|
|
|
@ -286,6 +286,182 @@ void checkHitEndstops() {
|
|
|
|
|
|
|
|
|
|
void enable_endstops(bool check) { check_endstops = check; }
|
|
|
|
|
|
|
|
|
|
// Check endstops
|
|
|
|
|
inline void update_endstops() {
|
|
|
|
|
|
|
|
|
|
#ifdef Z_DUAL_ENDSTOPS
|
|
|
|
|
uint16_t
|
|
|
|
|
#else
|
|
|
|
|
byte
|
|
|
|
|
#endif
|
|
|
|
|
current_endstop_bits = 0;
|
|
|
|
|
|
|
|
|
|
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
|
|
|
|
|
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
|
|
|
|
|
#define _AXIS(AXIS) AXIS ##_AXIS
|
|
|
|
|
#define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN))
|
|
|
|
|
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
|
|
|
|
|
|
|
|
|
|
// SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
|
|
|
|
|
#define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
|
|
|
|
|
// COPY_BIT: copy the value of COPY_BIT to BIT in bits
|
|
|
|
|
#define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
|
|
|
|
|
// TEST_ENDSTOP: test the old and the current status of an endstop
|
|
|
|
|
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
|
|
|
|
|
|
|
|
|
|
#define UPDATE_ENDSTOP(AXIS,MINMAX) \
|
|
|
|
|
SET_ENDSTOP_BIT(AXIS, MINMAX); \
|
|
|
|
|
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
|
|
|
|
|
endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
|
|
|
|
|
_ENDSTOP_HIT(AXIS); \
|
|
|
|
|
step_events_completed = current_block->step_event_count; \
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef COREXY
|
|
|
|
|
// Head direction in -X axis for CoreXY bots.
|
|
|
|
|
// If DeltaX == -DeltaY, the movement is only in Y axis
|
|
|
|
|
if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
|
|
|
|
|
if (TEST(out_bits, X_HEAD))
|
|
|
|
|
#elif defined(COREXZ)
|
|
|
|
|
// Head direction in -X axis for CoreXZ bots.
|
|
|
|
|
// If DeltaX == -DeltaZ, the movement is only in Z axis
|
|
|
|
|
if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, C_AXIS))) {
|
|
|
|
|
if (TEST(out_bits, X_HEAD))
|
|
|
|
|
#else
|
|
|
|
|
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
|
|
|
|
|
#endif
|
|
|
|
|
{ // -direction
|
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
|
|
|
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
|
|
|
|
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|
|
|
|
|
#endif
|
|
|
|
|
{
|
|
|
|
|
#if HAS_X_MIN
|
|
|
|
|
UPDATE_ENDSTOP(X, MIN);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else { // +direction
|
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
|
|
|
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
|
|
|
|
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|
|
|
|
|
#endif
|
|
|
|
|
{
|
|
|
|
|
#if HAS_X_MAX
|
|
|
|
|
UPDATE_ENDSTOP(X, MAX);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#if defined(COREXY) || defined(COREXZ)
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef COREXY
|
|
|
|
|
// Head direction in -Y axis for CoreXY bots.
|
|
|
|
|
// If DeltaX == DeltaY, the movement is only in X axis
|
|
|
|
|
if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
|
|
|
|
|
if (TEST(out_bits, Y_HEAD))
|
|
|
|
|
#else
|
|
|
|
|
if (TEST(out_bits, Y_AXIS)) // -direction
|
|
|
|
|
#endif
|
|
|
|
|
{ // -direction
|
|
|
|
|
#if HAS_Y_MIN
|
|
|
|
|
UPDATE_ENDSTOP(Y, MIN);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else { // +direction
|
|
|
|
|
#if HAS_Y_MAX
|
|
|
|
|
UPDATE_ENDSTOP(Y, MAX);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
#if defined(COREXY) || defined(COREXZ)
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef COREXZ
|
|
|
|
|
// Head direction in -Z axis for CoreXZ bots.
|
|
|
|
|
// If DeltaX == DeltaZ, the movement is only in X axis
|
|
|
|
|
if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
|
|
|
|
|
if (TEST(out_bits, Z_HEAD))
|
|
|
|
|
#else
|
|
|
|
|
if (TEST(out_bits, Z_AXIS))
|
|
|
|
|
#endif
|
|
|
|
|
{ // z -direction
|
|
|
|
|
#if HAS_Z_MIN
|
|
|
|
|
|
|
|
|
|
#ifdef Z_DUAL_ENDSTOPS
|
|
|
|
|
SET_ENDSTOP_BIT(Z, MIN);
|
|
|
|
|
#if HAS_Z2_MIN
|
|
|
|
|
SET_ENDSTOP_BIT(Z2, MIN);
|
|
|
|
|
#else
|
|
|
|
|
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2
|
|
|
|
|
|
|
|
|
|
if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
|
|
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
|
|
endstop_hit_bits |= BIT(Z_MIN);
|
|
|
|
|
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
|
}
|
|
|
|
|
#else // !Z_DUAL_ENDSTOPS
|
|
|
|
|
|
|
|
|
|
UPDATE_ENDSTOP(Z, MIN);
|
|
|
|
|
#endif // !Z_DUAL_ENDSTOPS
|
|
|
|
|
#endif // Z_MIN_PIN
|
|
|
|
|
|
|
|
|
|
#ifdef Z_PROBE_ENDSTOP
|
|
|
|
|
UPDATE_ENDSTOP(Z, PROBE);
|
|
|
|
|
|
|
|
|
|
if (TEST_ENDSTOP(Z_PROBE))
|
|
|
|
|
{
|
|
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
|
|
endstop_hit_bits |= BIT(Z_PROBE);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else { // z +direction
|
|
|
|
|
#if HAS_Z_MAX
|
|
|
|
|
|
|
|
|
|
#ifdef Z_DUAL_ENDSTOPS
|
|
|
|
|
|
|
|
|
|
SET_ENDSTOP_BIT(Z, MAX);
|
|
|
|
|
#if HAS_Z2_MAX
|
|
|
|
|
SET_ENDSTOP_BIT(Z2, MAX);
|
|
|
|
|
#else
|
|
|
|
|
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2
|
|
|
|
|
|
|
|
|
|
if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
|
|
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
|
|
endstop_hit_bits |= BIT(Z_MIN);
|
|
|
|
|
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#else // !Z_DUAL_ENDSTOPS
|
|
|
|
|
|
|
|
|
|
UPDATE_ENDSTOP(Z, MAX);
|
|
|
|
|
|
|
|
|
|
#endif // !Z_DUAL_ENDSTOPS
|
|
|
|
|
#endif // Z_MAX_PIN
|
|
|
|
|
|
|
|
|
|
#ifdef Z_PROBE_ENDSTOP
|
|
|
|
|
UPDATE_ENDSTOP(Z, PROBE);
|
|
|
|
|
|
|
|
|
|
if (TEST_ENDSTOP(Z_PROBE))
|
|
|
|
|
{
|
|
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
|
|
endstop_hit_bits |= BIT(Z_PROBE);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
old_endstop_bits = current_endstop_bits;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// __________________________
|
|
|
|
|
// /| |\ _________________ ^
|
|
|
|
|
// / | | \ /| |\ |
|
|
|
|
@ -429,8 +605,7 @@ FORCE_INLINE void trapezoid_generator_reset() {
|
|
|
|
|
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
|
|
|
|
ISR(TIMER1_COMPA_vect) {
|
|
|
|
|
|
|
|
|
|
if (cleaning_buffer_counter)
|
|
|
|
|
{
|
|
|
|
|
if (cleaning_buffer_counter) {
|
|
|
|
|
current_block = NULL;
|
|
|
|
|
plan_discard_current_block();
|
|
|
|
|
#ifdef SD_FINISHED_RELEASECOMMAND
|
|
|
|
@ -471,182 +646,8 @@ ISR(TIMER1_COMPA_vect) {
|
|
|
|
|
|
|
|
|
|
if (current_block != NULL) {
|
|
|
|
|
|
|
|
|
|
// Check endstops
|
|
|
|
|
if (check_endstops) {
|
|
|
|
|
|
|
|
|
|
#ifdef Z_DUAL_ENDSTOPS
|
|
|
|
|
uint16_t
|
|
|
|
|
#else
|
|
|
|
|
byte
|
|
|
|
|
#endif
|
|
|
|
|
current_endstop_bits = 0;
|
|
|
|
|
|
|
|
|
|
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
|
|
|
|
|
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
|
|
|
|
|
#define _AXIS(AXIS) AXIS ##_AXIS
|
|
|
|
|
#define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN))
|
|
|
|
|
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
|
|
|
|
|
|
|
|
|
|
// SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
|
|
|
|
|
#define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
|
|
|
|
|
// COPY_BIT: copy the value of COPY_BIT to BIT in bits
|
|
|
|
|
#define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
|
|
|
|
|
// TEST_ENDSTOP: test the old and the current status of an endstop
|
|
|
|
|
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
|
|
|
|
|
|
|
|
|
|
#define UPDATE_ENDSTOP(AXIS,MINMAX) \
|
|
|
|
|
SET_ENDSTOP_BIT(AXIS, MINMAX); \
|
|
|
|
|
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
|
|
|
|
|
endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
|
|
|
|
|
_ENDSTOP_HIT(AXIS); \
|
|
|
|
|
step_events_completed = current_block->step_event_count; \
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef COREXY
|
|
|
|
|
// Head direction in -X axis for CoreXY bots.
|
|
|
|
|
// If DeltaX == -DeltaY, the movement is only in Y axis
|
|
|
|
|
if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
|
|
|
|
|
if (TEST(out_bits, X_HEAD))
|
|
|
|
|
#elif defined(COREXZ)
|
|
|
|
|
// Head direction in -X axis for CoreXZ bots.
|
|
|
|
|
// If DeltaX == -DeltaZ, the movement is only in Z axis
|
|
|
|
|
if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, C_AXIS))) {
|
|
|
|
|
if (TEST(out_bits, X_HEAD))
|
|
|
|
|
#else
|
|
|
|
|
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
|
|
|
|
|
#endif
|
|
|
|
|
{ // -direction
|
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
|
|
|
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
|
|
|
|
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|
|
|
|
|
#endif
|
|
|
|
|
{
|
|
|
|
|
#if HAS_X_MIN
|
|
|
|
|
UPDATE_ENDSTOP(X, MIN);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else { // +direction
|
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
|
|
|
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
|
|
|
|
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|
|
|
|
|
#endif
|
|
|
|
|
{
|
|
|
|
|
#if HAS_X_MAX
|
|
|
|
|
UPDATE_ENDSTOP(X, MAX);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#if defined(COREXY) || defined(COREXZ)
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef COREXY
|
|
|
|
|
// Head direction in -Y axis for CoreXY bots.
|
|
|
|
|
// If DeltaX == DeltaY, the movement is only in X axis
|
|
|
|
|
if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
|
|
|
|
|
if (TEST(out_bits, Y_HEAD))
|
|
|
|
|
#else
|
|
|
|
|
if (TEST(out_bits, Y_AXIS)) // -direction
|
|
|
|
|
#endif
|
|
|
|
|
{ // -direction
|
|
|
|
|
#if HAS_Y_MIN
|
|
|
|
|
UPDATE_ENDSTOP(Y, MIN);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else { // +direction
|
|
|
|
|
#if HAS_Y_MAX
|
|
|
|
|
UPDATE_ENDSTOP(Y, MAX);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
#if defined(COREXY) || defined(COREXZ)
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef COREXZ
|
|
|
|
|
// Head direction in -Z axis for CoreXZ bots.
|
|
|
|
|
// If DeltaX == DeltaZ, the movement is only in X axis
|
|
|
|
|
if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
|
|
|
|
|
if (TEST(out_bits, Z_HEAD))
|
|
|
|
|
#else
|
|
|
|
|
if (TEST(out_bits, Z_AXIS))
|
|
|
|
|
#endif
|
|
|
|
|
{ // z -direction
|
|
|
|
|
#if HAS_Z_MIN
|
|
|
|
|
|
|
|
|
|
#ifdef Z_DUAL_ENDSTOPS
|
|
|
|
|
SET_ENDSTOP_BIT(Z, MIN);
|
|
|
|
|
#if HAS_Z2_MIN
|
|
|
|
|
SET_ENDSTOP_BIT(Z2, MIN);
|
|
|
|
|
#else
|
|
|
|
|
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2
|
|
|
|
|
|
|
|
|
|
if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
|
|
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
|
|
endstop_hit_bits |= BIT(Z_MIN);
|
|
|
|
|
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
|
}
|
|
|
|
|
#else // !Z_DUAL_ENDSTOPS
|
|
|
|
|
|
|
|
|
|
UPDATE_ENDSTOP(Z, MIN);
|
|
|
|
|
#endif // !Z_DUAL_ENDSTOPS
|
|
|
|
|
#endif // Z_MIN_PIN
|
|
|
|
|
|
|
|
|
|
#ifdef Z_PROBE_ENDSTOP
|
|
|
|
|
UPDATE_ENDSTOP(Z, PROBE);
|
|
|
|
|
|
|
|
|
|
if (TEST_ENDSTOP(Z_PROBE))
|
|
|
|
|
{
|
|
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
|
|
endstop_hit_bits |= BIT(Z_PROBE);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else { // z +direction
|
|
|
|
|
#if HAS_Z_MAX
|
|
|
|
|
|
|
|
|
|
#ifdef Z_DUAL_ENDSTOPS
|
|
|
|
|
|
|
|
|
|
SET_ENDSTOP_BIT(Z, MAX);
|
|
|
|
|
#if HAS_Z2_MAX
|
|
|
|
|
SET_ENDSTOP_BIT(Z2, MAX);
|
|
|
|
|
#else
|
|
|
|
|
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2
|
|
|
|
|
|
|
|
|
|
if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
|
|
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
|
|
endstop_hit_bits |= BIT(Z_MIN);
|
|
|
|
|
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#else // !Z_DUAL_ENDSTOPS
|
|
|
|
|
|
|
|
|
|
UPDATE_ENDSTOP(Z, MAX);
|
|
|
|
|
|
|
|
|
|
#endif // !Z_DUAL_ENDSTOPS
|
|
|
|
|
#endif // Z_MAX_PIN
|
|
|
|
|
|
|
|
|
|
#ifdef Z_PROBE_ENDSTOP
|
|
|
|
|
UPDATE_ENDSTOP(Z, PROBE);
|
|
|
|
|
|
|
|
|
|
if (TEST_ENDSTOP(Z_PROBE))
|
|
|
|
|
{
|
|
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
|
|
endstop_hit_bits |= BIT(Z_PROBE);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
old_endstop_bits = current_endstop_bits;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Update endstops state, if enabled
|
|
|
|
|
if (check_endstops) update_endstops();
|
|
|
|
|
|
|
|
|
|
// Take multiple steps per interrupt (For high speed moves)
|
|
|
|
|
for (int8_t i = 0; i < step_loops; i++) {
|
|
|
|
|