Currently we use the probe exclusively as a device to find the build platform(bed).
For the currently supported setups this means, we use it as a additional min-endstop.
A triggered when not deployed probe disturbs the homing process for max-endstops.
Rename ENDSTOPPULLUP_ZPROBE to ENDSTOPPULLUP_ZMIN_PROBE
Rename Z_PROBE_ENDSTOP_INVERTING to Z_MIN_PROBE_ENDSTOP_INVERTING
Rename Z_PROBE_ENDSTOP to Z_MIN_PROBE_ENDSTOP
Rename DISABLE_Z_PROBE_ENDSTOP to DISABLE_Z_MIN_PROBE_ENDSTOP
Rename Z_PROBE_REPEATABILITY_TEST to Z_MIN_PROBE_REPEATABILITY_TEST
Rename Z_PROBE_ENDSTOP to Z_MIN_PROBE_ENDSTOP
Adjust comments accordingly
Remove Z_MAX check for the probe in update_endstops().
Using an delta related idea of @clefranc from #61,
extended to the general change for all setups.
Tested with Prusa i3, max-z-endstop and permanently triggered z-probe.
Worked for @clefranc's delta.
PR#2572 Changed this because of faulty Boolean Logic
NOT(A OR (NOT B) OR (NOT C)) !=
(NOT A) AND ((NOT B) OR C))
Besides, the compiler should be smart enough to
optimize this without help from the programmer
- The default serial baud rate of 115200
- The regular RigitBot bed size 254mm/248mm/254mm
- Single stock extruder
- Stock termistors for extruder and hotbed
- Stock Min X/Y/Z stops. Max stops not connected
- Stock 32 teth tooleys (stock axis steps)
- No auto bed leveling
- No screen
- `SD_DETECT_PIN` replaces `SDCARDDETECT`
- `SD_DETECT_INVERTED` replaces `SDCARDDETECTINVERTED`
- Revise the description of `SD_DETECT_INVERTED`
- Add a note about the override of `SD_DETECT_INVERTED` in
`Conditionals.h`
- The contents of EEPROM include filament diameters even with
Volumetric disabled. This change makes `M503` display the full
volumetric settings so that playing back the output of `M503 S0` will
fully restore them.
Just the minimal changes to qr_solve.cpp and .h to get rid of malloc() and free().
Saves about 656 bytes of progmem (library-code)
and 22 bytes for static variables.
Should use exactly the same amount of stack as it did before on the heap.
As suggested in #2521
- Move `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED` because `SDSUPPORT` is
also required.
- Add a note that endstops must be enabled for the feature to have any
effect
A speaker needs a AC or a pulsed DC to make a sound, a buzzer only needs a DC.
A buzzer has it's own resonator. It works in most cases to feed the buzzer with a pulsed DC, but the sound will not be as loud as with pure DC.
There seem to be boards where the BEEPER-pin is not able to handle a PWM. Obviously intended for a buzzer.
To make these board able to handle a speaker
* replace the PWM based tone()-function again with a on-delay-off-delay loop.
Hopefully the last time I touch the beeper code.
Just set up the pin. Don't move to a random position.
Simplify servo::move()
* servo::move() does not need the pin parameter - The pin is set during servo_init() with attach().
* servo::move() does not need a return value.
SERVO_LEVELING is the wrong condition to deactivate the servos.
Remove some temporary (Servo *) variables.
SanityCheck for the servo indexes.
Updates to `set_homing_bump_feedrate`:
- Move the string into Program Memory, reduce length by 31 bytes
- Use an auto to get the divisor, adjust it on error
- Set feedrate once, at the end