/**
* Marlin 3 D Printer Firmware
* Copyright ( C ) 2016 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( C ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*
*/
# ifndef MARLIN_H
# define MARLIN_H
# include <math.h>
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# include <inttypes.h>
# include <util/delay.h>
# include <avr/pgmspace.h>
# include <avr/eeprom.h>
# include <avr/interrupt.h>
# include "MarlinConfig.h"
# include "enum.h"
# include "types.h"
# include "fastio.h"
# include "utility.h"
# ifdef USBCON
# include "HardwareSerial.h"
# if ENABLED(BLUETOOTH)
# define MYSERIAL bluetoothSerial
# else
# define MYSERIAL Serial
# endif // BLUETOOTH
# else
# include "MarlinSerial.h"
# define MYSERIAL customizedSerial
# endif
# include "WString.h"
# if ENABLED(PRINTCOUNTER)
# include "printcounter.h"
# else
# include "stopwatch.h"
# endif
extern const char echomagic [ ] PROGMEM ;
extern const char errormagic [ ] PROGMEM ;
# define SERIAL_CHAR(x) (MYSERIAL.write(x))
# define SERIAL_EOL SERIAL_CHAR('\n')
# define SERIAL_PROTOCOLCHAR(x) SERIAL_CHAR(x)
# define SERIAL_PROTOCOL(x) (MYSERIAL.print(x))
# define SERIAL_PROTOCOL_F(x,y) (MYSERIAL.print(x,y))
# define SERIAL_PROTOCOLPGM(x) (serialprintPGM(PSTR(x)))
# define SERIAL_PROTOCOLLN(x) do{ MYSERIAL.print(x); SERIAL_EOL; }while(0)
# define SERIAL_PROTOCOLLNPGM(x) (serialprintPGM(PSTR(x "\n")))
# define SERIAL_PROTOCOLPAIR(name, value) (serial_echopair_P(PSTR(name),(value)))
# define SERIAL_PROTOCOLLNPAIR(name, value) do{ SERIAL_PROTOCOLPAIR(name, value); SERIAL_EOL; }while(0)
# define SERIAL_ECHO_START (serialprintPGM(echomagic))
# define SERIAL_ECHO(x) SERIAL_PROTOCOL(x)
# define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x)
# define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x)
# define SERIAL_ECHOLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
# define SERIAL_ECHOPAIR(name,value) SERIAL_PROTOCOLPAIR(name, value)
# define SERIAL_ECHOLNPAIR(name, value) SERIAL_PROTOCOLLNPAIR(name, value)
# define SERIAL_ERROR_START (serialprintPGM(errormagic))
# define SERIAL_ERROR(x) SERIAL_PROTOCOL(x)
# define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x)
# define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x)
# define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
void serial_echopair_P ( const char * s_P , const char * v ) ;
void serial_echopair_P ( const char * s_P , char v ) ;
void serial_echopair_P ( const char * s_P , int v ) ;
void serial_echopair_P ( const char * s_P , long v ) ;
void serial_echopair_P ( const char * s_P , float v ) ;
void serial_echopair_P ( const char * s_P , double v ) ;
void serial_echopair_P ( const char * s_P , unsigned long v ) ;
FORCE_INLINE void serial_echopair_P ( const char * s_P , uint8_t v ) { serial_echopair_P ( s_P , ( int ) v ) ; }
FORCE_INLINE void serial_echopair_P ( const char * s_P , uint16_t v ) { serial_echopair_P ( s_P , ( int ) v ) ; }
FORCE_INLINE void serial_echopair_P ( const char * s_P , bool v ) { serial_echopair_P ( s_P , ( int ) v ) ; }
FORCE_INLINE void serial_echopair_P ( const char * s_P , void * v ) { serial_echopair_P ( s_P , ( unsigned long ) v ) ; }
// Things to write to serial from Program memory. Saves 400 to 2k of RAM.
FORCE_INLINE void serialprintPGM ( const char * str ) {
while ( char ch = pgm_read_byte ( str + + ) ) MYSERIAL . write ( ch ) ;
}
void idle (
# if ENABLED(FILAMENT_CHANGE_FEATURE)
bool no_stepper_sleep = false // pass true to keep steppers from disabling on timeout
# endif
) ;
void manage_inactivity ( bool ignore_stepper_queue = false ) ;
# if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
extern bool extruder_duplication_enabled ;
# endif
# if HAS_X2_ENABLE
# define enable_x() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0)
# define disable_x() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
# elif HAS_X_ENABLE
# define enable_x() X_ENABLE_WRITE( X_ENABLE_ON)
# define disable_x() do{ X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
# else
# define enable_x() NOOP
# define disable_x() NOOP
# endif
# if HAS_Y2_ENABLE
# define enable_y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0)
# define disable_y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
# elif HAS_Y_ENABLE
# define enable_y() Y_ENABLE_WRITE( Y_ENABLE_ON)
# define disable_y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
# else
# define enable_y() NOOP
# define disable_y() NOOP
# endif
# if HAS_Z2_ENABLE
# define enable_z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0)
# define disable_z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
# elif HAS_Z_ENABLE
# define enable_z() Z_ENABLE_WRITE( Z_ENABLE_ON)
# define disable_z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
# else
# define enable_z() NOOP
# define disable_z() NOOP
# endif
# if ENABLED(MIXING_EXTRUDER)
/**
* Mixing steppers synchronize their enable ( and direction ) together
*/
# if MIXING_STEPPERS > 3
# define enable_e0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); }
# define disable_e0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); }
# elif MIXING_STEPPERS > 2
# define enable_e0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); }
# define disable_e0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); }
# else
# define enable_e0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); }
# define disable_e0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); }
# endif
# define enable_e1() NOOP
# define disable_e1() NOOP
# define enable_e2() NOOP
# define disable_e2() NOOP
# define enable_e3() NOOP
# define disable_e3() NOOP
# else // !MIXING_EXTRUDER
# if HAS_E0_ENABLE
# define enable_e0() E0_ENABLE_WRITE( E_ENABLE_ON)
# define disable_e0() E0_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define enable_e0() NOOP
# define disable_e0() NOOP
# endif
# if E_STEPPERS > 1 && HAS_E1_ENABLE
# define enable_e1() E1_ENABLE_WRITE( E_ENABLE_ON)
# define disable_e1() E1_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define enable_e1() NOOP
# define disable_e1() NOOP
# endif
# if E_STEPPERS > 2 && HAS_E2_ENABLE
# define enable_e2() E2_ENABLE_WRITE( E_ENABLE_ON)
# define disable_e2() E2_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define enable_e2() NOOP
# define disable_e2() NOOP
# endif
# if E_STEPPERS > 3 && HAS_E3_ENABLE
# define enable_e3() E3_ENABLE_WRITE( E_ENABLE_ON)
# define disable_e3() E3_ENABLE_WRITE(!E_ENABLE_ON)
# else
# define enable_e3() NOOP
# define disable_e3() NOOP
# endif
# endif // !MIXING_EXTRUDER
/**
* The axis order in all axis related arrays is X , Y , Z , E
*/
# define _AXIS(AXIS) AXIS ##_AXIS
void enable_all_steppers ( ) ;
void disable_all_steppers ( ) ;
void FlushSerialRequestResend ( ) ;
void ok_to_send ( ) ;
void reset_bed_level ( ) ;
void kill ( const char * ) ;
void quickstop_stepper ( ) ;
# if ENABLED(FILAMENT_RUNOUT_SENSOR)
void handle_filament_runout ( ) ;
# endif
extern uint8_t marlin_debug_flags ;
# define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F))
extern bool Running ;
inline bool IsRunning ( ) { return Running ; }
inline bool IsStopped ( ) { return ! Running ; }
bool enqueue_and_echo_command ( const char * cmd , bool say_ok = false ) ; //put a single ASCII command at the end of the current buffer or return false when it is full
void enqueue_and_echo_command_now ( const char * cmd ) ; // enqueue now, only return when the command has been enqueued
void enqueue_and_echo_commands_P ( const char * cmd ) ; //put one or many ASCII commands at the end of the current buffer, read from flash
void clear_command_queue ( ) ;
extern millis_t previous_cmd_ms ;
inline void refresh_cmd_timeout ( ) { previous_cmd_ms = millis ( ) ; }
# if ENABLED(FAST_PWM_FAN)
void setPwmFrequency ( uint8_t pin , int val ) ;
# endif
/**
* Feedrate scaling and conversion
*/
extern int feedrate_percentage ;
# define MMM_TO_MMS(MM_M) ((MM_M) / 60.0)
# define MMS_TO_MMM(MM_S) ((MM_S)*60.0)
# define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01)
extern bool axis_relative_modes [ ] ;
extern bool volumetric_enabled ;
extern int flow_percentage [ EXTRUDERS ] ; // Extrusion factor for each extruder
extern float filament_size [ EXTRUDERS ] ; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
extern float volumetric_multiplier [ EXTRUDERS ] ; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern bool axis_known_position [ XYZ ] ; // axis[n].is_known
extern bool axis_homed [ XYZ ] ; // axis[n].is_homed
extern volatile bool wait_for_heatup ;
# if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
extern volatile bool wait_for_user ;
# endif
extern float current_position [ NUM_AXIS ] ;
extern float position_shift [ XYZ ] ;
extern float home_offset [ XYZ ] ;
// Software Endstops
void update_software_endstops ( AxisEnum axis ) ;
# if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
extern bool soft_endstops_enabled ;
void clamp_to_software_endstops ( float target [ XYZ ] ) ;
# else
# define soft_endstops_enabled false
# define clamp_to_software_endstops(x) NOOP
# endif
extern float soft_endstop_min [ XYZ ] ;
extern float soft_endstop_max [ XYZ ] ;
# define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS])
# define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
# define LOGICAL_X_POSITION(POS) LOGICAL_POSITION(POS, X_AXIS)
# define LOGICAL_Y_POSITION(POS) LOGICAL_POSITION(POS, Y_AXIS)
# define LOGICAL_Z_POSITION(POS) LOGICAL_POSITION(POS, Z_AXIS)
# define RAW_X_POSITION(POS) RAW_POSITION(POS, X_AXIS)
# define RAW_Y_POSITION(POS) RAW_POSITION(POS, Y_AXIS)
# define RAW_Z_POSITION(POS) RAW_POSITION(POS, Z_AXIS)
# define RAW_CURRENT_POSITION(AXIS) RAW_POSITION(current_position[AXIS], AXIS)
// GCode support for external objects
bool code_seen ( char ) ;
int code_value_int ( ) ;
float code_value_temp_abs ( ) ;
float code_value_temp_diff ( ) ;
# if IS_KINEMATIC
extern float delta [ ABC ] ;
void inverse_kinematics ( const float cartesian [ XYZ ] ) ;
# endif
# if ENABLED(DELTA)
extern float delta [ ABC ] ,
endstop_adj [ ABC ] ,
delta_radius ,
delta_diagonal_rod ,
delta_segments_per_second ,
delta_diagonal_rod_trim_tower_1 ,
delta_diagonal_rod_trim_tower_2 ,
delta_diagonal_rod_trim_tower_3 ;
void recalc_delta_settings ( float radius , float diagonal_rod ) ;
# elif IS_SCARA
extern float axis_scaling [ ABC ] ; // Build size scaling
void forward_kinematics_SCARA ( const float & a , const float & b ) ;
# endif
# if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
extern int nonlinear_grid_spacing [ 2 ] ;
void adjust_delta ( float cartesian [ XYZ ] ) ;
# endif
# if ENABLED(Z_DUAL_ENDSTOPS)
extern float z_endstop_adj ;
# endif
# if HAS_BED_PROBE
extern float zprobe_zoffset ;
# endif
# if ENABLED(HOST_KEEPALIVE_FEATURE)
extern uint8_t host_keepalive_interval ;
# endif
# if FAN_COUNT > 0
extern int fanSpeeds [ FAN_COUNT ] ;
# endif
# if ENABLED(BARICUDA)
extern int baricuda_valve_pressure ;
extern int baricuda_e_to_p_pressure ;
# endif
# if ENABLED(FILAMENT_WIDTH_SENSOR)
extern bool filament_sensor ; // Flag that filament sensor readings should control extrusion
extern float filament_width_nominal , // Theoretical filament diameter i.e., 3.00 or 1.75
filament_width_meas ; // Measured filament diameter
extern int8_t measurement_delay [ ] ; // Ring buffer to delay measurement
extern int filwidth_delay_index [ 2 ] ; // Ring buffer indexes. Used by planner, temperature, and main code
extern int meas_delay_cm ; // Delay distance
# endif
# if ENABLED(FILAMENT_CHANGE_FEATURE)
extern FilamentChangeMenuResponse filament_change_menu_response ;
# endif
# if ENABLED(PID_EXTRUSION_SCALING)
extern int lpq_len ;
# endif
# if ENABLED(FWRETRACT)
extern bool autoretract_enabled ;
extern bool retracted [ EXTRUDERS ] ; // extruder[n].retracted
extern float retract_length , retract_length_swap , retract_feedrate_mm_s , retract_zlift ;
extern float retract_recover_length , retract_recover_length_swap , retract_recover_feedrate_mm_s ;
# endif
// Print job timer
# if ENABLED(PRINTCOUNTER)
extern PrintCounter print_job_timer ;
# else
extern Stopwatch print_job_timer ;
# endif
// Handling multiple extruders pins
extern uint8_t active_extruder ;
# if HAS_TEMP_HOTEND || HAS_TEMP_BED
void print_heaterstates ( ) ;
# endif
# if ENABLED(MIXING_EXTRUDER)
extern float mixing_factor [ MIXING_STEPPERS ] ;
# endif
void calculate_volumetric_multipliers ( ) ;
// Buzzer
# if HAS_BUZZER && PIN_EXISTS(BEEPER)
# include "buzzer.h"
# endif
/**
* Blocking movement and shorthand functions
*/
void do_blocking_move_to ( const float & x , const float & y , const float & z , const float & fr_mm_s = 0.0 ) ;
void do_blocking_move_to_x ( const float & x , const float & fr_mm_s = 0.0 ) ;
void do_blocking_move_to_z ( const float & z , const float & fr_mm_s = 0.0 ) ;
void do_blocking_move_to_xy ( const float & x , const float & y , const float & fr_mm_s = 0.0 ) ;
# endif //MARLIN_H