/**
* Marlin 3 D Printer Firmware
* Copyright ( C ) 2016 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( C ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*
*/
# ifndef MARLIN_H
# define MARLIN_H
# define FORCE_INLINE __attribute__((always_inline)) inline
/**
* Compiler warning on unused variable .
*/
# define UNUSED(x) (void) (x)
# include <math.h>
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# include <inttypes.h>
# include <util/delay.h>
# include <avr/pgmspace.h>
# include <avr/eeprom.h>
# include <avr/interrupt.h>
# include "fastio.h"
# include "Configuration.h"
# include "pins.h"
# ifndef SANITYCHECK_H
# error Your Configuration.h and Configuration_adv.h files are outdated!
# endif
# include "Arduino.h"
typedef unsigned long millis_t ;
// Arduino < 1.0.0 does not define this, so we need to do it ourselves
# ifndef analogInputToDigitalPin
# define analogInputToDigitalPin(p) ((p) + 0xA0)
# endif
# ifdef USBCON
# include "HardwareSerial.h"
# endif
# include "MarlinSerial.h"
# include "WString.h"
# ifdef USBCON
# if ENABLED(BLUETOOTH)
# define MYSERIAL bluetoothSerial
# else
# define MYSERIAL Serial
# endif // BLUETOOTH
# else
# define MYSERIAL customizedSerial
# endif
# define SERIAL_CHAR(x) MYSERIAL.write(x)
# define SERIAL_EOL SERIAL_CHAR('\n')
# define SERIAL_PROTOCOLCHAR(x) SERIAL_CHAR(x)
# define SERIAL_PROTOCOL(x) MYSERIAL.print(x)
# define SERIAL_PROTOCOL_F(x,y) MYSERIAL.print(x,y)
# define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x))
# define SERIAL_PROTOCOLLN(x) do{ MYSERIAL.print(x); SERIAL_EOL; }while(0)
# define SERIAL_PROTOCOLLNPGM(x) do{ serialprintPGM(PSTR(x)); SERIAL_EOL; }while(0)
extern const char errormagic [ ] PROGMEM ;
extern const char echomagic [ ] PROGMEM ;
# define SERIAL_ERROR_START serialprintPGM(errormagic)
# define SERIAL_ERROR(x) SERIAL_PROTOCOL(x)
# define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x)
# define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x)
# define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
# define SERIAL_ECHO_START serialprintPGM(echomagic)
# define SERIAL_ECHO(x) SERIAL_PROTOCOL(x)
# define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x)
# define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x)
# define SERIAL_ECHOLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
# define SERIAL_ECHOPAIR(name,value) do{ serial_echopair_P(PSTR(name),(value)); }while(0)
void serial_echopair_P ( const char * s_P , int v ) ;
void serial_echopair_P ( const char * s_P , long v ) ;
void serial_echopair_P ( const char * s_P , float v ) ;
void serial_echopair_P ( const char * s_P , double v ) ;
void serial_echopair_P ( const char * s_P , unsigned long v ) ;
// Things to write to serial from Program memory. Saves 400 to 2k of RAM.
FORCE_INLINE void serialprintPGM ( const char * str ) {
char ch ;
while ( ( ch = pgm_read_byte ( str ) ) ) {
MYSERIAL . write ( ch ) ;
str + + ;
}
}
void idle (
# if ENABLED(FILAMENTCHANGEENABLE)
bool no_stepper_sleep = false // pass true to keep steppers from disabling on timeout
# endif
) ;
void manage_inactivity ( bool ignore_stepper_queue = false ) ;
# if ENABLED(DUAL_X_CARRIAGE) && HAS_X_ENABLE && HAS_X2_ENABLE
# define enable_x() do { X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); } while (0)
# define disable_x() do { X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; } while (0)
# elif HAS_X_ENABLE
# define enable_x() X_ENABLE_WRITE( X_ENABLE_ON)
# define disable_x() { X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }
# else
# define enable_x() ;
# define disable_x() ;
# endif
# if HAS_Y_ENABLE
# if ENABLED(Y_DUAL_STEPPER_DRIVERS)
# define enable_y() { Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }
# define disable_y() { Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
# else
# define enable_y() Y_ENABLE_WRITE( Y_ENABLE_ON)
# define disable_y() { Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
# endif
# else
# define enable_y() ;
# define disable_y() ;
# endif
# if HAS_Z_ENABLE
# if ENABLED(Z_DUAL_STEPPER_DRIVERS)
# define enable_z() { Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }
# define disable_z() { Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
# else
# define enable_z() Z_ENABLE_WRITE( Z_ENABLE_ON)
# define disable_z() { Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
# endif
# else
# define enable_z() ;
# define disable_z() ;
# endif
# if HAS_E0_ENABLE
# define enable_e0() E0_ENABLE_WRITE( E_ENABLE_ON)
# define disable_e0() E0_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define enable_e0() /* nothing */
# define disable_e0() /* nothing */
# endif
# if (EXTRUDERS > 1) && HAS_E1_ENABLE
# define enable_e1() E1_ENABLE_WRITE( E_ENABLE_ON)
# define disable_e1() E1_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define enable_e1() /* nothing */
# define disable_e1() /* nothing */
# endif
# if (EXTRUDERS > 2) && HAS_E2_ENABLE
# define enable_e2() E2_ENABLE_WRITE( E_ENABLE_ON)
# define disable_e2() E2_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define enable_e2() /* nothing */
# define disable_e2() /* nothing */
# endif
# if (EXTRUDERS > 3) && HAS_E3_ENABLE
# define enable_e3() E3_ENABLE_WRITE( E_ENABLE_ON)
# define disable_e3() E3_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define enable_e3() /* nothing */
# define disable_e3() /* nothing */
# endif
/**
* The axis order in all axis related arrays is X , Y , Z , E
*/
# define NUM_AXIS 4
/**
* Axis indices as enumerated constants
*
* A_AXIS and B_AXIS are used by COREXY printers
* X_HEAD and Y_HEAD is used for systems that don ' t have a 1 : 1 relationship between X_AXIS and X Head movement , like CoreXY bots .
*/
enum AxisEnum { X_AXIS = 0 , A_AXIS = 0 , Y_AXIS = 1 , B_AXIS = 1 , Z_AXIS = 2 , C_AXIS = 2 , E_AXIS = 3 , X_HEAD = 4 , Y_HEAD = 5 , Z_HEAD = 5 } ;
enum EndstopEnum { X_MIN = 0 , Y_MIN = 1 , Z_MIN = 2 , Z_MIN_PROBE = 3 , X_MAX = 4 , Y_MAX = 5 , Z_MAX = 6 , Z2_MIN = 7 , Z2_MAX = 8 } ;
void enable_all_steppers ( ) ;
void disable_all_steppers ( ) ;
void FlushSerialRequestResend ( ) ;
void ok_to_send ( ) ;
void reset_bed_level ( ) ;
void prepare_move ( ) ;
void kill ( const char * ) ;
void Stop ( ) ;
# if ENABLED(FILAMENT_RUNOUT_SENSOR)
void filrunout ( ) ;
# endif
/**
* Debug flags - not yet widely applied
*/
enum DebugFlags {
DEBUG_NONE = 0 ,
DEBUG_ECHO = _BV ( 0 ) ,
DEBUG_INFO = _BV ( 1 ) ,
DEBUG_ERRORS = _BV ( 2 ) ,
DEBUG_DRYRUN = _BV ( 3 ) ,
DEBUG_COMMUNICATION = _BV ( 4 ) ,
DEBUG_LEVELING = _BV ( 5 )
} ;
extern uint8_t marlin_debug_flags ;
# define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F))
extern bool Running ;
inline bool IsRunning ( ) { return Running ; }
inline bool IsStopped ( ) { return ! Running ; }
bool enqueue_and_echo_command ( const char * cmd , bool say_ok = false ) ; //put a single ASCII command at the end of the current buffer or return false when it is full
void enqueue_and_echo_command_now ( const char * cmd ) ; // enqueue now, only return when the command has been enqueued
void enqueue_and_echo_commands_P ( const char * cmd ) ; //put one or many ASCII commands at the end of the current buffer, read from flash
void prepare_arc_move ( char isclockwise ) ;
void clamp_to_software_endstops ( float target [ 3 ] ) ;
extern millis_t previous_cmd_ms ;
inline void refresh_cmd_timeout ( ) { previous_cmd_ms = millis ( ) ; }
# if ENABLED(FAST_PWM_FAN)
void setPwmFrequency ( uint8_t pin , int val ) ;
# endif
# ifndef CRITICAL_SECTION_START
# define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli();
# define CRITICAL_SECTION_END SREG = _sreg;
# endif
extern bool axis_relative_modes [ ] ;
extern int feedrate_multiplier ;
extern bool volumetric_enabled ;
extern int extruder_multiplier [ EXTRUDERS ] ; // sets extrude multiply factor (in percent) for each extruder individually
extern float filament_size [ EXTRUDERS ] ; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
extern float volumetric_multiplier [ EXTRUDERS ] ; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern float current_position [ NUM_AXIS ] ;
extern float home_offset [ 3 ] ; // axis[n].home_offset
extern float min_pos [ 3 ] ; // axis[n].min_pos
extern float max_pos [ 3 ] ; // axis[n].max_pos
extern bool axis_known_position [ 3 ] ; // axis[n].is_known
extern bool axis_homed [ 3 ] ; // axis[n].is_homed
# if ENABLED(DELTA)
# ifndef DELTA_RADIUS_TRIM_TOWER_1
# define DELTA_RADIUS_TRIM_TOWER_1 0.0
# endif
# ifndef DELTA_RADIUS_TRIM_TOWER_2
# define DELTA_RADIUS_TRIM_TOWER_2 0.0
# endif
# ifndef DELTA_RADIUS_TRIM_TOWER_3
# define DELTA_RADIUS_TRIM_TOWER_3 0.0
# endif
# ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_1
# define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
# endif
# ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_2
# define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0
# endif
# ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_3
# define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0
# endif
extern float delta [ 3 ] ;
extern float endstop_adj [ 3 ] ; // axis[n].endstop_adj
extern float delta_radius ;
extern float delta_diagonal_rod ;
extern float delta_segments_per_second ;
extern float delta_diagonal_rod_trim_tower_1 ;
extern float delta_diagonal_rod_trim_tower_2 ;
extern float delta_diagonal_rod_trim_tower_3 ;
void calculate_delta ( float cartesian [ 3 ] ) ;
void recalc_delta_settings ( float radius , float diagonal_rod ) ;
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
extern int delta_grid_spacing [ 2 ] ;
void adjust_delta ( float cartesian [ 3 ] ) ;
# endif
# elif ENABLED(SCARA)
extern float axis_scaling [ 3 ] ; // Build size scaling
void calculate_delta ( float cartesian [ 3 ] ) ;
void calculate_SCARA_forward_Transform ( float f_scara [ 3 ] ) ;
# endif
# if ENABLED(Z_DUAL_ENDSTOPS)
extern float z_endstop_adj ;
# endif
# if ENABLED(AUTO_BED_LEVELING_FEATURE)
extern float zprobe_zoffset ;
# endif
# if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
extern float extrude_min_temp ;
# endif
# if FAN_COUNT > 0
extern int fanSpeeds [ FAN_COUNT ] ;
# endif
# if ENABLED(BARICUDA)
extern int ValvePressure ;
extern int EtoPPressure ;
# endif
# if ENABLED(FILAMENT_SENSOR)
extern float filament_width_nominal ; //holds the theoretical filament diameter i.e., 3.00 or 1.75
extern bool filament_sensor ; //indicates that filament sensor readings should control extrusion
extern float filament_width_meas ; //holds the filament diameter as accurately measured
extern signed char measurement_delay [ ] ; //ring buffer to delay measurement
extern int delay_index1 , delay_index2 ; //ring buffer index. used by planner, temperature, and main code
extern float delay_dist ; //delay distance counter
extern int meas_delay_cm ; //delay distance
# endif
# if ENABLED(PID_ADD_EXTRUSION_RATE)
extern int lpq_len ;
# endif
# if ENABLED(FWRETRACT)
extern bool autoretract_enabled ;
extern bool retracted [ EXTRUDERS ] ; // extruder[n].retracted
extern float retract_length , retract_length_swap , retract_feedrate , retract_zlift ;
extern float retract_recover_length , retract_recover_length_swap , retract_recover_feedrate ;
# endif
extern millis_t print_job_start_ms ;
extern millis_t print_job_stop_ms ;
// Handling multiple extruders pins
extern uint8_t active_extruder ;
# if ENABLED(DIGIPOT_I2C)
extern void digipot_i2c_set_current ( int channel , float current ) ;
extern void digipot_i2c_init ( ) ;
# endif
# if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
void print_heaterstates ( ) ;
# endif
extern void calculate_volumetric_multipliers ( ) ;
// Print job timer related functions
millis_t print_job_timer ( ) ;
bool print_job_start ( millis_t t = 0 ) ;
bool print_job_stop ( bool force = false ) ;
# endif //MARLIN_H