Merge pull request #7966 from thinkyhead/bf2_ubl_remove_z_offset

[2.0.x] Unify Z fade factor
2.0.x
Scott Lahteine 7 years ago committed by GitHub
commit 85b2e7e764

@ -333,7 +333,7 @@ void safe_delay(millis_t ms) {
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
SERIAL_ECHOPGM("UBL"); SERIAL_ECHOPGM("UBL");
#endif #endif
if (leveling_is_active()) { if (planner.leveling_active) {
SERIAL_ECHOLNPGM(" (enabled)"); SERIAL_ECHOLNPGM(" (enabled)");
#if ABL_PLANAR #if ABL_PLANAR
const float diff[XYZ] = { const float diff[XYZ] = {
@ -364,7 +364,7 @@ void safe_delay(millis_t ms) {
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)
SERIAL_ECHOPGM("Mesh Bed Leveling"); SERIAL_ECHOPGM("Mesh Bed Leveling");
if (leveling_is_active()) { if (planner.leveling_active) {
float lz = current_position[Z_AXIS]; float lz = current_position[Z_AXIS];
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz); planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
SERIAL_ECHOLNPGM(" (enabled)"); SERIAL_ECHOLNPGM(" (enabled)");

@ -44,7 +44,7 @@
bool leveling_is_valid() { bool leveling_is_valid() {
return return
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
mbl.has_mesh() mbl.has_mesh
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
!!bilinear_grid_spacing[X_AXIS] !!bilinear_grid_spacing[X_AXIS]
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
@ -55,18 +55,6 @@ bool leveling_is_valid() {
; ;
} }
bool leveling_is_active() {
return
#if ENABLED(MESH_BED_LEVELING)
mbl.active()
#elif ENABLED(AUTO_BED_LEVELING_UBL)
ubl.state.active
#else // OLDSCHOOL_ABL
planner.abl_enabled
#endif
;
}
/** /**
* Turn bed leveling on or off, fixing the current * Turn bed leveling on or off, fixing the current
* position as-needed. * position as-needed.
@ -82,7 +70,7 @@ void set_bed_leveling_enabled(const bool enable/*=true*/) {
constexpr bool can_change = true; constexpr bool can_change = true;
#endif #endif
if (can_change && enable != leveling_is_active()) { if (can_change && enable != planner.leveling_active) {
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
@ -90,23 +78,23 @@ void set_bed_leveling_enabled(const bool enable/*=true*/) {
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]); planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
const bool enabling = enable && leveling_is_valid(); const bool enabling = enable && leveling_is_valid();
mbl.set_active(enabling); planner.leveling_active = enabling;
if (enabling) planner.unapply_leveling(current_position); if (enabling) planner.unapply_leveling(current_position);
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
#if PLANNER_LEVELING #if PLANNER_LEVELING
if (ubl.state.active) { // leveling from on to off if (planner.leveling_active) { // leveling from on to off
// change unleveled current_position to physical current_position without moving steppers. // change unleveled current_position to physical current_position without moving steppers.
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]); planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
ubl.state.active = false; // disable only AFTER calling apply_leveling planner.leveling_active = false; // disable only AFTER calling apply_leveling
} }
else { // leveling from off to on else { // leveling from off to on
ubl.state.active = true; // enable BEFORE calling unapply_leveling, otherwise ignored planner.leveling_active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
// change physical current_position to unleveled current_position without moving steppers. // change physical current_position to unleveled current_position without moving steppers.
planner.unapply_leveling(current_position); planner.unapply_leveling(current_position);
} }
#else #else
ubl.state.active = enable; // just flip the bit, current_position will be wrong until next move. planner.leveling_active = enable; // just flip the bit, current_position will be wrong until next move.
#endif #endif
#else // OLDSCHOOL_ABL #else // OLDSCHOOL_ABL
@ -118,7 +106,7 @@ void set_bed_leveling_enabled(const bool enable/*=true*/) {
#endif #endif
// Enable or disable leveling compensation in the planner // Enable or disable leveling compensation in the planner
planner.abl_enabled = enable; planner.leveling_active = enable;
if (!enable) if (!enable)
// When disabling just get the current position from the steppers. // When disabling just get the current position from the steppers.
@ -143,23 +131,18 @@ void set_bed_leveling_enabled(const bool enable/*=true*/) {
void set_z_fade_height(const float zfh) { void set_z_fade_height(const float zfh) {
const bool level_active = leveling_is_active(); const bool level_active = planner.leveling_active;
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
if (level_active) set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
#endif
if (level_active) planner.set_z_fade_height(zfh);
set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
planner.z_fade_height = zfh;
planner.inverse_z_fade_height = RECIPROCAL(zfh);
if (level_active)
set_bed_leveling_enabled(true); // turn back on after changing fade height
#else
planner.z_fade_height = zfh;
planner.inverse_z_fade_height = RECIPROCAL(zfh);
if (level_active) { if (level_active) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
set_bed_leveling_enabled(true); // turn back on after changing fade height
#else
set_current_from_steppers_for_axis( set_current_from_steppers_for_axis(
#if ABL_PLANAR #if ABL_PLANAR
ALL_AXES ALL_AXES
@ -167,8 +150,8 @@ void set_bed_leveling_enabled(const bool enable/*=true*/) {
Z_AXIS Z_AXIS
#endif #endif
); );
} #endif
#endif }
} }
#endif // ENABLE_LEVELING_FADE_HEIGHT #endif // ENABLE_LEVELING_FADE_HEIGHT
@ -181,7 +164,7 @@ void reset_bed_level() {
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
if (leveling_is_valid()) { if (leveling_is_valid()) {
mbl.reset(); mbl.reset();
mbl.set_has_mesh(false); mbl.has_mesh = false;
} }
#else #else
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)

@ -40,7 +40,6 @@
#endif #endif
bool leveling_is_valid(); bool leveling_is_valid();
bool leveling_is_active();
void set_bed_leveling_enabled(const bool enable=true); void set_bed_leveling_enabled(const bool enable=true);
void reset_bed_level(); void reset_bed_level();

@ -31,7 +31,7 @@
mesh_bed_leveling mbl; mesh_bed_leveling mbl;
uint8_t mesh_bed_leveling::status; bool mesh_bed_leveling::has_mesh;
float mesh_bed_leveling::z_offset, float mesh_bed_leveling::z_offset,
mesh_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y], mesh_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y],
@ -47,7 +47,7 @@
} }
void mesh_bed_leveling::reset() { void mesh_bed_leveling::reset() {
status = MBL_STATUS_NONE; has_mesh = false;
z_offset = 0; z_offset = 0;
ZERO(z_values); ZERO(z_values);
} }

@ -34,18 +34,12 @@ enum MeshLevelingState {
MeshReset MeshReset
}; };
enum MBLStatus {
MBL_STATUS_NONE = 0,
MBL_STATUS_HAS_MESH_BIT = 0,
MBL_STATUS_ACTIVE_BIT = 1
};
#define MESH_X_DIST ((MESH_MAX_X - (MESH_MIN_X)) / (GRID_MAX_POINTS_X - 1)) #define MESH_X_DIST ((MESH_MAX_X - (MESH_MIN_X)) / (GRID_MAX_POINTS_X - 1))
#define MESH_Y_DIST ((MESH_MAX_Y - (MESH_MIN_Y)) / (GRID_MAX_POINTS_Y - 1)) #define MESH_Y_DIST ((MESH_MAX_Y - (MESH_MIN_Y)) / (GRID_MAX_POINTS_Y - 1))
class mesh_bed_leveling { class mesh_bed_leveling {
public: public:
static uint8_t status; // Has Mesh and Is Active bits static bool has_mesh;
static float z_offset, static float z_offset,
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y], z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y],
index_to_xpos[GRID_MAX_POINTS_X], index_to_xpos[GRID_MAX_POINTS_X],
@ -57,11 +51,6 @@ public:
static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
static bool active() { return TEST(status, MBL_STATUS_ACTIVE_BIT); }
static void set_active(const bool onOff) { onOff ? SBI(status, MBL_STATUS_ACTIVE_BIT) : CBI(status, MBL_STATUS_ACTIVE_BIT); }
static bool has_mesh() { return TEST(status, MBL_STATUS_HAS_MESH_BIT); }
static void set_has_mesh(const bool onOff) { onOff ? SBI(status, MBL_STATUS_HAS_MESH_BIT) : CBI(status, MBL_STATUS_HAS_MESH_BIT); }
static inline void zigzag(const int8_t index, int8_t &px, int8_t &py) { static inline void zigzag(const int8_t index, int8_t &px, int8_t &py) {
px = index % (GRID_MAX_POINTS_X); px = index % (GRID_MAX_POINTS_X);
py = index / (GRID_MAX_POINTS_X); py = index / (GRID_MAX_POINTS_X);

@ -51,7 +51,7 @@
void unified_bed_leveling::report_state() { void unified_bed_leveling::report_state() {
echo_name(); echo_name();
SERIAL_PROTOCOLPGM(" System v" UBL_VERSION " "); SERIAL_PROTOCOLPGM(" System v" UBL_VERSION " ");
if (!state.active) SERIAL_PROTOCOLPGM("in"); if (!planner.leveling_active) SERIAL_PROTOCOLPGM("in");
SERIAL_PROTOCOLLNPGM("active."); SERIAL_PROTOCOLLNPGM("active.");
safe_delay(50); safe_delay(50);
} }
@ -65,10 +65,9 @@
safe_delay(10); safe_delay(10);
} }
ubl_state unified_bed_leveling::state; int8_t unified_bed_leveling::storage_slot;
float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y], float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
unified_bed_leveling::last_specified_z;
// 15 is the maximum nubmer of grid points supported + 1 safety margin for now, // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
// until determinism prevails // until determinism prevails
@ -91,12 +90,11 @@
void unified_bed_leveling::reset() { void unified_bed_leveling::reset() {
set_bed_leveling_enabled(false); set_bed_leveling_enabled(false);
state.storage_slot = -1; storage_slot = -1;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
planner.z_fade_height = 10.0; planner.set_z_fade_height(10.0);
#endif #endif
ZERO(z_values); ZERO(z_values);
last_specified_z = -999.9;
} }
void unified_bed_leveling::invalidate() { void unified_bed_leveling::invalidate() {

@ -70,16 +70,9 @@ extern uint8_t ubl_cnt;
#define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1)) #define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
#define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1)) #define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
typedef struct {
bool active = false;
int8_t storage_slot = -1;
} ubl_state;
class unified_bed_leveling { class unified_bed_leveling {
private: private:
static float last_specified_z;
static int g29_verbose_level, static int g29_verbose_level,
g29_phase_value, g29_phase_value,
g29_repetition_cnt, g29_repetition_cnt,
@ -161,7 +154,7 @@ class unified_bed_leveling {
static void G26(); static void G26();
#endif #endif
static ubl_state state; static int8_t storage_slot;
static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
@ -367,31 +360,6 @@ class unified_bed_leveling {
return z0; return z0;
} }
/**
* This function sets the Z leveling fade factor based on the given Z height,
* only re-calculating when necessary.
*
* Returns 1.0 if planner.z_fade_height is 0.0.
* Returns 0.0 if Z is past the specified 'Fade Height'.
*/
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static inline float fade_scaling_factor_for_z(const float &lz) {
if (planner.z_fade_height == 0.0) return 1.0;
static float fade_scaling_factor = 1.0;
const float rz = RAW_Z_POSITION(lz);
if (last_specified_z != rz) {
last_specified_z = rz;
fade_scaling_factor =
rz < planner.z_fade_height
? 1.0 - (rz * planner.inverse_z_fade_height)
: 0.0;
}
return fade_scaling_factor;
}
#else
FORCE_INLINE static float fade_scaling_factor_for_z(const float &lz) { return 1.0; }
#endif
FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) { FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) {
return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : UBL_MESH_MIN_X + i * (MESH_X_DIST); return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : UBL_MESH_MIN_X + i * (MESH_X_DIST);
} }

@ -424,8 +424,8 @@
#endif // HAS_BED_PROBE #endif // HAS_BED_PROBE
if (parser.seen('P')) { if (parser.seen('P')) {
if (WITHIN(g29_phase_value, 0, 1) && state.storage_slot == -1) { if (WITHIN(g29_phase_value, 0, 1) && storage_slot == -1) {
state.storage_slot = 0; storage_slot = 0;
SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected."); SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.");
} }
@ -604,7 +604,7 @@
// //
if (parser.seen('L')) { // Load Current Mesh Data if (parser.seen('L')) { // Load Current Mesh Data
g29_storage_slot = parser.has_value() ? parser.value_int() : state.storage_slot; g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
int16_t a = settings.calc_num_meshes(); int16_t a = settings.calc_num_meshes();
@ -620,7 +620,7 @@
} }
settings.load_mesh(g29_storage_slot); settings.load_mesh(g29_storage_slot);
state.storage_slot = g29_storage_slot; storage_slot = g29_storage_slot;
SERIAL_PROTOCOLLNPGM("Done."); SERIAL_PROTOCOLLNPGM("Done.");
} }
@ -630,7 +630,7 @@
// //
if (parser.seen('S')) { // Store (or Save) Current Mesh Data if (parser.seen('S')) { // Store (or Save) Current Mesh Data
g29_storage_slot = parser.has_value() ? parser.value_int() : state.storage_slot; g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
if (g29_storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the if (g29_storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
@ -662,7 +662,7 @@
} }
settings.store_mesh(g29_storage_slot); settings.store_mesh(g29_storage_slot);
state.storage_slot = g29_storage_slot; storage_slot = g29_storage_slot;
SERIAL_PROTOCOLLNPGM("Done."); SERIAL_PROTOCOLLNPGM("Done.");
} }
@ -1170,7 +1170,7 @@
return; return;
} }
ubl_state_at_invocation = state.active; ubl_state_at_invocation = planner.leveling_active;
set_bed_leveling_enabled(false); set_bed_leveling_enabled(false);
} }
@ -1195,10 +1195,10 @@
void unified_bed_leveling::g29_what_command() { void unified_bed_leveling::g29_what_command() {
report_state(); report_state();
if (state.storage_slot == -1) if (storage_slot == -1)
SERIAL_PROTOCOLPGM("No Mesh Loaded."); SERIAL_PROTOCOLPGM("No Mesh Loaded.");
else { else {
SERIAL_PROTOCOLPAIR("Mesh ", state.storage_slot); SERIAL_PROTOCOLPAIR("Mesh ", storage_slot);
SERIAL_PROTOCOLPGM(" Loaded."); SERIAL_PROTOCOLPGM(" Loaded.");
} }
SERIAL_EOL(); SERIAL_EOL();

@ -173,7 +173,7 @@
// are going to apply the Y-Distance into the cell to interpolate the final Z correction. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST)); const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
float z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0; float z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;
/** /**
* If part of the Mesh is undefined, it will show up as NAN * If part of the Mesh is undefined, it will show up as NAN
@ -257,9 +257,8 @@
*/ */
const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m; const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi); float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi)
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
/** /**
* If part of the Mesh is undefined, it will show up as NAN * If part of the Mesh is undefined, it will show up as NAN
@ -322,9 +321,8 @@
const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi)), const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi)),
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi); float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi)
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
/** /**
* If part of the Mesh is undefined, it will show up as NAN * If part of the Mesh is undefined, it will show up as NAN
@ -395,9 +393,8 @@
if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
// Yes! Crossing a Y Mesh Line next // Yes! Crossing a Y Mesh Line next
float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi); float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi)
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
/** /**
* If part of the Mesh is undefined, it will show up as NAN * If part of the Mesh is undefined, it will show up as NAN
@ -423,9 +420,8 @@
} }
else { else {
// Yes! Crossing a X Mesh Line next // Yes! Crossing a X Mesh Line next
float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag); float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag)
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
/** /**
* If part of the Mesh is undefined, it will show up as NAN * If part of the Mesh is undefined, it will show up as NAN
@ -580,17 +576,9 @@
seg_rz = RAW_Z_POSITION(current_position[Z_AXIS]), seg_rz = RAW_Z_POSITION(current_position[Z_AXIS]),
seg_le = current_position[E_AXIS]; seg_le = current_position[E_AXIS];
const bool above_fade_height = (
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
planner.z_fade_height != 0 && planner.z_fade_height < RAW_Z_POSITION(ltarget[Z_AXIS])
#else
false
#endif
);
// Only compute leveling per segment if ubl active and target below z_fade_height. // Only compute leveling per segment if ubl active and target below z_fade_height.
if (!state.active || above_fade_height) { // no mesh leveling if (!planner.leveling_active || !planner.leveling_active_at_z(ltarget[Z_AXIS])) { // no mesh leveling
do { do {
@ -616,7 +604,7 @@
// Otherwise perform per-segment leveling // Otherwise perform per-segment leveling
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float fade_scaling_factor = fade_scaling_factor_for_z(ltarget[Z_AXIS]); const float fade_scaling_factor = planner.fade_scaling_factor_for_z(ltarget[Z_AXIS]);
#endif #endif
// increment to first segment destination // increment to first segment destination
@ -648,7 +636,7 @@
z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating state.active (G29 A) if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell, if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points

@ -51,7 +51,7 @@ void GcodeSuite::M420() {
if (parser.seen('L')) { if (parser.seen('L')) {
#if ENABLED(EEPROM_SETTINGS) #if ENABLED(EEPROM_SETTINGS)
const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.state.storage_slot; const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.storage_slot;
const int16_t a = settings.calc_num_meshes(); const int16_t a = settings.calc_num_meshes();
if (!a) { if (!a) {
@ -66,7 +66,7 @@ void GcodeSuite::M420() {
} }
settings.load_mesh(storage_slot); settings.load_mesh(storage_slot);
ubl.state.storage_slot = storage_slot; ubl.storage_slot = storage_slot;
#else #else
@ -80,7 +80,7 @@ void GcodeSuite::M420() {
if (parser.seen('L') || parser.seen('V')) { if (parser.seen('L') || parser.seen('V')) {
ubl.display_map(0); // Currently only supports one map type ubl.display_map(0); // Currently only supports one map type
SERIAL_ECHOLNPAIR("ubl.mesh_is_valid = ", ubl.mesh_is_valid()); SERIAL_ECHOLNPAIR("ubl.mesh_is_valid = ", ubl.mesh_is_valid());
SERIAL_ECHOLNPAIR("ubl.state.storage_slot = ", ubl.state.storage_slot); SERIAL_ECHOLNPAIR("ubl.storage_slot = ", ubl.storage_slot);
} }
#endif // AUTO_BED_LEVELING_UBL #endif // AUTO_BED_LEVELING_UBL
@ -105,14 +105,13 @@ void GcodeSuite::M420() {
} }
const bool to_enable = parser.boolval('S'); const bool to_enable = parser.boolval('S');
if (parser.seen('S')) if (parser.seen('S')) set_bed_leveling_enabled(to_enable);
set_bed_leveling_enabled(to_enable);
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units()); if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
#endif #endif
const bool new_status = leveling_is_active(); const bool new_status = planner.leveling_active;
if (to_enable && !new_status) { if (to_enable && !new_status) {
SERIAL_ERROR_START(); SERIAL_ERROR_START();

@ -137,7 +137,7 @@ void GcodeSuite::G29() {
const uint8_t old_debug_flags = marlin_debug_flags; const uint8_t old_debug_flags = marlin_debug_flags;
if (query) marlin_debug_flags |= DEBUG_LEVELING; if (query) marlin_debug_flags |= DEBUG_LEVELING;
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) {
DEBUG_POS(">>> gcode_G29", current_position); DEBUG_POS(">>> G29", current_position);
log_machine_info(); log_machine_info();
} }
marlin_debug_flags = old_debug_flags; marlin_debug_flags = old_debug_flags;
@ -247,7 +247,7 @@ void GcodeSuite::G29() {
abl_probe_index = -1; abl_probe_index = -1;
#endif #endif
abl_should_enable = leveling_is_active(); abl_should_enable = planner.leveling_active;
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
@ -388,7 +388,7 @@ void GcodeSuite::G29() {
stepper.synchronize(); stepper.synchronize();
// Disable auto bed leveling during G29 // Disable auto bed leveling during G29
planner.abl_enabled = false; planner.leveling_active = false;
if (!dryrun) { if (!dryrun) {
// Re-orient the current position without leveling // Re-orient the current position without leveling
@ -402,7 +402,7 @@ void GcodeSuite::G29() {
#if HAS_BED_PROBE #if HAS_BED_PROBE
// Deploy the probe. Probe will raise if needed. // Deploy the probe. Probe will raise if needed.
if (DEPLOY_PROBE()) { if (DEPLOY_PROBE()) {
planner.abl_enabled = abl_should_enable; planner.leveling_active = abl_should_enable;
return; return;
} }
#endif #endif
@ -421,7 +421,7 @@ void GcodeSuite::G29() {
) { ) {
if (dryrun) { if (dryrun) {
// Before reset bed level, re-enable to correct the position // Before reset bed level, re-enable to correct the position
planner.abl_enabled = abl_should_enable; planner.leveling_active = abl_should_enable;
} }
// Reset grid to 0.0 or "not probed". (Also disables ABL) // Reset grid to 0.0 or "not probed". (Also disables ABL)
reset_bed_level(); reset_bed_level();
@ -466,7 +466,7 @@ void GcodeSuite::G29() {
#if HAS_SOFTWARE_ENDSTOPS #if HAS_SOFTWARE_ENDSTOPS
soft_endstops_enabled = enable_soft_endstops; soft_endstops_enabled = enable_soft_endstops;
#endif #endif
planner.abl_enabled = abl_should_enable; planner.leveling_active = abl_should_enable;
g29_in_progress = false; g29_in_progress = false;
#if ENABLED(LCD_BED_LEVELING) #if ENABLED(LCD_BED_LEVELING)
lcd_wait_for_move = false; lcd_wait_for_move = false;
@ -669,7 +669,7 @@ void GcodeSuite::G29() {
measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level); measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
if (isnan(measured_z)) { if (isnan(measured_z)) {
planner.abl_enabled = abl_should_enable; planner.leveling_active = abl_should_enable;
break; break;
} }
@ -705,7 +705,7 @@ void GcodeSuite::G29() {
yProbe = LOGICAL_Y_POSITION(points[i].y); yProbe = LOGICAL_Y_POSITION(points[i].y);
measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level); measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
if (isnan(measured_z)) { if (isnan(measured_z)) {
planner.abl_enabled = abl_should_enable; planner.leveling_active = abl_should_enable;
break; break;
} }
points[i].z = measured_z; points[i].z = measured_z;
@ -728,7 +728,7 @@ void GcodeSuite::G29() {
// Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
if (STOW_PROBE()) { if (STOW_PROBE()) {
planner.abl_enabled = abl_should_enable; planner.leveling_active = abl_should_enable;
measured_z = NAN; measured_z = NAN;
} }
} }
@ -896,9 +896,9 @@ void GcodeSuite::G29() {
float converted[XYZ]; float converted[XYZ];
COPY(converted, current_position); COPY(converted, current_position);
planner.abl_enabled = true; planner.leveling_active = true;
planner.unapply_leveling(converted); // use conversion machinery planner.unapply_leveling(converted); // use conversion machinery
planner.abl_enabled = false; planner.leveling_active = false;
// Use the last measured distance to the bed, if possible // Use the last measured distance to the bed, if possible
if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER)) if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
@ -950,21 +950,21 @@ void GcodeSuite::G29() {
#endif #endif
// Auto Bed Leveling is complete! Enable if possible. // Auto Bed Leveling is complete! Enable if possible.
planner.abl_enabled = dryrun ? abl_should_enable : true; planner.leveling_active = dryrun ? abl_should_enable : true;
} // !isnan(measured_z) } // !isnan(measured_z)
// Restore state after probing // Restore state after probing
if (!faux) clean_up_after_endstop_or_probe_move(); if (!faux) clean_up_after_endstop_or_probe_move();
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29"); if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< G29");
#endif #endif
report_current_position(); report_current_position();
KEEPALIVE_STATE(IN_HANDLER); KEEPALIVE_STATE(IN_HANDLER);
if (planner.abl_enabled) if (planner.leveling_active)
SYNC_PLAN_POSITION_KINEMATIC(); SYNC_PLAN_POSITION_KINEMATIC();
} }

@ -42,7 +42,7 @@
void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); } void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
void mesh_probing_done() { void mesh_probing_done() {
mbl.set_has_mesh(true); mbl.has_mesh = true;
gcode.home_all_axes(); gcode.home_all_axes();
set_bed_leveling_enabled(true); set_bed_leveling_enabled(true);
#if ENABLED(MESH_G28_REST_ORIGIN) #if ENABLED(MESH_G28_REST_ORIGIN)
@ -92,7 +92,7 @@ void GcodeSuite::G29() {
switch (state) { switch (state) {
case MeshReport: case MeshReport:
if (leveling_is_valid()) { if (leveling_is_valid()) {
SERIAL_PROTOCOLLNPAIR("State: ", leveling_is_active() ? MSG_ON : MSG_OFF); SERIAL_PROTOCOLLNPAIR("State: ", planner.leveling_active ? MSG_ON : MSG_OFF);
mbl_mesh_report(); mbl_mesh_report();
} }
else else

@ -157,7 +157,7 @@ void GcodeSuite::G28(const bool always_home_all) {
// Disable the leveling matrix before homing // Disable the leveling matrix before homing
#if HAS_LEVELING #if HAS_LEVELING
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
const bool ubl_state_at_entry = leveling_is_active(); const bool ubl_state_at_entry = planner.leveling_active;
#endif #endif
set_bed_leveling_enabled(false); set_bed_leveling_enabled(false);
#endif #endif

@ -32,6 +32,10 @@
#include "../../feature/bedlevel/bedlevel.h" #include "../../feature/bedlevel/bedlevel.h"
#endif #endif
#if HAS_LEVELING
#include "../../module/planner.h"
#endif
/** /**
* M48: Z probe repeatability measurement function. * M48: Z probe repeatability measurement function.
* *
@ -115,7 +119,7 @@ void GcodeSuite::M48() {
// Disable bed level correction in M48 because we want the raw data when we probe // Disable bed level correction in M48 because we want the raw data when we probe
#if HAS_LEVELING #if HAS_LEVELING
const bool was_enabled = leveling_is_active(); const bool was_enabled = planner.leveling_active;
set_bed_leveling_enabled(false); set_bed_leveling_enabled(false);
#endif #endif

@ -37,7 +37,7 @@ void GcodeSuite::T(const uint8_t tmp_extruder) {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder); SERIAL_ECHOPAIR(">>> T(", tmp_extruder);
SERIAL_CHAR(')'); SERIAL_CHAR(')');
SERIAL_EOL(); SERIAL_EOL();
DEBUG_POS("BEFORE", current_position); DEBUG_POS("BEFORE", current_position);
@ -61,7 +61,7 @@ void GcodeSuite::T(const uint8_t tmp_extruder) {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) {
DEBUG_POS("AFTER", current_position); DEBUG_POS("AFTER", current_position);
SERIAL_ECHOLNPGM("<<< gcode_T"); SERIAL_ECHOLNPGM("<<< T()");
} }
#endif #endif
} }

@ -820,12 +820,12 @@
#define UBL_DELTA (ENABLED(AUTO_BED_LEVELING_UBL) && (ENABLED(DELTA) || ENABLED(UBL_GRANULAR_SEGMENTATION_FOR_CARTESIAN))) #define UBL_DELTA (ENABLED(AUTO_BED_LEVELING_UBL) && (ENABLED(DELTA) || ENABLED(UBL_GRANULAR_SEGMENTATION_FOR_CARTESIAN)))
#define ABL_PLANAR (ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)) #define ABL_PLANAR (ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT))
#define ABL_GRID (ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)) #define ABL_GRID (ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR))
#define HAS_ABL (ABL_PLANAR || ABL_GRID || ENABLED(AUTO_BED_LEVELING_UBL)) #define OLDSCHOOL_ABL (ABL_PLANAR || ABL_GRID)
#define HAS_LEVELING (HAS_ABL || ENABLED(MESH_BED_LEVELING)) #define HAS_ABL (OLDSCHOOL_ABL || ENABLED(AUTO_BED_LEVELING_UBL))
#define HAS_AUTOLEVEL (HAS_ABL && DISABLED(PROBE_MANUALLY)) #define HAS_LEVELING (HAS_ABL || ENABLED(MESH_BED_LEVELING))
#define OLDSCHOOL_ABL (HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)) #define HAS_AUTOLEVEL (HAS_ABL && DISABLED(PROBE_MANUALLY))
#define HAS_MESH (ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)) #define HAS_MESH (ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING))
#define PLANNER_LEVELING (ABL_PLANAR || ABL_GRID || ENABLED(MESH_BED_LEVELING) || UBL_DELTA) #define PLANNER_LEVELING (OLDSCHOOL_ABL || ENABLED(MESH_BED_LEVELING) || UBL_DELTA)
#define HAS_PROBING_PROCEDURE (HAS_ABL || ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)) #define HAS_PROBING_PROCEDURE (HAS_ABL || ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST))
#if HAS_PROBING_PROCEDURE #if HAS_PROBING_PROCEDURE
#define PROBE_BED_WIDTH abs(RIGHT_PROBE_BED_POSITION - (LEFT_PROBE_BED_POSITION)) #define PROBE_BED_WIDTH abs(RIGHT_PROBE_BED_POSITION - (LEFT_PROBE_BED_POSITION))

@ -651,7 +651,7 @@ static_assert(1 >= 0
/** /**
* Require some kind of probe for bed leveling and probe testing * Require some kind of probe for bed leveling and probe testing
*/ */
#if HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL) #if OLDSCHOOL_ABL
#error "Auto Bed Leveling requires one of these: PROBE_MANUALLY, FIX_MOUNTED_PROBE, BLTOUCH, SOLENOID_PROBE, Z_PROBE_ALLEN_KEY, Z_PROBE_SLED, or a Z Servo." #error "Auto Bed Leveling requires one of these: PROBE_MANUALLY, FIX_MOUNTED_PROBE, BLTOUCH, SOLENOID_PROBE, Z_PROBE_ALLEN_KEY, Z_PROBE_SLED, or a Z Servo."
#endif #endif

@ -1086,7 +1086,7 @@ void kill_screen(const char* lcd_msg) {
const float new_zoffset = zprobe_zoffset + planner.steps_to_mm[Z_AXIS] * babystep_increment; const float new_zoffset = zprobe_zoffset + planner.steps_to_mm[Z_AXIS] * babystep_increment;
if (WITHIN(new_zoffset, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) { if (WITHIN(new_zoffset, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
if (leveling_is_active()) if (planner.leveling_active)
thermalManager.babystep_axis(Z_AXIS, babystep_increment); thermalManager.babystep_axis(Z_AXIS, babystep_increment);
zprobe_zoffset = new_zoffset; zprobe_zoffset = new_zoffset;
@ -1788,7 +1788,7 @@ void kill_screen(const char* lcd_msg) {
_lcd_after_probing(); _lcd_after_probing();
mbl.set_has_mesh(true); mbl.has_mesh = true;
mesh_probing_done(); mesh_probing_done();
#endif #endif
@ -1906,11 +1906,12 @@ void kill_screen(const char* lcd_msg) {
enqueue_and_echo_commands_P(PSTR("G28")); enqueue_and_echo_commands_P(PSTR("G28"));
} }
static bool _level_state; static bool new_level_state;
void _lcd_toggle_bed_leveling() { set_bed_leveling_enabled(_level_state); } void _lcd_toggle_bed_leveling() { set_bed_leveling_enabled(new_level_state); }
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
void _lcd_set_z_fade_height() { set_z_fade_height(planner.z_fade_height); } static float new_z_fade_height;
void _lcd_set_z_fade_height() { set_z_fade_height(new_z_fade_height); }
#endif #endif
/** /**
@ -1934,13 +1935,11 @@ void kill_screen(const char* lcd_msg) {
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28")); MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28"));
else if (leveling_is_valid()) { else if (leveling_is_valid()) {
_level_state = leveling_is_active(); MENU_ITEM_EDIT_CALLBACK(bool, MSG_BED_LEVELING, &new_level_state, _lcd_toggle_bed_leveling);
MENU_ITEM_EDIT_CALLBACK(bool, MSG_BED_LEVELING, &_level_state, _lcd_toggle_bed_leveling);
} }
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
set_z_fade_height(planner.z_fade_height); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float62, MSG_Z_FADE_HEIGHT, &new_z_fade_height, 0.0, 100.0, _lcd_set_z_fade_height);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float62, MSG_Z_FADE_HEIGHT, &planner.z_fade_height, 0.0, 100.0, _lcd_set_z_fade_height);
#endif #endif
// //
@ -1971,6 +1970,16 @@ void kill_screen(const char* lcd_msg) {
END_MENU(); END_MENU();
} }
void _lcd_goto_bed_leveling() {
currentScreen = lcd_bed_leveling;
#if ENABLED(LCD_BED_LEVELING)
new_level_state = planner.leveling_active;
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
new_z_fade_height = planner.z_fade_height;
#endif
}
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
void _lcd_ubl_level_bed(); void _lcd_ubl_level_bed();
@ -2541,7 +2550,13 @@ void kill_screen(const char* lcd_msg) {
#if ENABLED(PROBE_MANUALLY) #if ENABLED(PROBE_MANUALLY)
if (!g29_in_progress) if (!g29_in_progress)
#endif #endif
MENU_ITEM(submenu, MSG_BED_LEVELING, lcd_bed_leveling); MENU_ITEM(submenu, MSG_BED_LEVELING,
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
_lcd_goto_bed_leveling
#else
lcd_bed_leveling
#endif
);
#else #else
#if PLANNER_LEVELING #if PLANNER_LEVELING
MENU_ITEM(gcode, MSG_BED_LEVELING, PSTR("G28\nG29")); MENU_ITEM(gcode, MSG_BED_LEVELING, PSTR("G28\nG29"));

@ -795,7 +795,7 @@ static void lcd_implementation_status_screen() {
lcd.print(ftostr52sp(FIXFLOAT(current_position[Z_AXIS]))); lcd.print(ftostr52sp(FIXFLOAT(current_position[Z_AXIS])));
#if HAS_LEVELING #if HAS_LEVELING
lcd.write(leveling_is_active() || blink ? '_' : ' '); lcd.write(planner.leveling_active || blink ? '_' : ' ');
#endif #endif
#endif // LCD_HEIGHT > 2 #endif // LCD_HEIGHT > 2

@ -68,7 +68,7 @@
* 219 z_fade_height (float) * 219 z_fade_height (float)
* *
* MESH_BED_LEVELING: 43 bytes * MESH_BED_LEVELING: 43 bytes
* 223 M420 S from mbl.status (bool) * 223 M420 S planner.leveling_active (bool)
* 224 mbl.z_offset (float) * 224 mbl.z_offset (float)
* 228 GRID_MAX_POINTS_X (uint8_t) * 228 GRID_MAX_POINTS_X (uint8_t)
* 229 GRID_MAX_POINTS_Y (uint8_t) * 229 GRID_MAX_POINTS_Y (uint8_t)
@ -88,8 +88,8 @@
* 316 z_values[][] (float x9, up to float x256) +988 * 316 z_values[][] (float x9, up to float x256) +988
* *
* AUTO_BED_LEVELING_UBL: 2 bytes * AUTO_BED_LEVELING_UBL: 2 bytes
* 324 G29 A ubl.state.active (bool) * 324 G29 A planner.leveling_active (bool)
* 325 G29 S ubl.state.storage_slot (int8_t) * 325 G29 S ubl.storage_slot (int8_t)
* *
* DELTA: 48 bytes * DELTA: 48 bytes
* 344 M666 XYZ delta_endstop_adj (float x3) * 344 M666 XYZ delta_endstop_adj (float x3)
@ -202,6 +202,10 @@ MarlinSettings settings;
#include "../feature/fwretract.h" #include "../feature/fwretract.h"
#endif #endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float new_z_fade_height;
#endif
/** /**
* Post-process after Retrieve or Reset * Post-process after Retrieve or Reset
*/ */
@ -231,7 +235,7 @@ void MarlinSettings::postprocess() {
#endif #endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
set_z_fade_height(planner.z_fade_height); set_z_fade_height(new_z_fade_height);
#endif #endif
#if HAS_BED_PROBE #if HAS_BED_PROBE
@ -329,7 +333,7 @@ void MarlinSettings::postprocess() {
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float zfh = planner.z_fade_height; const float zfh = planner.z_fade_height;
#else #else
const float zfh = 10.0; const float zfh = 0.0;
#endif #endif
EEPROM_WRITE(zfh); EEPROM_WRITE(zfh);
@ -343,7 +347,7 @@ void MarlinSettings::postprocess() {
sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]), sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
"MBL Z array is the wrong size." "MBL Z array is the wrong size."
); );
const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT); const bool leveling_is_on = mbl.has_mesh;
const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y; const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
EEPROM_WRITE(leveling_is_on); EEPROM_WRITE(leveling_is_on);
EEPROM_WRITE(mbl.z_offset); EEPROM_WRITE(mbl.z_offset);
@ -406,8 +410,8 @@ void MarlinSettings::postprocess() {
#endif // AUTO_BED_LEVELING_BILINEAR #endif // AUTO_BED_LEVELING_BILINEAR
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
EEPROM_WRITE(ubl.state.active); EEPROM_WRITE(planner.leveling_active);
EEPROM_WRITE(ubl.state.storage_slot); EEPROM_WRITE(ubl.storage_slot);
#else #else
const bool ubl_active = false; const bool ubl_active = false;
const int8_t storage_slot = -1; const int8_t storage_slot = -1;
@ -630,8 +634,8 @@ void MarlinSettings::postprocess() {
} }
#if ENABLED(UBL_SAVE_ACTIVE_ON_M500) #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
if (ubl.state.storage_slot >= 0) if (ubl.storage_slot >= 0)
store_mesh(ubl.state.storage_slot); store_mesh(ubl.storage_slot);
#endif #endif
EEPROM_FINISH(); EEPROM_FINISH();
return !eeprom_error; return !eeprom_error;
@ -720,7 +724,7 @@ void MarlinSettings::postprocess() {
// //
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
EEPROM_READ(planner.z_fade_height); EEPROM_READ(new_z_fade_height);
#else #else
EEPROM_READ(dummy); EEPROM_READ(dummy);
#endif #endif
@ -737,7 +741,7 @@ void MarlinSettings::postprocess() {
EEPROM_READ(mesh_num_y); EEPROM_READ(mesh_num_y);
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
mbl.status = leveling_is_on ? _BV(MBL_STATUS_HAS_MESH_BIT) : 0; mbl.has_mesh = leveling_is_on;
mbl.z_offset = dummy; mbl.z_offset = dummy;
if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) { if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
// EEPROM data fits the current mesh // EEPROM data fits the current mesh
@ -793,8 +797,8 @@ void MarlinSettings::postprocess() {
} }
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
EEPROM_READ(ubl.state.active); EEPROM_READ(planner.leveling_active);
EEPROM_READ(ubl.state.storage_slot); EEPROM_READ(ubl.storage_slot);
#else #else
uint8_t dummyui8; uint8_t dummyui8;
EEPROM_READ(dummyb); EEPROM_READ(dummyb);
@ -1011,10 +1015,10 @@ void MarlinSettings::postprocess() {
ubl.reset(); ubl.reset();
} }
if (ubl.state.storage_slot >= 0) { if (ubl.storage_slot >= 0) {
load_mesh(ubl.state.storage_slot); load_mesh(ubl.storage_slot);
#if ENABLED(EEPROM_CHITCHAT) #if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHOPAIR("Mesh ", ubl.state.storage_slot); SERIAL_ECHOPAIR("Mesh ", ubl.storage_slot);
SERIAL_ECHOLNPGM(" loaded from storage."); SERIAL_ECHOLNPGM(" loaded from storage.");
#endif #endif
} }
@ -1156,7 +1160,7 @@ void MarlinSettings::reset() {
planner.max_jerk[E_AXIS] = DEFAULT_EJERK; planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
planner.z_fade_height = 0.0; new_z_fade_height = 0.0;
#endif #endif
#if HAS_HOME_OFFSET #if HAS_HOME_OFFSET
@ -1556,9 +1560,9 @@ void MarlinSettings::reset() {
SERIAL_ECHOLNPGM(":"); SERIAL_ECHOLNPGM(":");
} }
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M420 S", leveling_is_active() ? 1 : 0); SERIAL_ECHOPAIR(" M420 S", planner.leveling_active ? 1 : 0);
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
SERIAL_ECHOPAIR(" Z", planner.z_fade_height); SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
#endif #endif
SERIAL_EOL(); SERIAL_EOL();
@ -1566,7 +1570,7 @@ void MarlinSettings::reset() {
SERIAL_EOL(); SERIAL_EOL();
ubl.report_state(); ubl.report_state();
SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.state.storage_slot); SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes()); SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes());
SERIAL_ECHOLNPGM(" meshes.\n"); SERIAL_ECHOLNPGM(" meshes.\n");
} }
@ -1578,7 +1582,7 @@ void MarlinSettings::reset() {
SERIAL_ECHOLNPGM("Auto Bed Leveling:"); SERIAL_ECHOLNPGM("Auto Bed Leveling:");
} }
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M420 S", leveling_is_active() ? 1 : 0); SERIAL_ECHOPAIR(" M420 S", planner.leveling_active ? 1 : 0);
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height)); SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
#endif #endif

@ -490,14 +490,14 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#if ENABLED(DELTA) #if ENABLED(DELTA)
#define ADJUST_DELTA(V) \ #define ADJUST_DELTA(V) \
if (planner.abl_enabled) { \ if (planner.leveling_active) { \
const float zadj = bilinear_z_offset(V); \ const float zadj = bilinear_z_offset(V); \
delta[A_AXIS] += zadj; \ delta[A_AXIS] += zadj; \
delta[B_AXIS] += zadj; \ delta[B_AXIS] += zadj; \
delta[C_AXIS] += zadj; \ delta[C_AXIS] += zadj; \
} }
#else #else
#define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); } #define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }
#endif #endif
#else #else
#define ADJUST_DELTA(V) NOOP #define ADJUST_DELTA(V) NOOP
@ -630,41 +630,30 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
/** /**
* Prepare a linear move in a Cartesian setup. * Prepare a linear move in a Cartesian setup.
* If Mesh Bed Leveling is enabled, perform a mesh move. * Bed Leveling will be applied to the move if enabled.
* *
* Returns true if the caller didn't update current_position. * Returns true if current_position[] was set to destination[]
*/ */
inline bool prepare_move_to_destination_cartesian() { inline bool prepare_move_to_destination_cartesian() {
#if ENABLED(AUTO_BED_LEVELING_UBL) if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {
const float fr_scaled = MMS_SCALED(feedrate_mm_s); const float fr_scaled = MMS_SCALED(feedrate_mm_s);
if (ubl.state.active) { // direct use of ubl.state.active for speed #if HAS_MESH
ubl.line_to_destination_cartesian(fr_scaled, active_extruder); if (planner.leveling_active) {
return true; #if ENABLED(AUTO_BED_LEVELING_UBL)
} ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
else #elif ENABLED(MESH_BED_LEVELING)
line_to_destination(fr_scaled);
#else
// Do not use feedrate_percentage for E or Z only moves
if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS])
line_to_destination();
else {
const float fr_scaled = MMS_SCALED(feedrate_mm_s);
#if ENABLED(MESH_BED_LEVELING)
if (mbl.active()) { // direct used of mbl.active() for speed
mesh_line_to_destination(fr_scaled); mesh_line_to_destination(fr_scaled);
return true; #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
}
else
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (planner.abl_enabled) { // direct use of abl_enabled for speed
bilinear_line_to_destination(fr_scaled); bilinear_line_to_destination(fr_scaled);
return true; #endif
} return true;
else }
#endif #endif // HAS_MESH
line_to_destination(fr_scaled); line_to_destination(fr_scaled);
} }
#endif else
line_to_destination();
return false; return false;
} }
@ -699,6 +688,8 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
/** /**
* Prepare a linear move in a dual X axis setup * Prepare a linear move in a dual X axis setup
*
* Return true if current_position[] was set to destination[]
*/ */
inline bool prepare_move_to_destination_dualx() { inline bool prepare_move_to_destination_dualx() {
if (active_extruder_parked) { if (active_extruder_parked) {

@ -122,8 +122,8 @@ float Planner::min_feedrate_mm_s,
Planner::max_jerk[XYZE], // The largest speed change requiring no acceleration Planner::max_jerk[XYZE], // The largest speed change requiring no acceleration
Planner::min_travel_feedrate_mm_s; Planner::min_travel_feedrate_mm_s;
#if OLDSCHOOL_ABL #if HAS_LEVELING
bool Planner::abl_enabled = false; // Flag that auto bed leveling is enabled bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled
#if ABL_PLANAR #if ABL_PLANAR
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
#endif #endif
@ -131,7 +131,8 @@ float Planner::min_feedrate_mm_s,
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float Planner::z_fade_height, // Initialized by settings.load() float Planner::z_fade_height, // Initialized by settings.load()
Planner::inverse_z_fade_height; Planner::inverse_z_fade_height,
Planner::last_raw_lz;
#endif #endif
#if ENABLED(AUTOTEMP) #if ENABLED(AUTOTEMP)
@ -555,46 +556,31 @@ void Planner::calculate_volumetric_multipliers() {
*/ */
void Planner::apply_leveling(float &lx, float &ly, float &lz) { void Planner::apply_leveling(float &lx, float &ly, float &lz) {
#if ENABLED(AUTO_BED_LEVELING_UBL) if (!planner.leveling_active) return;
if (!ubl.state.active) return;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
// if z_fade_height enabled (nonzero) and raw_z above it, no leveling required
if (planner.z_fade_height && planner.z_fade_height <= RAW_Z_POSITION(lz)) return;
lz += ubl.get_z_correction(lx, ly) * ubl.fade_scaling_factor_for_z(lz);
#else // no fade
lz += ubl.get_z_correction(lx, ly);
#endif // FADE
#endif // UBL
#if OLDSCHOOL_ABL
if (!abl_enabled) return;
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) && DISABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static float z_fade_factor = 1.0, last_raw_lz = -999.0; const float fade_scaling_factor = fade_scaling_factor_for_z(lz);
if (z_fade_height) { if (!fade_scaling_factor) return;
const float raw_lz = RAW_Z_POSITION(lz); #else
if (raw_lz >= z_fade_height) return; constexpr float fade_scaling_factor = 1.0;
if (last_raw_lz != raw_lz) {
last_raw_lz = raw_lz;
z_fade_factor = 1.0 - raw_lz * inverse_z_fade_height;
}
}
else
z_fade_factor = 1.0;
#endif #endif
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(AUTO_BED_LEVELING_UBL)
if (mbl.active()) lz += ubl.get_z_correction(lx, ly) * fade_scaling_factor;
lz += mbl.get_z(RAW_X_POSITION(lx), RAW_Y_POSITION(ly)
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #elif ENABLED(MESH_BED_LEVELING)
, z_fade_factor
#endif lz += mbl.get_z(RAW_X_POSITION(lx), RAW_Y_POSITION(ly)
); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
, fade_scaling_factor
#endif
);
#elif ABL_PLANAR #elif ABL_PLANAR
UNUSED(fade_scaling_factor);
float dx = RAW_X_POSITION(lx) - (X_TILT_FULCRUM), float dx = RAW_X_POSITION(lx) - (X_TILT_FULCRUM),
dy = RAW_Y_POSITION(ly) - (Y_TILT_FULCRUM), dy = RAW_Y_POSITION(ly) - (Y_TILT_FULCRUM),
dz = RAW_Z_POSITION(lz); dz = RAW_Z_POSITION(lz);
@ -608,70 +594,55 @@ void Planner::calculate_volumetric_multipliers() {
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
float tmp[XYZ] = { lx, ly, 0 }; float tmp[XYZ] = { lx, ly, 0 };
lz += bilinear_z_offset(tmp) lz += bilinear_z_offset(tmp) * fade_scaling_factor;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
* z_fade_factor
#endif
;
#endif #endif
} }
void Planner::unapply_leveling(float logical[XYZ]) { void Planner::unapply_leveling(float logical[XYZ]) {
#if ENABLED(AUTO_BED_LEVELING_UBL) if (!planner.leveling_active) return;
if (ubl.state.active) {
const float z_physical = RAW_Z_POSITION(logical[Z_AXIS]), #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
z_correct = ubl.get_z_correction(logical[X_AXIS], logical[Y_AXIS]), if (z_fade_height && RAW_Z_POSITION(logical[Z_AXIS]) >= z_fade_height) return;
z_virtual = z_physical - z_correct; #endif
float z_logical = LOGICAL_Z_POSITION(z_virtual);
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
// for P=physical_z, L=logical_z, M=mesh_z, H=fade_height, #if ENABLED(AUTO_BED_LEVELING_UBL)
// Given P=L+M(1-L/H) (faded mesh correction formula for L<H)
// then L=P-M(1-L/H)
// so L=P-M+ML/H
// so L-ML/H=P-M
// so L(1-M/H)=P-M
// so L=(P-M)/(1-M/H) for L<H
if (planner.z_fade_height) { const float z_physical = RAW_Z_POSITION(logical[Z_AXIS]),
if (z_logical >= planner.z_fade_height) z_correct = ubl.get_z_correction(logical[X_AXIS], logical[Y_AXIS]),
z_logical = LOGICAL_Z_POSITION(z_physical); z_virtual = z_physical - z_correct;
else float z_logical = LOGICAL_Z_POSITION(z_virtual);
z_logical /= 1.0 - z_correct * planner.inverse_z_fade_height;
}
#endif // ENABLE_LEVELING_FADE_HEIGHT #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
logical[Z_AXIS] = z_logical; // for P=physical_z, L=logical_z, M=mesh_z, H=fade_height,
} // Given P=L+M(1-L/H) (faded mesh correction formula for L<H)
// then L=P-M(1-L/H)
// so L=P-M+ML/H
// so L-ML/H=P-M
// so L(1-M/H)=P-M
// so L=(P-M)/(1-M/H) for L<H
if (planner.z_fade_height) {
if (z_logical >= planner.z_fade_height)
z_logical = LOGICAL_Z_POSITION(z_physical);
else
z_logical /= 1.0 - z_correct * planner.inverse_z_fade_height;
}
return; // don't fall thru to other ENABLE_LEVELING_FADE_HEIGHT logic #endif // ENABLE_LEVELING_FADE_HEIGHT
#endif logical[Z_AXIS] = z_logical;
#if OLDSCHOOL_ABL #elif ENABLED(MESH_BED_LEVELING)
if (!abl_enabled) return;
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (z_fade_height && RAW_Z_POSITION(logical[Z_AXIS]) >= z_fade_height) return; const float c = mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]), 1.0);
#endif logical[Z_AXIS] = (z_fade_height * (RAW_Z_POSITION(logical[Z_AXIS]) - c)) / (z_fade_height - c);
#else
#if ENABLED(MESH_BED_LEVELING) logical[Z_AXIS] -= mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]));
#endif
if (mbl.active()) {
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float c = mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]), 1.0);
logical[Z_AXIS] = (z_fade_height * (RAW_Z_POSITION(logical[Z_AXIS]) - c)) / (z_fade_height - c);
#else
logical[Z_AXIS] -= mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]));
#endif
}
#elif ABL_PLANAR #elif ABL_PLANAR

@ -164,15 +164,14 @@ class Planner {
max_jerk[XYZE], // The largest speed change requiring no acceleration max_jerk[XYZE], // The largest speed change requiring no acceleration
min_travel_feedrate_mm_s; min_travel_feedrate_mm_s;
#if OLDSCHOOL_ABL #if HAS_LEVELING
static bool abl_enabled; // Flag that bed leveling is enabled static bool leveling_active; // Flag that bed leveling is enabled
#if ABL_PLANAR #if ABL_PLANAR
static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
#endif #endif
#endif #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static float z_fade_height, inverse_z_fade_height;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #endif
static float z_fade_height, inverse_z_fade_height;
#endif #endif
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
@ -202,6 +201,10 @@ class Planner {
*/ */
static uint32_t cutoff_long; static uint32_t cutoff_long;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static float last_raw_lz;
#endif
#if ENABLED(DISABLE_INACTIVE_EXTRUDER) #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
/** /**
* Counters to manage disabling inactive extruders * Counters to manage disabling inactive extruders
@ -263,6 +266,52 @@ class Planner {
if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA; if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
} }
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
/**
* Get the Z leveling fade factor based on the given Z height,
* re-calculating only when needed.
*
* Returns 1.0 if planner.z_fade_height is 0.0.
* Returns 0.0 if Z is past the specified 'Fade Height'.
*/
inline static float fade_scaling_factor_for_z(const float &lz) {
static float z_fade_factor = 1.0;
if (z_fade_height) {
const float raw_lz = RAW_Z_POSITION(lz);
if (raw_lz >= z_fade_height) return 0.0;
if (last_raw_lz != raw_lz) {
last_raw_lz = raw_lz;
z_fade_factor = 1.0 - raw_lz * inverse_z_fade_height;
}
return z_fade_factor;
}
return 1.0;
}
FORCE_INLINE static void force_fade_recalc() { last_raw_lz = -999.999; }
FORCE_INLINE static void set_z_fade_height(const float &zfh) {
z_fade_height = zfh > 0 ? zfh : 0;
inverse_z_fade_height = RECIPROCAL(z_fade_height);
force_fade_recalc();
}
FORCE_INLINE static bool leveling_active_at_z(const float &lz) {
return !z_fade_height || RAW_Z_POSITION(lz) < z_fade_height;
}
#else
FORCE_INLINE static float fade_scaling_factor_for_z(const float &lz) {
UNUSED(lz);
return 1.0;
}
FORCE_INLINE static bool leveling_active_at_z(const float &lz) { return true; }
#endif
#if PLANNER_LEVELING #if PLANNER_LEVELING
#define ARG_X float lx #define ARG_X float lx

@ -679,7 +679,7 @@ void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
#endif #endif
#if ENABLED(BABYSTEP_ZPROBE_OFFSET) #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
if (!no_babystep && leveling_is_active()) if (!no_babystep && planner.leveling_active)
thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS])); thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
#else #else
UNUSED(no_babystep); UNUSED(no_babystep);

@ -2059,7 +2059,8 @@ void Temperature::isr() {
} // temp_count >= OVERSAMPLENR } // temp_count >= OVERSAMPLENR
// Go to the next state, up to SensorsReady // Go to the next state, up to SensorsReady
adc_sensor_state = (ADCSensorState)((int(adc_sensor_state) + 1) % int(StartupDelay)); adc_sensor_state = (ADCSensorState)(int(adc_sensor_state) + 1);
if (adc_sensor_state > SensorsReady) adc_sensor_state = (ADCSensorState)0;
#if ENABLED(BABYSTEPPING) #if ENABLED(BABYSTEPPING)
LOOP_XYZ(axis) { LOOP_XYZ(axis) {

@ -295,13 +295,13 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n
+ (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE); + (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
/** /**
* Steps: * Steps:
* 1. raise Z-Axis to have enough clearance * 1. Raise Z-Axis to give enough clearance
* 2. move to park poition of old extruder * 2. Move to park position of old extruder
* 3. disengage magnetc field, wait for delay * 3. Disengage magnetic field, wait for delay
* 4. move near new extruder * 4. Move near new extruder
* 5. engage magnetic field for new extruder * 5. Engage magnetic field for new extruder
* 6. move to parking incl. offset of new extruder * 6. Move to parking incl. offset of new extruder
* 7. lower Z-Axis * 7. Lower Z-Axis
*/ */
// STEP 1 // STEP 1
@ -464,7 +464,7 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
if (leveling_is_active()) { if (planner.leveling_active) {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]); if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
#endif #endif

Loading…
Cancel
Save