|
|
|
@ -410,6 +410,8 @@ bool target_direction;
|
|
|
|
|
|
|
|
|
|
void process_next_command();
|
|
|
|
|
|
|
|
|
|
void plan_arc(float target[NUM_AXIS], float *offset, uint8_t clockwise);
|
|
|
|
|
|
|
|
|
|
bool setTargetedHotend(int code);
|
|
|
|
|
|
|
|
|
|
void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
|
|
@ -1885,130 +1887,6 @@ inline void gcode_G0_G1() {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Plan an arc in 2 dimensions
|
|
|
|
|
*
|
|
|
|
|
* The arc is approximated by generating many small linear segments.
|
|
|
|
|
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
|
|
|
|
|
* Arcs should only be made relatively large (over 5mm), as larger arcs with
|
|
|
|
|
* larger segments will tend to be more efficient. Your slicer should have
|
|
|
|
|
* options for G2/G3 arc generation. In future these options may be GCode tunable.
|
|
|
|
|
*/
|
|
|
|
|
void plan_arc(
|
|
|
|
|
float *target, // Destination position
|
|
|
|
|
float *offset, // Center of rotation relative to current_position
|
|
|
|
|
uint8_t clockwise // Clockwise?
|
|
|
|
|
) {
|
|
|
|
|
|
|
|
|
|
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
|
|
|
|
|
center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
|
|
|
|
|
center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
|
|
|
|
|
linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
|
|
|
|
|
extruder_travel = target[E_AXIS] - current_position[E_AXIS],
|
|
|
|
|
r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
|
|
|
|
|
r_axis1 = -offset[Y_AXIS],
|
|
|
|
|
rt_axis0 = target[X_AXIS] - center_axis0,
|
|
|
|
|
rt_axis1 = target[Y_AXIS] - center_axis1;
|
|
|
|
|
|
|
|
|
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
|
|
|
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
|
|
|
|
|
if (angular_travel < 0) { angular_travel += RADIANS(360); }
|
|
|
|
|
if (clockwise) { angular_travel -= RADIANS(360); }
|
|
|
|
|
|
|
|
|
|
// Make a circle if the angular rotation is 0
|
|
|
|
|
if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
|
|
|
|
|
angular_travel += RADIANS(360);
|
|
|
|
|
|
|
|
|
|
float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
|
|
|
|
|
if (mm_of_travel < 0.001) { return; }
|
|
|
|
|
uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
|
|
|
|
|
if (segments == 0) segments = 1;
|
|
|
|
|
|
|
|
|
|
float theta_per_segment = angular_travel/segments;
|
|
|
|
|
float linear_per_segment = linear_travel/segments;
|
|
|
|
|
float extruder_per_segment = extruder_travel/segments;
|
|
|
|
|
|
|
|
|
|
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
|
|
|
|
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
|
|
|
|
r_T = [cos(phi) -sin(phi);
|
|
|
|
|
sin(phi) cos(phi] * r ;
|
|
|
|
|
|
|
|
|
|
For arc generation, the center of the circle is the axis of rotation and the radius vector is
|
|
|
|
|
defined from the circle center to the initial position. Each line segment is formed by successive
|
|
|
|
|
vector rotations. This requires only two cos() and sin() computations to form the rotation
|
|
|
|
|
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
|
|
|
|
|
all double numbers are single precision on the Arduino. (True double precision will not have
|
|
|
|
|
round off issues for CNC applications.) Single precision error can accumulate to be greater than
|
|
|
|
|
tool precision in some cases. Therefore, arc path correction is implemented.
|
|
|
|
|
|
|
|
|
|
Small angle approximation may be used to reduce computation overhead further. This approximation
|
|
|
|
|
holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
|
|
|
|
|
theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
|
|
|
|
|
to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
|
|
|
|
|
numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
|
|
|
|
|
issue for CNC machines with the single precision Arduino calculations.
|
|
|
|
|
|
|
|
|
|
This approximation also allows plan_arc to immediately insert a line segment into the planner
|
|
|
|
|
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
|
|
|
|
|
a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
|
|
|
|
|
This is important when there are successive arc motions.
|
|
|
|
|
*/
|
|
|
|
|
// Vector rotation matrix values
|
|
|
|
|
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
|
|
|
|
|
float sin_T = theta_per_segment;
|
|
|
|
|
|
|
|
|
|
float arc_target[4];
|
|
|
|
|
float sin_Ti;
|
|
|
|
|
float cos_Ti;
|
|
|
|
|
float r_axisi;
|
|
|
|
|
uint16_t i;
|
|
|
|
|
int8_t count = 0;
|
|
|
|
|
|
|
|
|
|
// Initialize the linear axis
|
|
|
|
|
arc_target[Z_AXIS] = current_position[Z_AXIS];
|
|
|
|
|
|
|
|
|
|
// Initialize the extruder axis
|
|
|
|
|
arc_target[E_AXIS] = current_position[E_AXIS];
|
|
|
|
|
|
|
|
|
|
float feed_rate = feedrate*feedrate_multiplier/60/100.0;
|
|
|
|
|
|
|
|
|
|
for (i = 1; i < segments; i++) { // Increment (segments-1)
|
|
|
|
|
|
|
|
|
|
if (count < N_ARC_CORRECTION) {
|
|
|
|
|
// Apply vector rotation matrix to previous r_axis0 / 1
|
|
|
|
|
r_axisi = r_axis0*sin_T + r_axis1*cos_T;
|
|
|
|
|
r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
|
|
|
|
|
r_axis1 = r_axisi;
|
|
|
|
|
count++;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|
|
|
|
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|
|
|
|
cos_Ti = cos(i*theta_per_segment);
|
|
|
|
|
sin_Ti = sin(i*theta_per_segment);
|
|
|
|
|
r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
|
|
|
|
|
r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
|
|
|
|
|
count = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Update arc_target location
|
|
|
|
|
arc_target[X_AXIS] = center_axis0 + r_axis0;
|
|
|
|
|
arc_target[Y_AXIS] = center_axis1 + r_axis1;
|
|
|
|
|
arc_target[Z_AXIS] += linear_per_segment;
|
|
|
|
|
arc_target[E_AXIS] += extruder_per_segment;
|
|
|
|
|
|
|
|
|
|
clamp_to_software_endstops(arc_target);
|
|
|
|
|
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
|
|
|
|
|
}
|
|
|
|
|
// Ensure last segment arrives at target location.
|
|
|
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
|
|
|
|
|
|
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
|
|
|
// motion control system might still be processing the action and the real tool position
|
|
|
|
|
// in any intermediate location.
|
|
|
|
|
set_current_to_destination();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* G2: Clockwise Arc
|
|
|
|
|
* G3: Counterclockwise Arc
|
|
|
|
@ -6074,9 +5952,9 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
|
|
|
|
|
|
|
|
|
|
#if defined(DELTA) || defined(SCARA)
|
|
|
|
|
|
|
|
|
|
inline bool prepare_move_delta() {
|
|
|
|
|
inline bool prepare_move_delta(float target[NUM_AXIS]) {
|
|
|
|
|
float difference[NUM_AXIS];
|
|
|
|
|
for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
|
|
|
|
|
for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
|
|
|
|
|
|
|
|
|
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
|
|
|
|
|
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
|
|
|
|
@ -6093,22 +5971,22 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
|
|
|
|
|
float fraction = float(s) / float(steps);
|
|
|
|
|
|
|
|
|
|
for (int8_t i = 0; i < NUM_AXIS; i++)
|
|
|
|
|
destination[i] = current_position[i] + difference[i] * fraction;
|
|
|
|
|
target[i] = current_position[i] + difference[i] * fraction;
|
|
|
|
|
|
|
|
|
|
calculate_delta(destination);
|
|
|
|
|
calculate_delta(target);
|
|
|
|
|
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
adjust_delta(destination);
|
|
|
|
|
adjust_delta(target);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
|
|
|
|
|
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
|
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
@ -6116,7 +5994,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
|
|
|
|
|
#endif // DELTA || SCARA
|
|
|
|
|
|
|
|
|
|
#ifdef SCARA
|
|
|
|
|
inline bool prepare_move_scara() { return prepare_move_delta(); }
|
|
|
|
|
inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
|
|
@ -6193,9 +6071,9 @@ void prepare_move() {
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef SCARA
|
|
|
|
|
if (!prepare_move_scara()) return;
|
|
|
|
|
if (!prepare_move_scara(destination)) return;
|
|
|
|
|
#elif defined(DELTA)
|
|
|
|
|
if (!prepare_move_delta()) return;
|
|
|
|
|
if (!prepare_move_delta(destination)) return;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
|
|
@ -6209,6 +6087,148 @@ void prepare_move() {
|
|
|
|
|
set_current_to_destination();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Plan an arc in 2 dimensions
|
|
|
|
|
*
|
|
|
|
|
* The arc is approximated by generating many small linear segments.
|
|
|
|
|
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
|
|
|
|
|
* Arcs should only be made relatively large (over 5mm), as larger arcs with
|
|
|
|
|
* larger segments will tend to be more efficient. Your slicer should have
|
|
|
|
|
* options for G2/G3 arc generation. In future these options may be GCode tunable.
|
|
|
|
|
*/
|
|
|
|
|
void plan_arc(
|
|
|
|
|
float target[NUM_AXIS], // Destination position
|
|
|
|
|
float *offset, // Center of rotation relative to current_position
|
|
|
|
|
uint8_t clockwise // Clockwise?
|
|
|
|
|
) {
|
|
|
|
|
|
|
|
|
|
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
|
|
|
|
|
center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
|
|
|
|
|
center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
|
|
|
|
|
linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
|
|
|
|
|
extruder_travel = target[E_AXIS] - current_position[E_AXIS],
|
|
|
|
|
r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
|
|
|
|
|
r_axis1 = -offset[Y_AXIS],
|
|
|
|
|
rt_axis0 = target[X_AXIS] - center_axis0,
|
|
|
|
|
rt_axis1 = target[Y_AXIS] - center_axis1;
|
|
|
|
|
|
|
|
|
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
|
|
|
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
|
|
|
|
|
if (angular_travel < 0) { angular_travel += RADIANS(360); }
|
|
|
|
|
if (clockwise) { angular_travel -= RADIANS(360); }
|
|
|
|
|
|
|
|
|
|
// Make a circle if the angular rotation is 0
|
|
|
|
|
if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
|
|
|
|
|
angular_travel += RADIANS(360);
|
|
|
|
|
|
|
|
|
|
float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
|
|
|
|
|
if (mm_of_travel < 0.001) { return; }
|
|
|
|
|
uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
|
|
|
|
|
if (segments == 0) segments = 1;
|
|
|
|
|
|
|
|
|
|
float theta_per_segment = angular_travel/segments;
|
|
|
|
|
float linear_per_segment = linear_travel/segments;
|
|
|
|
|
float extruder_per_segment = extruder_travel/segments;
|
|
|
|
|
|
|
|
|
|
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
|
|
|
|
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
|
|
|
|
r_T = [cos(phi) -sin(phi);
|
|
|
|
|
sin(phi) cos(phi] * r ;
|
|
|
|
|
|
|
|
|
|
For arc generation, the center of the circle is the axis of rotation and the radius vector is
|
|
|
|
|
defined from the circle center to the initial position. Each line segment is formed by successive
|
|
|
|
|
vector rotations. This requires only two cos() and sin() computations to form the rotation
|
|
|
|
|
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
|
|
|
|
|
all double numbers are single precision on the Arduino. (True double precision will not have
|
|
|
|
|
round off issues for CNC applications.) Single precision error can accumulate to be greater than
|
|
|
|
|
tool precision in some cases. Therefore, arc path correction is implemented.
|
|
|
|
|
|
|
|
|
|
Small angle approximation may be used to reduce computation overhead further. This approximation
|
|
|
|
|
holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
|
|
|
|
|
theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
|
|
|
|
|
to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
|
|
|
|
|
numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
|
|
|
|
|
issue for CNC machines with the single precision Arduino calculations.
|
|
|
|
|
|
|
|
|
|
This approximation also allows plan_arc to immediately insert a line segment into the planner
|
|
|
|
|
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
|
|
|
|
|
a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
|
|
|
|
|
This is important when there are successive arc motions.
|
|
|
|
|
*/
|
|
|
|
|
// Vector rotation matrix values
|
|
|
|
|
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
|
|
|
|
|
float sin_T = theta_per_segment;
|
|
|
|
|
|
|
|
|
|
float arc_target[NUM_AXIS];
|
|
|
|
|
float sin_Ti;
|
|
|
|
|
float cos_Ti;
|
|
|
|
|
float r_axisi;
|
|
|
|
|
uint16_t i;
|
|
|
|
|
int8_t count = 0;
|
|
|
|
|
|
|
|
|
|
// Initialize the linear axis
|
|
|
|
|
arc_target[Z_AXIS] = current_position[Z_AXIS];
|
|
|
|
|
|
|
|
|
|
// Initialize the extruder axis
|
|
|
|
|
arc_target[E_AXIS] = current_position[E_AXIS];
|
|
|
|
|
|
|
|
|
|
float feed_rate = feedrate*feedrate_multiplier/60/100.0;
|
|
|
|
|
|
|
|
|
|
for (i = 1; i < segments; i++) { // Increment (segments-1)
|
|
|
|
|
|
|
|
|
|
if (count < N_ARC_CORRECTION) {
|
|
|
|
|
// Apply vector rotation matrix to previous r_axis0 / 1
|
|
|
|
|
r_axisi = r_axis0*sin_T + r_axis1*cos_T;
|
|
|
|
|
r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
|
|
|
|
|
r_axis1 = r_axisi;
|
|
|
|
|
count++;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|
|
|
|
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|
|
|
|
cos_Ti = cos(i*theta_per_segment);
|
|
|
|
|
sin_Ti = sin(i*theta_per_segment);
|
|
|
|
|
r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
|
|
|
|
|
r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
|
|
|
|
|
count = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Update arc_target location
|
|
|
|
|
arc_target[X_AXIS] = center_axis0 + r_axis0;
|
|
|
|
|
arc_target[Y_AXIS] = center_axis1 + r_axis1;
|
|
|
|
|
arc_target[Z_AXIS] += linear_per_segment;
|
|
|
|
|
arc_target[E_AXIS] += extruder_per_segment;
|
|
|
|
|
|
|
|
|
|
clamp_to_software_endstops(arc_target);
|
|
|
|
|
|
|
|
|
|
#if defined(DELTA) || defined(SCARA)
|
|
|
|
|
calculate_delta(arc_target);
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
adjust_delta(arc_target);
|
|
|
|
|
#endif
|
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
|
|
|
|
|
#else
|
|
|
|
|
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Ensure last segment arrives at target location.
|
|
|
|
|
#if defined(DELTA) || defined(SCARA)
|
|
|
|
|
calculate_delta(target);
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
adjust_delta(target);
|
|
|
|
|
#endif
|
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
|
|
|
|
|
#else
|
|
|
|
|
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
|
|
|
// motion control system might still be processing the action and the real tool position
|
|
|
|
|
// in any intermediate location.
|
|
|
|
|
set_current_to_destination();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if HAS_CONTROLLERFAN
|
|
|
|
|
|
|
|
|
|
void controllerFan() {
|
|
|
|
|