysteresis_end, char hysteresis_decrement);
void setSpreadCycleChopper(char constant_off_time, char blank_time, char hysteresis_start, char hysteresis_end, char hysteresis_decrement);
/*!
/*!
* \brief Use random off time for noise reduction (0 for off, -1 for on).
* \param value 0 for off, -1 for on
*
@ -303,16 +301,16 @@ class TMC26XStepper {
* It modulates the slow decay time setting when switched on. The random off time feature further spreads the chopper spectrum,
* reducing electromagnetic emission on single frequencies.
*/
void setRandomOffTime(char value);
void setRandomOffTime(char value);
/*!
/*!
* \brief set the maximum motor current in mA (1000 is 1 Amp)
* Keep in mind this is the maximum peak Current. The RMS current will be 1/sqrt(2) smaller. The actual current can also be smaller
* by employing CoolStep.
* \param current the maximum motor current in mA
* \sa getCurrent(), getCurrentCurrent()
*/
void setCurrent(unsigned int current);
void setCurrent(unsigned int current);
/*!
* \brief readout the motor maximum current in mA (1000 is an Amp)
@ -322,7 +320,7 @@ class TMC26XStepper {
*/
unsigned int getCurrent(void);
/*!
/*!
* \brief set the StallGuard threshold in order to get sensible StallGuard readings.
* \param stall_guard_threshold -64 63 the StallGuard threshold
* \param stall_guard_filter_enabled 0 if the filter is disabled, -1 if it is enabled
@ -337,7 +335,7 @@ class TMC26XStepper {
*
* \sa getCurrentStallGuardReading() to read out the current value.
*/
void setStallGuardThreshold(char stall_guard_threshold, char stall_guard_filter_enabled);
void setStallGuardThreshold(char stall_guard_threshold, char stall_guard_filter_enabled);
/*!
* \brief reads out the StallGuard threshold
@ -416,13 +414,13 @@ class TMC26XStepper {
*/
unsigned char getCoolStepLowerCurrentLimit();
/*!
/*!
* \brief Get the current microstep position for phase A
* \return The current microstep position for phase A 0255
*
* Keep in mind that this routine reads and writes a value via SPI - so this may take a bit time.
*/
int getMotorPosition(void);
int getMotorPosition(void);
/*!
* \brief Reads the current StallGuard value.
@ -430,7 +428,7 @@ class TMC26XStepper {
* Keep in mind that this routine reads and writes a value via SPI - so this may take a bit time.
* \sa setStallGuardThreshold() for tuning the readout to sensible ranges.
*/
int getCurrentStallGuardReading(void);
int getCurrentStallGuardReading(void);
/*!
* \brief Reads the current current setting value as fraction of the maximum current
@ -463,7 +461,7 @@ class TMC26XStepper {
*
* \sa setStallGuardThreshold() for tuning the readout to sensible ranges.
*/
boolean isStallGuardOverThreshold(void);
boolean isStallGuardOverThreshold(void);
/*!
* \brief Return over temperature status of the last status readout
@ -471,7 +469,7 @@ class TMC26XStepper {
* Keep in mind that this method does not enforce a readout but uses the value of the last status readout.
* You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout.
*/
char getOverTemperature(void);
char getOverTemperature(void);
/*!
* \brief Is motor channel A shorted to ground detected in the last status readout.
@ -480,7 +478,7 @@ class TMC26XStepper {
* You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout.
*/
boolean isShortToGroundA(void);
boolean isShortToGroundA(void);
/*!
* \brief Is motor channel B shorted to ground detected in the last status readout.
@ -488,22 +486,22 @@ class TMC26XStepper {
* Keep in mind that this method does not enforce a readout but uses the value of the last status readout.
* You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout.
*/
boolean isShortToGroundB(void);
/*!
boolean isShortToGroundB(void);
/*!
* \brief iIs motor channel A connected according to the last statu readout.
* \return true is yes, false if not.
* Keep in mind that this method does not enforce a readout but uses the value of the last status readout.
* You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout.
*/
boolean isOpenLoadA(void);
boolean isOpenLoadA(void);
/*!
/*!
* \brief iIs motor channel A connected according to the last statu readout.
* \return true is yes, false if not.
* Keep in mind that this method does not enforce a readout but uses the value of the last status readout.
* You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout.
*/
boolean isOpenLoadB(void);
boolean isOpenLoadB(void);
/*!
* \brief Is chopper inactive since 2^20 clock cycles - defaults to ~0,08s
@ -511,7 +509,7 @@ class TMC26XStepper {
* Keep in mind that this method does not enforce a readout but uses the value of the last status readout.
* You may want to use getMotorPosition() or getCurrentStallGuardReading() to enforce an updated status readout.
*/
boolean isStandStill(void);
boolean isStandStill(void);
/*!
* \brief checks if there is a StallGuard warning in the last status
@ -524,7 +522,7 @@ class TMC26XStepper {
*
* \sa setStallGuardThreshold() for tuning the readout to sensible ranges.
*/
boolean isStallGuardReached(void);
boolean isStallGuardReached(void);
/*!
*\brief enables or disables the motor driver bridges. If disabled the motor can run freely. If enabled not.
@ -539,7 +537,7 @@ class TMC26XStepper {
*/
boolean isEnabled();
/*!
/*!
* \brief Manually read out the status register
* This function sends a byte to the motor driver in order to get the current readout. The parameter read_value
* seletcs which value will get returned. If the read_vlaue changes in respect to the previous readout this method
@ -548,7 +546,7 @@ class TMC26XStepper {
* \param read_value selects which value to read out (0..3). You can use the defines TMC26X_READOUT_POSITION, TMC_262_READOUT_STALLGUARD, or TMC_262_READOUT_CURRENT
* \sa TMC26X_READOUT_POSITION, TMC_262_READOUT_STALLGUARD, TMC_262_READOUT_CURRENT
*/
void readStatus(char read_value);
void readStatus(char read_value);
/*!
* \brief Returns the current sense resistor value in milliohm.
@ -560,51 +558,50 @@ class TMC26XStepper {
* \brief Prints out all the information that can be found in the last status read out - it does not force a status readout.
* The result is printed via Serial
*/
void debugLastStatus(void);
/*!
void debugLastStatus(void);
/*!
* \brief library version
* \return the version number as int.
*/
int version(void);
private:
unsigned int steps_left; //the steps the motor has to do to complete the movement
int direction; // Direction of rotation
unsigned long step_delay; // delay between steps, in ms, based on speed
int number_of_steps; // total number of steps this motor can take
unsigned int speed; // we need to store the current speed in order to change the speed after changing microstepping
unsigned int resistor; //current sense resitor value in milliohm
unsigned int steps_left; // The steps the motor has to do to complete the movement
int direction; // Direction of rotation
unsigned long step_delay; // Delay between steps, in ms, based on speed
int number_of_steps; // Total number of steps this motor can take
unsigned int speed; // Store the current speed in order to change the speed after changing microstepping
unsigned int resistor; // Current sense resitor value in milliohm
unsigned long last_step_time; // time stamp in ms of when the last step was taken
unsigned long next_step_time; // time stamp in ms of when the last step was taken
//driver control register copies to easily set & modify the registers
unsigned long driver_control_register_value;
unsigned long chopper_config_register;
unsigned long cool_step_register_value;
unsigned long stall_guard2_current_register_value;
unsigned long driver_configuration_register_value;
//the driver status result
unsigned long driver_status_result;
//helper routione to get the top 10 bit of the readout
inline int getReadoutValue();
//the pins for the stepper driver
unsigned char cs_pin;
unsigned char step_pin;
unsigned char dir_pin;
//status values
boolean started; //if the stepper has been started yet
int microsteps; //the current number of micro steps
char constant_off_time; //we need to remember this value in order to enable and disable the motor
unsigned char cool_step_lower_threshold; // we need to remember the threshold to enable and disable the CoolStep feature
boolean cool_step_enabled; //we need to remember this to configure the coolstep if it si enabled
//SPI sender
inline void send262(unsigned long datagram);
unsigned long last_step_time; // Time stamp in ms of when the last step was taken
unsigned long next_step_time; // Time stamp in ms of when the last step was taken
// Driver control register copies to easily set & modify the registers
unsigned long driver_control_register_value;
unsigned long chopper_config_register;
unsigned long cool_step_register_value;
unsigned long stall_guard2_current_register_value;
unsigned long driver_configuration_register_value;
// The driver status result
unsigned long driver_status_result;
// Helper routione to get the top 10 bit of the readout
inline int getReadoutValue();
// The pins for the stepper driver
unsigned char cs_pin;
unsigned char step_pin;
unsigned char dir_pin;
// Status values
boolean started; // If the stepper has been started yet
int microsteps; // The current number of micro steps
char constant_off_time; // We need to remember this value in order to enable and disable the motor
unsigned char cool_step_lower_threshold; // we need to remember the threshold to enable and disable the CoolStep feature
boolean cool_step_enabled; // We need to remember this to configure the coolstep if it si enabled
// SPI sender
inline void send262(unsigned long datagram);
};
#endif
#endif // _TMC26XSTEPPER_H_

@ -26,10 +26,10 @@
* These use GPIO functions instead of Direct Port Manipulation, as on AVR.
*/
#ifndef _FASTIO_STM32F7_H
#define _FASTIO_STM32F7_H
#ifndef _FASTIO_STM32F7_H
#define _FASTIO_STM32F7_H
#define _BV(bit) (1 << (bit))
#define _BV(bit) (1 << (bit))
#define READ(IO) digitalRead(IO)
#define WRITE(IO, v) digitalWrite(IO,v)
@ -38,17 +38,17 @@
#define _GET_MODE(IO)
#define _SET_MODE(IO,M) pinMode(IO, M)
#define _SET_OUTPUT(IO) pinMode(IO, OUTPUT) /*!< Output Push Pull Mode & GPIO_NOPULL */
#define _SET_OUTPUT(IO) pinMode(IO, OUTPUT) /*!< Output Push Pull Mode & GPIO_NOPULL */
#define SET_INPUT(IO) _SET_MODE(IO, INPUT) /*!< Input Floating Mode */
#define SET_INPUT_PULLUP(IO) _SET_MODE(IO, INPUT_PULLUP) /*!< Input with Pull-up activation */
#define SET_INPUT_PULLDOW(IO) _SET_MODE(IO, INPUT_PULLDOWN) /*!< Input with Pull-down activation */
#define SET_OUTPUT(IO) do{ _SET_OUTPUT(IO); WRITE(IO, LOW); }while(0)
#define SET_INPUT(IO) _SET_MODE(IO, INPUT) /*!< Input Floating Mode */
#define SET_INPUT_PULLUP(IO) _SET_MODE(IO, INPUT_PULLUP) /*!< Input with Pull-up activation */
#define SET_INPUT_PULLDOW(IO) _SET_MODE(IO, INPUT_PULLDOWN) /*!< Input with Pull-down activation */
#define SET_OUTPUT(IO) do{ _SET_OUTPUT(IO); WRITE(IO, LOW); }while(0)
#define GET_INPUT(IO)
#define GET_OUTPUT(IO)
#define GET_TIMER(IO)
#define GET_INPUT(IO)
#define GET_OUTPUT(IO)
#define GET_TIMER(IO)
#define OUT_WRITE(IO, v) { _SET_OUTPUT(IO); WRITE(IO, v); }
#endif /* _FASTIO_STM32F7_H */
#endif // _FASTIO_STM32F7_H

@ -1,24 +1,24 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef STM32F7
@ -26,29 +26,26 @@
#if ENABLED(USE_WATCHDOG)
#include "watchdog_STM32F7.h"
#include "watchdog_STM32F7.h"
IWDG_HandleTypeDef hiwdg;
IWDG_HandleTypeDef hiwdg;
void watchdog_init() {
hiwdg.Instance = IWDG;
hiwdg.Init.Prescaler = IWDG_PRESCALER_32; //32kHz LSI clock and 32x prescalar = 1024Hz IWDG clock
hiwdg.Init.Reload = 4095; //4095 counts = 4 seconds at 1024Hz
if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
{
//Error_Handler();
}
void watchdog_init() {
hiwdg.Instance = IWDG;
hiwdg.Init.Prescaler = IWDG_PRESCALER_32; //32kHz LSI clock and 32x prescalar = 1024Hz IWDG clock
hiwdg.Init.Reload = 4095; //4095 counts = 4 seconds at 1024Hz
if (HAL_IWDG_Init(&hiwdg) != HAL_OK) {
//Error_Handler();
}
}
void watchdog_reset() {
/* Refresh IWDG: reload counter */
if (HAL_IWDG_Refresh(&hiwdg) != HAL_OK)
{
/* Refresh Error */
//Error_Handler();
}
void watchdog_reset() {
/* Refresh IWDG: reload counter */
if (HAL_IWDG_Refresh(&hiwdg) != HAL_OK) {
/* Refresh Error */
//Error_Handler();
}
}
#endif // USE_WATCHDOG

@ -37,10 +37,10 @@
#elif defined(__STM32F1__)
#include "HAL_STM32F1/SanityCheck_Stm32f1.h"
#elif defined(STM32F7)
#elif defined(STM32F7)
#include "HAL_STM32F7/SanityCheck_STM32F7.h"
#else
#else
#error Unsupported Platform!
#endif

@ -41,7 +41,7 @@
#elif defined(STM32F7)
#include "HAL_STM32F7/spi_pins.h"
#else
#else
#error "Unsupported Platform!"
#endif

@ -120,6 +120,7 @@
// Macros to contrain values
#define NOLESS(v,n) do{ if (v < n) v = n; }while(0)
#define NOMORE(v,n) do{ if (v > n) v = n; }while(0)
#define LIMIT(v,n1,n2) do{ if (v < n1) v = n1; else if (v > n2) v = n2; }while(0)
// Macros to support option testing
#define _CAT(a, ...) a ## __VA_ARGS__

@ -42,7 +42,7 @@
#include <SPI.h>
#if defined(STM32F7)
#ifdef STM32F7
#include "../HAL/HAL_STM32F7/TMC2660.h"
#else
#include <TMC26XStepper.h>

@ -49,7 +49,7 @@
// TMC26X drivers have STEP/DIR on normal pins, but ENABLE via SPI
#if ENABLED(HAVE_TMCDRIVER)
#include <SPI.h>
#if defined(STM32F7)
#ifdef STM32F7
#include "../HAL/HAL_STM32F7/TMC2660.h"
#else
#include <TMC26XStepper.h>

Loading…
Cancel
Save