Merged multiple extruder support.

Soft PWM. (Sanguinololu can also have PID temperature control)
Interrupt save WRITE for addresses > 0x0FF
2.0.x
Erik van der Zalm 13 years ago
parent 3664ed6aad
commit e017228569

@ -4,11 +4,11 @@
// This determines the communication speed of the printer
//#define BAUDRATE 250000
#define BAUDRATE 115200
#define BAUDRATE 250000
//#define BAUDRATE 115200
//#define BAUDRATE 230400
#define EXTRUDERS 2
#define EXTRUDERS 1
// Frequency limit
// See nophead's blog for more info
@ -32,7 +32,7 @@
// Sanguinololu 1.2 and above = 62
// Ultimaker = 7,
// Teensylu = 8
#define MOTHERBOARD 33
#define MOTHERBOARD 7
//===========================================================================
//=============================Thermal Settings ============================
@ -46,16 +46,21 @@
// 5 is ParCan supplied 104GT-2 100K
// 6 is EPCOS 100k
// 7 is 100k Honeywell thermistor 135-104LAG-J01
#define THERMISTORHEATER_0 1
#define THERMISTORHEATER_1 1
#define HEATER_0_USES_THERMISTOR
#define HEATER_1_USES_THERMISTOR
//#define HEATER_0_USES_AD595
//#define THERMISTORHEATER_0 3
//#define THERMISTORHEATER_1 1
//#define THERMISTORHEATER_2 1
//#define HEATER_0_USES_THERMISTOR
//#define HEATER_1_USES_THERMISTOR
//#define HEATER_2_USES_THERMISTOR
#define HEATER_0_USES_AD595
//#define HEATER_1_USES_AD595
//#define HEATER_2_USES_AD595
// Select one of these only to define how the bed temp is read.
#define THERMISTORBED 1
#define BED_USES_THERMISTOR
//#define THERMISTORBED 1
//#define BED_USES_THERMISTOR
//#define BED_USES_AD595
#define BED_CHECK_INTERVAL 5000 //ms
@ -73,7 +78,8 @@
//// The minimal temperature defines the temperature below which the heater will not be enabled
#define HEATER_0_MINTEMP 5
//#define HEATER_1_MINTEMP 5
#define BED_MINTEMP 5
//#define HEATER_2_MINTEMP 5
//#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
@ -81,7 +87,8 @@
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 275
//#define HEATER_1_MAXTEMP 275
#define BED_MAXTEMP 150
//#define HEATER_2_MAXTEMP 275
//#define BED_MAXTEMP 150
// Wait for Cooldown
@ -92,21 +99,17 @@
// Heating is finished if a temperature close to this degree shift is reached
#define HEATING_EARLY_FINISH_DEG_OFFSET 1 //Degree
// PID settings:
// Uncomment the following line to enable PID support.
#define PIDTEMP
#define PID_MAX 255 // limits current to nozzle; 255=full current
#ifdef PIDTEMP
#if MOTHERBOARD == 62
#error Sanguinololu does not support PID, sorry. Please disable it.
#endif
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
#define PID_MAX 255 // limits current to nozzle; 255=full current
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
#define K1 0.95 //smoothing factor withing the PID
#define PID_dT 0.1 //sampling period of the PID
#define PID_dT 0.128 //sampling period of the PID
//To develop some PID settings for your machine, you can initiall follow
// the Ziegler-Nichols method.
@ -130,14 +133,14 @@
// #define DEFAULT_Kd (PID_SWING_AT_CRITIAL/8./PID_dT)
// Ultitmaker
// #define DEFAULT_Kp 22.2
// #define DEFAULT_Ki (1.25*PID_dT)
// #define DEFAULT_Kd (99/PID_dT)
#define DEFAULT_Kp 22.2
#define DEFAULT_Ki (1.25*PID_dT)
#define DEFAULT_Kd (99/PID_dT)
// Makergear
#define DEFAULT_Kp 7.0
#define DEFAULT_Ki 0.1
#define DEFAULT_Kd 12
// #define DEFAULT_Kp 7.0
// #define DEFAULT_Ki 0.1
// #define DEFAULT_Kd 12
// Mendel Parts V9 on 12V
// #define DEFAULT_Kp 63.0
@ -170,12 +173,12 @@
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
const bool X_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
const bool Y_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
const bool X_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
//#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing
#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
@ -186,7 +189,7 @@ const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of t
// Disables axis when it's not being used.
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z true
#define DISABLE_Z false
#define DISABLE_E false // For all extruders
// Inverting axis direction
@ -195,11 +198,11 @@ const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of t
//#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true
//#define INVERT_E*_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false, used for all extruders
#define INVERT_X_DIR false // for Mendel set to false, for Orca set to true
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
//// ENDSTOP SETTINGS:
@ -208,15 +211,15 @@ const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of t
#define Y_HOME_DIR -1
#define Z_HOME_DIR -1
#define min_software_endstops false //If true, axis won't move to coordinates less than zero.
#define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.
#define X_MAX_LENGTH 210
#define Y_MAX_LENGTH 210
#define Z_MAX_LENGTH 210
#define min_software_endstops true //If true, axis won't move to coordinates less than zero.
#define max_software_endstops true //If true, axis won't move to coordinates greater than the defined lengths below.
#define X_MAX_LENGTH 205
#define Y_MAX_LENGTH 205
#define Z_MAX_LENGTH 200
//// MOVEMENT SETTINGS
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
#define HOMING_FEEDRATE {30*60, 30*60, 2*60, 0} // set the homing speeds (mm/min)
#define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0} // set the homing speeds (mm/min)
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
#define X_HOME_RETRACT_MM 5
@ -230,9 +233,9 @@ const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of t
// default settings
//#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200*8/3,760*1.1} // default steps per unit for ultimaker
//#define DEFAULT_AXIS_STEPS_PER_UNIT {40, 40, 3333.92, 67} //sells mendel with v9 extruder
#define DEFAULT_AXIS_STEPS_PER_UNIT {80.3232, 80.8900, 2284.7651, 757.2218} // SAE Prusa w/ Wade extruder
#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200*8/3,760*1.1} // default steps per unit for ultimaker
//#define DEFAULT_AXIS_STEPS_PER_UNIT {40, 40, 3333.92, 360} //sells mendel with v9 extruder
//#define DEFAULT_AXIS_STEPS_PER_UNIT {80.3232, 80.8900, 2284.7651, 757.2218} // SAE Prusa w/ Wade extruder
#define DEFAULT_MAX_FEEDRATE {500, 500, 5, 45} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
@ -283,10 +286,10 @@ const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of t
// hooke's law says: force = k * distance
// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#define ADVANCE
#ifdef ADVANCE
#define EXTRUDER_ADVANCE_K .3
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#define STEPS_MM_E 836
@ -298,10 +301,10 @@ const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of t
//LCD and SD support
//#define ULTRA_LCD //general lcd support, also 16x2
#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
//#define ULTIPANEL
#define ULTIPANEL
#ifdef ULTIPANEL
//#define NEWPANEL //enable this if you have a click-encoder panel
#define SDSUPPORT

@ -57,8 +57,6 @@ const prog_char echomagic[] PROGMEM ="echo:";
#define SERIAL_ECHOPAIR(name,value) {SERIAL_ECHOPGM(name);SERIAL_ECHO(value);}
// Macro for getting current active extruder
#define ACTIVE_EXTRUDER (active_extruder)
//things to write to serial from Programmemory. saves 400 to 2k of RAM.
#define SerialprintPGM(x) serialprintPGM(MYPGM(x))

@ -465,16 +465,16 @@ FORCE_INLINE bool code_seen(char code)
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); \
destination[LETTER##_AXIS] = 1.5 * LETTER##_MAX_LENGTH * LETTER##_HOME_DIR; \
feedrate = homing_feedrate[LETTER##_AXIS]; \
prepare_move(); \
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); \
\
current_position[LETTER##_AXIS] = 0;\
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
destination[LETTER##_AXIS] = -LETTER##_HOME_RETRACT_MM * LETTER##_HOME_DIR;\
prepare_move(); \
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); \
\
destination[LETTER##_AXIS] = 2*LETTER##_HOME_RETRACT_MM * LETTER##_HOME_DIR;\
feedrate = homing_feedrate[LETTER##_AXIS]/2 ; \
prepare_move(); \
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); \
\
current_position[LETTER##_AXIS] = (LETTER##_HOME_DIR == -1) ? 0 : LETTER##_MAX_LENGTH;\
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
@ -541,6 +541,7 @@ FORCE_INLINE void process_commands()
if( code_seen(axis_codes[0]) && code_seen(axis_codes[1]) ) //first diagonal move
{
current_position[X_AXIS] = 0; current_position[Y_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
@ -723,7 +724,7 @@ FORCE_INLINE void process_commands()
if (code_seen('S')) setTargetBed(code_value());
break;
case 105 : // M105
tmp_extruder = ACTIVE_EXTRUDER;
tmp_extruder = active_extruder;
if(code_seen('T')) {
tmp_extruder = code_value();
if(tmp_extruder >= EXTRUDERS) {
@ -743,6 +744,10 @@ FORCE_INLINE void process_commands()
#else
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("No thermistors - no temp");
#endif
#ifdef PIDTEMP
SERIAL_PROTOCOLPGM(" @:");
SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
#endif
SERIAL_PROTOCOLLN("");
return;
@ -788,24 +793,26 @@ FORCE_INLINE void process_commands()
while((residencyStart == -1) ||
(residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
#else
while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
#endif //TEMP_RESIDENCY_TIME
if( (millis() - codenum) > 1000 )
{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOLLN( degHotend(tmp_extruder) );
SERIAL_PROTOCOL( degHotend(tmp_extruder) );
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOLLN( (int)tmp_extruder );
SERIAL_PROTOCOLPGM(" W:");
if(residencyStart > -1)
{
codenum = TEMP_RESIDENCY_TIME - ((millis() - residencyStart) / 1000);
SERIAL_PROTOCOLLN( codenum );
}
else
{
SERIAL_PROTOCOLLN( "?" );
}
#ifdef TEMP_RESIDENCY_TIME
SERIAL_PROTOCOLPGM(" W:");
if(residencyStart > -1)
{
codenum = TEMP_RESIDENCY_TIME - ((millis() - residencyStart) / 1000);
SERIAL_PROTOCOLLN( codenum );
}
else
{
SERIAL_PROTOCOLLN( "?" );
}
#endif
codenum = millis();
}
manage_heater();
@ -834,11 +841,11 @@ FORCE_INLINE void process_commands()
{
if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
float tt=degHotend(ACTIVE_EXTRUDER);
float tt=degHotend(active_extruder);
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL(tt);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOLLN( (int)tmp_extruder );
SERIAL_PROTOCOLLN( (int)active_extruder );
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOLLN(degBed());
codenum = millis();
@ -1191,6 +1198,7 @@ void manage_inactivity(byte debug)
void kill()
{
cli(); // Stop interrupts
disable_heater();
disable_x();
@ -1207,4 +1215,4 @@ void kill()
while(1); // Wait for reset
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -191,8 +191,8 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
}
#ifdef ADVANCE
long initial_advance = block->advance*entry_factor*entry_factor;
long final_advance = block->advance*exit_factor*exit_factor;
volatile long initial_advance = block->advance*entry_factor*entry_factor;
volatile long final_advance = block->advance*exit_factor*exit_factor;
#endif // ADVANCE
// block->accelerate_until = accelerate_steps;

@ -57,7 +57,7 @@ volatile static unsigned long step_events_completed; // The number of step event
static long advance_rate, advance, final_advance = 0;
static long old_advance = 0;
#endif
static long e_steps;
static long e_steps[3];
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
static long acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
@ -266,7 +266,7 @@ FORCE_INLINE void trapezoid_generator_reset() {
advance = current_block->initial_advance;
final_advance = current_block->final_advance;
// Do E steps + advance steps
e_steps += ((advance >>8) - old_advance);
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif
deceleration_time = 0;
@ -303,8 +303,8 @@ ISR(TIMER1_COMPA_vect)
counter_z = counter_x;
counter_e = counter_x;
step_events_completed = 0;
// #ifdef ADVANCE
e_steps = 0;
// #ifdef ADVANCE
// e_steps[current_block->active_extruder] = 0;
// #endif
}
else {
@ -418,11 +418,11 @@ ISR(TIMER1_COMPA_vect)
#ifndef ADVANCE
if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
NORM_E_DIR();
REV_E_DIR();
count_direction[E_AXIS]=-1;
}
else { // +direction
REV_E_DIR();
NORM_E_DIR();
count_direction[E_AXIS]=-1;
}
#endif //!ADVANCE
@ -437,10 +437,10 @@ ISR(TIMER1_COMPA_vect)
if (counter_e > 0) {
counter_e -= current_block->step_event_count;
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
e_steps--;
e_steps[current_block->active_extruder]--;
}
else {
e_steps++;
e_steps[current_block->active_extruder]++;
}
}
#endif //ADVANCE
@ -503,7 +503,7 @@ ISR(TIMER1_COMPA_vect)
}
//if(advance > current_block->advance) advance = current_block->advance;
// Do E steps + advance steps
e_steps += ((advance >>8) - old_advance);
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif
@ -532,7 +532,7 @@ ISR(TIMER1_COMPA_vect)
}
if(advance < final_advance) advance = final_advance;
// Do E steps + advance steps
e_steps += ((advance >>8) - old_advance);
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8;
#endif //ADVANCE
}
@ -557,20 +557,50 @@ ISR(TIMER1_COMPA_vect)
old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
OCR0A = old_OCR0A;
// Set E direction (Depends on E direction + advance)
for(unsigned char i=0; i<4;) {
WRITE_E_STEP(LOW);
if (e_steps == 0) break;
i++;
if (e_steps < 0) {
WRITE_E_DIR(INVERT_E_DIR);
e_steps++;
WRITE_E_STEP(HIGH);
}
else if (e_steps > 0) {
WRITE_E_DIR(!INVERT_E_DIR);
e_steps--;
WRITE_E_STEP(HIGH);
for(unsigned char i=0; i<4;i++) {
if (e_steps[0] != 0) {
WRITE(E0_STEP_PIN, LOW);
if (e_steps[0] < 0) {
WRITE(E0_DIR_PIN, INVERT_E0_DIR);
e_steps[0]++;
WRITE(E0_STEP_PIN, HIGH);
}
else if (e_steps[0] > 0) {
WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
e_steps[0]--;
WRITE(E0_STEP_PIN, HIGH);
}
}
#if EXTRUDERS > 1
if (e_steps[1] != 0) {
WRITE(E1_STEP_PIN, LOW);
if (e_steps[1] < 0) {
WRITE(E1_DIR_PIN, INVERT_E1_DIR);
e_steps[1]++;
WRITE(E1_STEP_PIN, HIGH);
}
else if (e_steps[1] > 0) {
WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
e_steps[1]--;
WRITE(E1_STEP_PIN, HIGH);
}
}
#endif
#if EXTRUDERS > 2
if (e_steps[2] != 0) {
WRITE(E2_STEP_PIN, LOW);
if (e_steps[2] < 0) {
WRITE(E2_DIR_PIN, INVERT_E2_DIR);
e_steps[2]++;
WRITE(E2_STEP_PIN, HIGH);
}
else if (e_steps[2] > 0) {
WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
e_steps[2]--;
WRITE(E2_STEP_PIN, HIGH);
}
}
#endif
}
}
#endif // ADVANCE
@ -712,7 +742,9 @@ void st_init()
TCCR0A &= ~(1<<WGM01);
TCCR0A &= ~(1<<WGM00);
#endif
e_steps = 0;
e_steps[0] = 0;
e_steps[1] = 0;
e_steps[2] = 0;
TIMSK0 |= (1<<OCIE0A);
#endif //ADVANCE

@ -23,6 +23,21 @@
#include "planner.h"
#if EXTRUDERS > 2
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 2) { WRITE(E2_STEP_PIN, v); } else { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}}
#define NORM_E_DIR() { if(current_block->active_extruder == 2) { WRITE(!E2_DIR_PIN, INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(!E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}}
#define REV_E_DIR() { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}}
#elif EXTRUDERS > 1
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}
#define NORM_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}
#define REV_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}
#else
#define WRITE_E_STEP(v) WRITE(E0_STEP_PIN, v)
#define NORM_E_DIR() WRITE(E0_DIR_PIN, !INVERT_E0_DIR)
#define REV_E_DIR() WRITE(E0_DIR_PIN, INVERT_E0_DIR)
#endif
// Initialize and start the stepper motor subsystem
void st_init();

@ -26,7 +26,6 @@
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
This firmware is optimized for gen6 electronics.
*/
#include <avr/pgmspace.h>
@ -82,6 +81,7 @@ static unsigned long previous_millis_bed_heater;
// static float pid_output[EXTRUDERS];
static bool pid_reset[EXTRUDERS];
#endif //PIDTEMP
static unsigned char soft_pwm[EXTRUDERS];
#ifdef WATCHPERIOD
static int watch_raw[EXTRUDERS] = { -1000 }; // the first value used for all
@ -140,6 +140,10 @@ void updatePID()
#endif
}
int getHeaterPower(int heater) {
return soft_pwm[heater];
}
void manage_heater()
{
#ifdef USE_WATCHDOG
@ -198,15 +202,16 @@ void manage_heater()
}
#endif
// Check if temperature is within the correct range
if((current_raw[e] > minttemp[e]) && (current_raw[e] < maxttemp[e]))
{
analogWrite(heater_pin_map[e], pid_output);
}
else {
analogWrite(heater_pin_map[e], 0);
}
// Check if temperature is within the correct range
if((current_raw[e] > minttemp[e]) && (current_raw[e] < maxttemp[e]))
{
//analogWrite(heater_pin_map[e], pid_output);
soft_pwm[e] = (int)pid_output >> 1;
}
else {
//analogWrite(heater_pin_map[e], 0);
soft_pwm[e] = 0;
}
} // End extruder for loop
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
@ -418,7 +423,6 @@ void tp_init()
DIDR0 |= 1 << TEMP_0_PIN;
#else
DIDR2 |= 1<<(TEMP_0_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
#endif
#if (TEMP_1_PIN > -1)
@ -426,7 +430,6 @@ void tp_init()
DIDR0 |= 1<<TEMP_1_PIN;
#else
DIDR2 |= 1<<(TEMP_1_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
#endif
#if (TEMP_2_PIN > -1)
@ -434,7 +437,6 @@ void tp_init()
DIDR0 |= 1 << TEMP_2_PIN;
#else
DIDR2 = 1<<(TEMP_2_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
#endif
#if (TEMP_BED_PIN > -1)
@ -442,7 +444,6 @@ void tp_init()
DIDR0 |= 1<<TEMP_BED_PIN;
#else
DIDR2 |= 1<<(TEMP_BED_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
#endif
@ -506,6 +507,7 @@ void disable_heater()
{
#if TEMP_0_PIN > -1
target_raw[0]=0;
soft_pwm[0]=0;
#if HEATER_0_PIN > -1
digitalWrite(HEATER_0_PIN,LOW);
#endif
@ -513,6 +515,7 @@ void disable_heater()
#if TEMP_1_PIN > -1
target_raw[1]=0;
soft_pwm[1]=0;
#if HEATER_1_PIN > -1
digitalWrite(HEATER_1_PIN,LOW);
#endif
@ -520,6 +523,7 @@ void disable_heater()
#if TEMP_2_PIN > -1
target_raw[2]=0;
soft_pwm[2]=0;
#if HEATER_2_PIN > -1
digitalWrite(HEATER_2_PIN,LOW);
#endif
@ -533,6 +537,26 @@ void disable_heater()
#endif
}
void max_temp_error(uint8_t e) {
digitalWrite(heater_pin_map[e], 0);
SERIAL_ERROR_START;
SERIAL_ERRORLN(e);
SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
}
void min_temp_error(uint8_t e) {
digitalWrite(heater_pin_map[e], 0);
SERIAL_ERROR_START;
SERIAL_ERRORLN(e);
SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
}
void bed_max_temp_error(void) {
digitalWrite(HEATER_BED_PIN, 0);
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
}
// Timer 0 is shared with millies
ISR(TIMER0_COMPB_vect)
{
@ -543,6 +567,33 @@ ISR(TIMER0_COMPB_vect)
static unsigned long raw_temp_2_value = 0;
static unsigned long raw_temp_bed_value = 0;
static unsigned char temp_state = 0;
static unsigned char pwm_count = 1;
static unsigned char soft_pwm_0;
static unsigned char soft_pwm_1;
static unsigned char soft_pwm_2;
if(pwm_count == 0){
soft_pwm_0 = soft_pwm[0];
if(soft_pwm_0 > 0) WRITE(HEATER_0_PIN,1);
#if EXTRUDERS > 1
soft_pwm_1 = soft_pwm[1];
if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1);
#endif
#if EXTRUDERS > 2
soft_pwm_2 = soft_pwm[2];
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1);
#endif
}
if(soft_pwm_0 <= pwm_count) WRITE(HEATER_0_PIN,0);
#if EXTRUDERS > 1
if(soft_pwm_1 <= pwm_count) WRITE(HEATER_1_PIN,0);
#endif
#if EXTRUDERS > 2
if(soft_pwm_2 <= pwm_count) WRITE(HEATER_2_PIN,0);
#endif
pwm_count++;
pwm_count &= 0x7f;
switch(temp_state) {
case 0: // Prepare TEMP_0
@ -628,10 +679,10 @@ ISR(TIMER0_COMPB_vect)
temp_state = 0;
temp_count++;
break;
default:
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temp measurement error!");
break;
// default:
// SERIAL_ERROR_START;
// SERIAL_ERRORLNPGM("Temp measurement error!");
// break;
}
if(temp_count >= 16) // 8 ms * 16 = 128ms.
@ -671,21 +722,15 @@ ISR(TIMER0_COMPB_vect)
raw_temp_2_value = 0;
raw_temp_bed_value = 0;
for(int e = 0; e < EXTRUDERS; e++) {
for(unsigned char e = 0; e < EXTRUDERS; e++) {
if(current_raw[e] >= maxttemp[e]) {
target_raw[e] = 0;
digitalWrite(heater_pin_map[e], 0);
SERIAL_ERROR_START;
SERIAL_ERRORLN((int)e);
SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
kill();
max_temp_error(e);
kill();;
}
if(current_raw[e] <= minttemp[e]) {
target_raw[e] = 0;
digitalWrite(heater_pin_map[e], 0);
SERIAL_ERROR_START;
SERIAL_ERRORLN(e);
SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
min_temp_error(e);
kill();
}
}
@ -693,9 +738,7 @@ ISR(TIMER0_COMPB_vect)
#if defined(BED_MAXTEMP) && (HEATER_BED_PIN > -1)
if(current_raw_bed >= bed_maxttemp) {
target_raw_bed = 0;
digitalWrite(HEATER_BED_PIN, 0);
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
bed_max_temp_error();
kill();
}
#endif

@ -1,143 +1,144 @@
/*
temperature.h - temperature controller
Part of Marlin
Copyright (c) 2011 Erik van der Zalm
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef temperature_h
#define temperature_h
#include "Marlin.h"
#include "fastio.h"
#ifdef PID_ADD_EXTRUSION_RATE
#include "stepper.h"
#endif
// public functions
void tp_init(); //initialise the heating
void manage_heater(); //it is critical that this is called periodically.
//low leven conversion routines
// do not use this routines and variables outsie of temperature.cpp
int temp2analog(int celsius, uint8_t e);
int temp2analogBed(int celsius);
float analog2temp(int raw, uint8_t e);
float analog2tempBed(int raw);
extern int target_raw[EXTRUDERS];
extern int heatingtarget_raw[EXTRUDERS];
extern int current_raw[EXTRUDERS];
extern int target_raw_bed;
extern int current_raw_bed;
extern float Kp,Ki,Kd,Kc;
#ifdef PIDTEMP
extern float pid_setpoint[EXTRUDERS];
#endif
#ifdef WATCHPERIOD
extern int watch_raw[EXTRUDERS] ;
extern unsigned long watchmillis;
#endif
//high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease.
//deg=degreeCelsius
FORCE_INLINE float degHotend(uint8_t extruder) {
return analog2temp(current_raw[extruder], extruder);
};
FORCE_INLINE float degBed() {
return analog2tempBed(current_raw_bed);
};
FORCE_INLINE float degTargetHotend(uint8_t extruder) {
return analog2temp(target_raw[extruder], extruder);
};
FORCE_INLINE float degTargetBed() {
return analog2tempBed(target_raw_bed);
};
FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
target_raw[extruder] = temp2analog(celsius, extruder);
#ifdef PIDTEMP
pid_setpoint[extruder] = celsius;
#endif //PIDTEMP
};
FORCE_INLINE void setTargetBed(const float &celsius) {
target_raw_bed = temp2analogBed(celsius);
};
FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
return target_raw[extruder] > current_raw[extruder];
};
FORCE_INLINE bool isHeatingBed() {
return target_raw_bed > current_raw_bed;
};
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
return target_raw[extruder] < current_raw[extruder];
};
FORCE_INLINE bool isCoolingBed() {
return target_raw_bed < current_raw_bed;
};
#define degHotend0() degHotend(0)
#define degTargetHotend0() degTargetHotend(0)
#define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0)
#define isHeatingHotend0() isHeatingHotend(0)
#define isCoolingHotend0() isCoolingHotend(0)
#if EXTRUDERS > 1
#define degHotend1() degHotend(1)
#define degTargetHotend1() degTargetHotend(1)
#define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
#define isHeatingHotend1() isHeatingHotend(1)
#define isCoolingHotend1() isCoolingHotend(1)
#endif
#if EXTRUDERS > 2
#define degHotend2() degHotend(2)
#define degTargetHotend2() degTargetHotend(2)
#define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
#define isHeatingHotend2() isHeatingHotend(2)
#define isCoolingHotend2() isCoolingHotend(2)
#endif
#if EXTRUDERS > 3
#error Invalid number of extruders
#endif
FORCE_INLINE void autotempShutdown(){
#ifdef AUTOTEMP
if(autotemp_enabled)
{
autotemp_enabled=false;
if(degTargetHotend(ACTIVE_EXTRUDER)>autotemp_min)
setTargetHotend(0,ACTIVE_EXTRUDER);
}
#endif
}
void disable_heater();
void setWatch();
void updatePID();
#endif
/*
temperature.h - temperature controller
Part of Marlin
Copyright (c) 2011 Erik van der Zalm
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef temperature_h
#define temperature_h
#include "Marlin.h"
#include "fastio.h"
#ifdef PID_ADD_EXTRUSION_RATE
#include "stepper.h"
#endif
// public functions
void tp_init(); //initialise the heating
void manage_heater(); //it is critical that this is called periodically.
//low leven conversion routines
// do not use this routines and variables outsie of temperature.cpp
int temp2analog(int celsius, uint8_t e);
int temp2analogBed(int celsius);
float analog2temp(int raw, uint8_t e);
float analog2tempBed(int raw);
extern int target_raw[EXTRUDERS];
extern int heatingtarget_raw[EXTRUDERS];
extern int current_raw[EXTRUDERS];
extern int target_raw_bed;
extern int current_raw_bed;
extern float Kp,Ki,Kd,Kc;
#ifdef PIDTEMP
extern float pid_setpoint[EXTRUDERS];
#endif
#ifdef WATCHPERIOD
extern int watch_raw[EXTRUDERS] ;
extern unsigned long watchmillis;
#endif
//high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease.
//deg=degreeCelsius
FORCE_INLINE float degHotend(uint8_t extruder) {
return analog2temp(current_raw[extruder], extruder);
};
FORCE_INLINE float degBed() {
return analog2tempBed(current_raw_bed);
};
FORCE_INLINE float degTargetHotend(uint8_t extruder) {
return analog2temp(target_raw[extruder], extruder);
};
FORCE_INLINE float degTargetBed() {
return analog2tempBed(target_raw_bed);
};
FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
target_raw[extruder] = temp2analog(celsius, extruder);
#ifdef PIDTEMP
pid_setpoint[extruder] = celsius;
#endif //PIDTEMP
};
FORCE_INLINE void setTargetBed(const float &celsius) {
target_raw_bed = temp2analogBed(celsius);
};
FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
return target_raw[extruder] > current_raw[extruder];
};
FORCE_INLINE bool isHeatingBed() {
return target_raw_bed > current_raw_bed;
};
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
return target_raw[extruder] < current_raw[extruder];
};
FORCE_INLINE bool isCoolingBed() {
return target_raw_bed < current_raw_bed;
};
#define degHotend0() degHotend(0)
#define degTargetHotend0() degTargetHotend(0)
#define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0)
#define isHeatingHotend0() isHeatingHotend(0)
#define isCoolingHotend0() isCoolingHotend(0)
#if EXTRUDERS > 1
#define degHotend1() degHotend(1)
#define degTargetHotend1() degTargetHotend(1)
#define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
#define isHeatingHotend1() isHeatingHotend(1)
#define isCoolingHotend1() isCoolingHotend(1)
#endif
#if EXTRUDERS > 2
#define degHotend2() degHotend(2)
#define degTargetHotend2() degTargetHotend(2)
#define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
#define isHeatingHotend2() isHeatingHotend(2)
#define isCoolingHotend2() isCoolingHotend(2)
#endif
#if EXTRUDERS > 3
#error Invalid number of extruders
#endif
FORCE_INLINE void autotempShutdown(){
#ifdef AUTOTEMP
if(autotemp_enabled)
{
autotemp_enabled=false;
if(degTargetHotend(ACTIVE_EXTRUDER)>autotemp_min)
setTargetHotend(0,ACTIVE_EXTRUDER);
}
#endif
}
int getHeaterPower(int heater);
void disable_heater();
void setWatch();
void updatePID();
#endif

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save