/**
* Marlin 3 D Printer Firmware
* Copyright ( C ) 2016 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( C ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*
*/
/**
* stepper . h - stepper motor driver : executes motion plans of planner . c using the stepper motors
* Part of Grbl
*
* Copyright ( c ) 2009 - 2011 Simen Svale Skogsrud
*
* Grbl is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* Grbl is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with Grbl . If not , see < http : //www.gnu.org/licenses/>.
*/
# ifndef STEPPER_H
# define STEPPER_H
# include "planner.h"
# include "speed_lookuptable.h"
# include "stepper_indirection.h"
# include "language.h"
class Stepper ;
extern Stepper stepper ;
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
# define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
" clr r26 \n \t " \
" mul %A1, %B2 \n \t " \
" movw %A0, r0 \n \t " \
" mul %A1, %A2 \n \t " \
" add %A0, r1 \n \t " \
" adc %B0, r26 \n \t " \
" lsr r0 \n \t " \
" adc %A0, r26 \n \t " \
" adc %B0, r26 \n \t " \
" clr r1 \n \t " \
: \
" =&r " ( intRes ) \
: \
" d " ( charIn1 ) , \
" d " ( intIn2 ) \
: \
" r26 " \
)
class Stepper {
public :
static block_t * current_block ; // A pointer to the block currently being traced
# if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
static bool abort_on_endstop_hit ;
# endif
# if ENABLED(Z_DUAL_ENDSTOPS)
static bool performing_homing ;
# endif
# if ENABLED(ADVANCE)
static long e_steps [ EXTRUDERS ] ;
# endif
# if ENABLED(LIN_ADVANCE)
int extruder_advance_k = LIN_K ;
# endif
private :
static unsigned char last_direction_bits ; // The next stepping-bits to be output
static unsigned int cleaning_buffer_counter ;
# if ENABLED(Z_DUAL_ENDSTOPS)
static bool locked_z_motor , locked_z2_motor ;
# endif
// Counter variables for the Bresenham line tracer
static long counter_X , counter_Y , counter_Z , counter_E ;
static volatile unsigned long step_events_completed ; // The number of step events executed in the current block
# if ENABLED(ADVANCE)
static unsigned char old_OCR0A ;
static long advance_rate , advance , old_advance , final_advance ;
# endif
# if ENABLED(LIN_ADVANCE)
unsigned char old_OCR0A ;
volatile int e_steps [ EXTRUDERS ] ;
int final_estep_rate ;
int current_estep_rate [ EXTRUDERS ] ; //Actual extruder speed [steps/s]
int current_adv_steps [ EXTRUDERS ] ; //The amount of current added esteps due to advance. Think of it as the current amount of pressure applied to the spring (=filament).
# endif
static long acceleration_time , deceleration_time ;
//unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static unsigned short acc_step_rate ; // needed for deceleration start point
static uint8_t step_loops , step_loops_nominal ;
static unsigned short OCR1A_nominal ;
static volatile long endstops_trigsteps [ 3 ] ;
static volatile long endstops_stepsTotal , endstops_stepsDone ;
# if HAS_MOTOR_CURRENT_PWM
# ifndef PWM_MOTOR_CURRENT
# define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
# endif
const int motor_current_setting [ 3 ] = PWM_MOTOR_CURRENT ;
# endif
//
// Positions of stepper motors, in step units
//
static volatile long count_position [ NUM_AXIS ] ;
//
// Current direction of stepper motors (+1 or -1)
//
static volatile signed char count_direction [ NUM_AXIS ] ;
public :
//
// Constructor / initializer
//
Stepper ( ) { } ;
//
// Initialize stepper hardware
//
static void init ( ) ;
//
// Interrupt Service Routines
//
static void isr ( ) ;
# if ENABLED(ADVANCE)
static void advance_isr ( ) ;
# endif
# if ENABLED(LIN_ADVANCE)
void advance_isr ( ) ;
void advance_M905 ( ) ;
int get_advance_k ( ) ;
# endif
//
// Block until all buffered steps are executed
//
static void synchronize ( ) ;
//
// Set the current position in steps
//
static void set_position ( const long & x , const long & y , const long & z , const long & e ) ;
static void set_e_position ( const long & e ) ;
//
// Set direction bits for all steppers
//
static void set_directions ( ) ;
//
// Get the position of a stepper, in steps
//
static long position ( AxisEnum axis ) ;
//
// Report the positions of the steppers, in steps
//
static void report_positions ( ) ;
//
// Get the position (mm) of an axis based on stepper position(s)
//
static float get_axis_position_mm ( AxisEnum axis ) ;
//
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
// to notify the subsystem that it is time to go to work.
//
static void wake_up ( ) ;
//
// Wait for moves to finish and disable all steppers
//
static void finish_and_disable ( ) ;
//
// Quickly stop all steppers and clear the blocks queue
//
static void quick_stop ( ) ;
//
// The direction of a single motor
//
static FORCE_INLINE bool motor_direction ( AxisEnum axis ) { return TEST ( last_direction_bits , axis ) ; }
# if HAS_DIGIPOTSS
static void digitalPotWrite ( int address , int value ) ;
# endif
static void microstep_ms ( uint8_t driver , int8_t ms1 , int8_t ms2 ) ;
static void digipot_current ( uint8_t driver , int current ) ;
static void microstep_mode ( uint8_t driver , uint8_t stepping ) ;
static void microstep_readings ( ) ;
# if ENABLED(Z_DUAL_ENDSTOPS)
static FORCE_INLINE void set_homing_flag ( bool state ) { performing_homing = state ; }
static FORCE_INLINE void set_z_lock ( bool state ) { locked_z_motor = state ; }
static FORCE_INLINE void set_z2_lock ( bool state ) { locked_z2_motor = state ; }
# endif
# if ENABLED(BABYSTEPPING)
static void babystep ( const uint8_t axis , const bool direction ) ; // perform a short step with a single stepper motor, outside of any convention
# endif
static inline void kill_current_block ( ) {
step_events_completed = current_block - > step_event_count ;
}
//
// Handle a triggered endstop
//
static void endstop_triggered ( AxisEnum axis ) ;
//
// Triggered position of an axis in mm (not core-savvy)
//
static FORCE_INLINE float triggered_position_mm ( AxisEnum axis ) {
return endstops_trigsteps [ axis ] / planner . axis_steps_per_mm [ axis ] ;
}
private :
static FORCE_INLINE unsigned short calc_timer ( unsigned short step_rate ) {
unsigned short timer ;
NOMORE ( step_rate , MAX_STEP_FREQUENCY ) ;
if ( step_rate > 20000 ) { // If steprate > 20kHz >> step 4 times
step_rate > > = 2 ;
step_loops = 4 ;
}
else if ( step_rate > 10000 ) { // If steprate > 10kHz >> step 2 times
step_rate > > = 1 ;
step_loops = 2 ;
}
else {
step_loops = 1 ;
}
NOLESS ( step_rate , F_CPU / 500000 ) ;
step_rate - = F_CPU / 500000 ; // Correct for minimal speed
if ( step_rate > = ( 8 * 256 ) ) { // higher step rate
unsigned short table_address = ( unsigned short ) & speed_lookuptable_fast [ ( unsigned char ) ( step_rate > > 8 ) ] [ 0 ] ;
unsigned char tmp_step_rate = ( step_rate & 0x00ff ) ;
unsigned short gain = ( unsigned short ) pgm_read_word_near ( table_address + 2 ) ;
MultiU16X8toH16 ( timer , tmp_step_rate , gain ) ;
timer = ( unsigned short ) pgm_read_word_near ( table_address ) - timer ;
}
else { // lower step rates
unsigned short table_address = ( unsigned short ) & speed_lookuptable_slow [ 0 ] [ 0 ] ;
table_address + = ( ( step_rate ) > > 1 ) & 0xfffc ;
timer = ( unsigned short ) pgm_read_word_near ( table_address ) ;
timer - = ( ( ( unsigned short ) pgm_read_word_near ( table_address + 2 ) * ( unsigned char ) ( step_rate & 0x0007 ) ) > > 3 ) ;
}
if ( timer < 100 ) { // (20kHz - this should never happen)
timer = 100 ;
MYSERIAL . print ( MSG_STEPPER_TOO_HIGH ) ;
MYSERIAL . println ( step_rate ) ;
}
return timer ;
}
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
static FORCE_INLINE void trapezoid_generator_reset ( ) {
static int8_t last_extruder = - 1 ;
if ( current_block - > direction_bits ! = last_direction_bits | | current_block - > active_extruder ! = last_extruder ) {
last_direction_bits = current_block - > direction_bits ;
last_extruder = current_block - > active_extruder ;
set_directions ( ) ;
}
# if ENABLED(ADVANCE)
advance = current_block - > initial_advance ;
final_advance = current_block - > final_advance ;
// Do E steps + advance steps
e_steps [ current_block - > active_extruder ] + = ( ( advance > > 8 ) - old_advance ) ;
old_advance = advance > > 8 ;
# endif
deceleration_time = 0 ;
// step_rate to timer interval
OCR1A_nominal = calc_timer ( current_block - > nominal_rate ) ;
// make a note of the number of step loops required at nominal speed
step_loops_nominal = step_loops ;
acc_step_rate = current_block - > initial_rate ;
acceleration_time = calc_timer ( acc_step_rate ) ;
OCR1A = acceleration_time ;
# if ENABLED(LIN_ADVANCE)
if ( current_block - > use_advance_lead ) {
current_estep_rate [ current_block - > active_extruder ] = ( ( unsigned long ) acc_step_rate * current_block - > e_speed_multiplier8 ) > > 8 ;
final_estep_rate = ( current_block - > nominal_rate * current_block - > e_speed_multiplier8 ) > > 8 ;
}
# endif
// SERIAL_ECHO_START;
// SERIAL_ECHOPGM("advance :");
// SERIAL_ECHO(current_block->advance/256.0);
// SERIAL_ECHOPGM("advance rate :");
// SERIAL_ECHO(current_block->advance_rate/256.0);
// SERIAL_ECHOPGM("initial advance :");
// SERIAL_ECHO(current_block->initial_advance/256.0);
// SERIAL_ECHOPGM("final advance :");
// SERIAL_ECHOLN(current_block->final_advance/256.0);
}
static void digipot_init ( ) ;
static void microstep_init ( ) ;
} ;
# endif // STEPPER_H