|
|
|
@ -1034,7 +1034,7 @@ inline void line_to_destination() {
|
|
|
|
|
inline void sync_plan_position() {
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
}
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
#if defined(DELTA) || defined(SCARA)
|
|
|
|
|
inline void sync_plan_position_delta() {
|
|
|
|
|
calculate_delta(current_position);
|
|
|
|
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
@ -2177,8 +2177,7 @@ inline void gcode_G28() {
|
|
|
|
|
bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if (verbose_level > 0)
|
|
|
|
|
{
|
|
|
|
|
if (verbose_level > 0) {
|
|
|
|
|
SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
|
|
|
|
|
if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
|
|
|
|
|
}
|
|
|
|
@ -2253,7 +2252,6 @@ inline void gcode_G28() {
|
|
|
|
|
current_position[Y_AXIS] = uncorrected_position.y;
|
|
|
|
|
current_position[Z_AXIS] = uncorrected_position.z;
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
|
|
|
|
|
#endif // !DELTA
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -2264,8 +2262,8 @@ inline void gcode_G28() {
|
|
|
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
|
|
|
|
|
|
// probe at the points of a lattice grid
|
|
|
|
|
const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
|
|
|
|
|
const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
|
|
|
|
|
const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
|
|
|
|
|
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
|
|
|
|
|
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
delta_grid_spacing[0] = xGridSpacing;
|
|
|
|
@ -5255,8 +5253,8 @@ void clamp_to_software_endstops(float target[3])
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
void recalc_delta_settings(float radius, float diagonal_rod)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
void recalc_delta_settings(float radius, float diagonal_rod) {
|
|
|
|
|
delta_tower1_x = -SIN_60 * radius; // front left tower
|
|
|
|
|
delta_tower1_y = -COS_60 * radius;
|
|
|
|
|
delta_tower2_x = SIN_60 * radius; // front right tower
|
|
|
|
@ -5266,8 +5264,7 @@ void recalc_delta_settings(float radius, float diagonal_rod)
|
|
|
|
|
delta_diagonal_rod_2 = sq(diagonal_rod);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void calculate_delta(float cartesian[3])
|
|
|
|
|
{
|
|
|
|
|
void calculate_delta(float cartesian[3]) {
|
|
|
|
|
delta[X_AXIS] = sqrt(delta_diagonal_rod_2
|
|
|
|
|
- sq(delta_tower1_x-cartesian[X_AXIS])
|
|
|
|
|
- sq(delta_tower1_y-cartesian[Y_AXIS])
|
|
|
|
@ -5292,27 +5289,25 @@ void calculate_delta(float cartesian[3])
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
// Adjust print surface height by linear interpolation over the bed_level array.
|
|
|
|
|
int delta_grid_spacing[2] = { 0, 0 };
|
|
|
|
|
void adjust_delta(float cartesian[3])
|
|
|
|
|
{
|
|
|
|
|
if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
|
|
|
|
|
return; // G29 not done
|
|
|
|
|
void adjust_delta(float cartesian[3]) {
|
|
|
|
|
if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
|
|
|
|
|
|
|
|
|
|
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
|
|
|
|
|
float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
|
|
|
|
|
float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
|
|
|
|
|
int floor_x = floor(grid_x);
|
|
|
|
|
int floor_y = floor(grid_y);
|
|
|
|
|
float ratio_x = grid_x - floor_x;
|
|
|
|
|
float ratio_y = grid_y - floor_y;
|
|
|
|
|
float z1 = bed_level[floor_x+half][floor_y+half];
|
|
|
|
|
float z2 = bed_level[floor_x+half][floor_y+half+1];
|
|
|
|
|
float z3 = bed_level[floor_x+half+1][floor_y+half];
|
|
|
|
|
float z4 = bed_level[floor_x+half+1][floor_y+half+1];
|
|
|
|
|
float left = (1-ratio_y)*z1 + ratio_y*z2;
|
|
|
|
|
float right = (1-ratio_y)*z3 + ratio_y*z4;
|
|
|
|
|
float offset = (1-ratio_x)*left + ratio_x*right;
|
|
|
|
|
float h1 = 0.001 - half, h2 = half - 0.001,
|
|
|
|
|
grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
|
|
|
|
|
grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
|
|
|
|
|
int floor_x = floor(grid_x), floor_y = floor(grid_y);
|
|
|
|
|
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
|
|
|
|
|
z1 = bed_level[floor_x + half][floor_y + half],
|
|
|
|
|
z2 = bed_level[floor_x + half][floor_y + half + 1],
|
|
|
|
|
z3 = bed_level[floor_x + half + 1][floor_y + half],
|
|
|
|
|
z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
|
|
|
|
|
left = (1 - ratio_y) * z1 + ratio_y * z2,
|
|
|
|
|
right = (1 - ratio_y) * z3 + ratio_y * z4,
|
|
|
|
|
offset = (1 - ratio_x) * left + ratio_x * right;
|
|
|
|
|
|
|
|
|
|
delta[X_AXIS] += offset;
|
|
|
|
|
delta[Y_AXIS] += offset;
|
|
|
|
@ -5336,23 +5331,21 @@ void adjust_delta(float cartesian[3])
|
|
|
|
|
}
|
|
|
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
void prepare_move_raw()
|
|
|
|
|
{
|
|
|
|
|
void prepare_move_raw() {
|
|
|
|
|
previous_millis_cmd = millis();
|
|
|
|
|
calculate_delta(destination);
|
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
|
|
|
|
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
|
|
|
|
active_extruder);
|
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
|
current_position[i] = destination[i];
|
|
|
|
|
}
|
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
|
|
|
|
|
for (int i = 0; i < NUM_AXIS; i++) current_position[i] = destination[i];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // DELTA
|
|
|
|
|
|
|
|
|
|
#if defined(MESH_BED_LEVELING)
|
|
|
|
|
|
|
|
|
|
#if !defined(MIN)
|
|
|
|
|
#define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
|
|
|
|
|
#endif // ! MIN
|
|
|
|
|
|
|
|
|
|
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
|
|
|
|
|
void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
|
|
|
|
|
{
|
|
|
|
@ -5424,8 +5417,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
|
|
|
|
|
}
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
void prepare_move()
|
|
|
|
|
{
|
|
|
|
|
void prepare_move() {
|
|
|
|
|
clamp_to_software_endstops(destination);
|
|
|
|
|
previous_millis_cmd = millis();
|
|
|
|
|
|
|
|
|
@ -5539,7 +5531,7 @@ void prepare_move()
|
|
|
|
|
}
|
|
|
|
|
#endif //DUAL_X_CARRIAGE
|
|
|
|
|
|
|
|
|
|
#if ! (defined DELTA || defined SCARA)
|
|
|
|
|
#if !defined(DELTA) && !defined(SCARA)
|
|
|
|
|
// Do not use feedmultiply for E or Z only moves
|
|
|
|
|
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
|
|
|
|
|
line_to_destination();
|
|
|
|
|