This is an initial cut for feedback, updated for 2.0.x.
Chamber temperature is currently reported along with hot end and bed
temperatures to serial. The format is just like that used for hot end
and bed temperatures, but using 'C' prefix. As there is no heater,
target is always 0. Is this appropriate, is there a better way to report
chamber temperatures?
Chamber temperatures are not reported on the LCD in any way.
When auto chamber fan is enabled, it currently just uses the same
temperature threshold as the other auto controlled fans.
As the chamber temperature is not connected to any heater, it doesn't
undergo mintemp/maxtemp monitoring. This would need to change in the
future if chamber heating became a feature.
Some "fix-mounted" probes need manual stowing. And after probing some may prefer to raise or lower the nozzle. This restores an old option but tailors it to allow raise or lower as preferred.
With this option enabled, Z won't ever be raised until after `G28` has been completed, and it won't raise if Z becomes unknown. This is good for machines whose beds fall when Z is powered off.
- The status screen uses the ST7920 character generator to greatly
reduce SPI traffic and MCU load when updating the status screen.
- Has been tested with the RepRapDiscount Full Graphics Smart Controller
but should work with any LCD that uses an ST7920 or fully compatible
controller.
- The status screen uses the ST7920 character generator to greatly
reduce SPI traffic and MCU load when updating the status screen.
- Has been tested with the RepRapDiscount Full Graphics Smart Controller
but should work with any LCD that uses an ST7920 or fully compatible
controller.
- Fix G26 Circle Drawing.
- Add default extrusion settings so machine can print lines on print bed
- Yet to be done: Get LCD Menu's to use these settings.
* Add GFX overlay to UBL mesh edit
Fixed misplaced HAS_TEMP_BED in dogm_bitmaps.h
rename _lcd_babystep_zoffset_overlay to _lcd_zoffset_overlay_gfx and move it out of BABYSTEP_ZPROBE_OFFSET to we can use it for over things. Add this function into UBL mesh edit screen.
update all Configuration.h to add ENABLE_MESH_EDIT_GFX_OVERLAY
* Add Sanity to UBL insanity
Need to check for DOGLCD otherwise error out.
* Get UBL Mesh Generation, Mesh Save & Mesh Load working with 32-Bit platforms
* clean up read_data() and write_data() for non-LPC1768 HAL's
* Get read_data() and write_data() return codes consistent
All HAL's read_data() and write_data() return false if they succeed.
* Get read_data() and write_data() return codes to be consistent
Make read_data() and write_data() return true if an error happens.
* Say UBL is now checked out on machine types in default Configuration.h file.
Same as #7728 but for 2.0.x,
Lot of cleanup and remove references in whole code to other "LED files" than leds.h. Now will be much easier to add next drivers/libraries. e.g. FastLED. But bad news, currently FastLED is suporting only RGB devices (no RGBW)
- rename to PROBING_HEATERS_OFF
- move heater pausing functionality into thermalManager
- add variables, pause(), ispaused(), other functions
- add fan pausing functionality -> PROBING_FANS_OFF
- add probing_pause() wrapper
- move pausing into do_homing_move() and do_probe_move() to minimize quiet time and so other probe types can benefit
- example configs
The Configuration.h file entries for BL-Touch have been updated to:
```cpp
//#define BLTOUCH
//#define BLTOUCH_DELAY 375 // (ms) Enable and increase if needed
//#define BLTOUCH_HEATERS_OFF // if defined the printer's heaters are
turned off during probe event
```
==============================================
clarified BLTouch calculation & changed comment delimitters/flags
I found it hard to pickout the various sections in this area so I
changed most comments from // style to /** ... */
Made the BLTouch calculation simpler and clarified the units of measure
for the result.
============================================
add changes to example configurations
============================================
add TinyBoy2 to this PR & add BLTouch Delay
The OLED is driven by an SSD1306, connected to the board via
I2C, the rotary encoder is connected to 3 GPIO pins.
Signed-off-by: Stefan Brüns <stefan.bruens@rwth-aachen.de>
If dithering is enabled, the remainder of the soft_pwm_X duty value at
turnoff time is added to the next cycle. If e.g. the duty is set to 9 and
SCALE is set to 2, the PWM will be active for 8 counts for 3 cycles and
12 counts on each fourth cycle, i.e. the average is 9 cycles.
This compensates the resolution loss at higher scales and allows running
fans with SOFT_PWM with significantly reduced noise.
Signed-off-by: Stefan Brüns <stefan.bruens@rwth-aachen.de>