|
|
|
@ -81,7 +81,7 @@ volatile uint8_t Planner::block_buffer_head = 0; // Index of the next
|
|
|
|
|
volatile uint8_t Planner::block_buffer_tail = 0;
|
|
|
|
|
|
|
|
|
|
float Planner::max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
|
|
|
|
|
float Planner::axis_steps_per_unit[NUM_AXIS];
|
|
|
|
|
float Planner::axis_steps_per_mm[NUM_AXIS];
|
|
|
|
|
unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS];
|
|
|
|
|
unsigned long Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
|
|
|
|
|
|
|
|
|
@ -549,10 +549,10 @@ void Planner::check_axes_activity() {
|
|
|
|
|
// Calculate target position in absolute steps
|
|
|
|
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
|
|
|
|
long target[NUM_AXIS] = {
|
|
|
|
|
lround(x * axis_steps_per_unit[X_AXIS]),
|
|
|
|
|
lround(y * axis_steps_per_unit[Y_AXIS]),
|
|
|
|
|
lround(z * axis_steps_per_unit[Z_AXIS]),
|
|
|
|
|
lround(e * axis_steps_per_unit[E_AXIS])
|
|
|
|
|
lround(x * axis_steps_per_mm[X_AXIS]),
|
|
|
|
|
lround(y * axis_steps_per_mm[Y_AXIS]),
|
|
|
|
|
lround(z * axis_steps_per_mm[Z_AXIS]),
|
|
|
|
|
lround(e * axis_steps_per_mm[E_AXIS])
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
long dx = target[X_AXIS] - position[X_AXIS],
|
|
|
|
@ -574,7 +574,7 @@ void Planner::check_axes_activity() {
|
|
|
|
|
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
|
|
|
|
}
|
|
|
|
|
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
|
|
|
|
if (labs(de) > axis_steps_per_unit[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
|
|
|
|
|
if (labs(de) > axis_steps_per_mm[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
|
|
|
|
|
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
|
|
|
|
de = 0; // no difference
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
@ -771,31 +771,31 @@ void Planner::check_axes_activity() {
|
|
|
|
|
#if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
|
|
|
|
|
float delta_mm[6];
|
|
|
|
|
#if ENABLED(COREXY)
|
|
|
|
|
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
|
|
|
|
|
delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
|
|
|
|
|
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
|
|
|
|
|
delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
|
|
|
|
|
delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
|
|
|
|
|
delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
|
|
|
|
|
delta_mm[Y_HEAD] = dy / axis_steps_per_mm[B_AXIS];
|
|
|
|
|
delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
|
|
|
|
|
delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_mm[A_AXIS];
|
|
|
|
|
delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_mm[B_AXIS];
|
|
|
|
|
#elif ENABLED(COREXZ)
|
|
|
|
|
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
|
|
|
|
|
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
|
|
|
|
|
delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS];
|
|
|
|
|
delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_unit[A_AXIS];
|
|
|
|
|
delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_unit[C_AXIS];
|
|
|
|
|
delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
|
|
|
|
|
delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
|
|
|
|
|
delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
|
|
|
|
|
delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_mm[A_AXIS];
|
|
|
|
|
delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_mm[C_AXIS];
|
|
|
|
|
#elif ENABLED(COREYZ)
|
|
|
|
|
delta_mm[X_AXIS] = dx / axis_steps_per_unit[A_AXIS];
|
|
|
|
|
delta_mm[Y_HEAD] = dy / axis_steps_per_unit[Y_AXIS];
|
|
|
|
|
delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS];
|
|
|
|
|
delta_mm[B_AXIS] = (dy + dz) / axis_steps_per_unit[B_AXIS];
|
|
|
|
|
delta_mm[C_AXIS] = (dy - dz) / axis_steps_per_unit[C_AXIS];
|
|
|
|
|
delta_mm[X_AXIS] = dx / axis_steps_per_mm[A_AXIS];
|
|
|
|
|
delta_mm[Y_HEAD] = dy / axis_steps_per_mm[Y_AXIS];
|
|
|
|
|
delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
|
|
|
|
|
delta_mm[B_AXIS] = (dy + dz) / axis_steps_per_mm[B_AXIS];
|
|
|
|
|
delta_mm[C_AXIS] = (dy - dz) / axis_steps_per_mm[C_AXIS];
|
|
|
|
|
#endif
|
|
|
|
|
#else
|
|
|
|
|
float delta_mm[4];
|
|
|
|
|
delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
|
|
|
|
|
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
|
|
|
|
|
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
|
|
|
|
|
delta_mm[X_AXIS] = dx / axis_steps_per_mm[X_AXIS];
|
|
|
|
|
delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
|
|
|
|
|
delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
|
|
|
|
|
#endif
|
|
|
|
|
delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
|
|
|
|
|
delta_mm[E_AXIS] = (de / axis_steps_per_mm[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
|
|
|
|
|
|
|
|
|
|
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
|
|
|
|
|
block->millimeters = fabs(delta_mm[E_AXIS]);
|
|
|
|
@ -1127,10 +1127,10 @@ void Planner::check_axes_activity() {
|
|
|
|
|
apply_rotation_xyz(bed_level_matrix, x, y, z);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
long nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]),
|
|
|
|
|
ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
|
|
|
|
|
nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
|
|
|
|
|
ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
|
|
|
|
|
long nx = position[X_AXIS] = lround(x * axis_steps_per_mm[X_AXIS]),
|
|
|
|
|
ny = position[Y_AXIS] = lround(y * axis_steps_per_mm[Y_AXIS]),
|
|
|
|
|
nz = position[Z_AXIS] = lround(z * axis_steps_per_mm[Z_AXIS]),
|
|
|
|
|
ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
|
|
|
|
|
stepper.set_position(nx, ny, nz, ne);
|
|
|
|
|
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
|
|
|
|
|
|
|
|
@ -1141,14 +1141,14 @@ void Planner::check_axes_activity() {
|
|
|
|
|
* Directly set the planner E position (hence the stepper E position).
|
|
|
|
|
*/
|
|
|
|
|
void Planner::set_e_position_mm(const float& e) {
|
|
|
|
|
position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
|
|
|
|
|
position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
|
|
|
|
|
stepper.set_e_position(position[E_AXIS]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
|
|
|
|
|
void Planner::reset_acceleration_rates() {
|
|
|
|
|
for (int i = 0; i < NUM_AXIS; i++)
|
|
|
|
|
max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_unit[i];
|
|
|
|
|
max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
|
|
|