|
|
|
/*
|
|
|
|
stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
|
|
|
|
Part of Grbl
|
|
|
|
|
|
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef stepper_h
|
|
|
|
#define stepper_h
|
|
|
|
|
|
|
|
#include "planner.h"
|
|
|
|
#include "stepper_indirection.h"
|
|
|
|
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}}
|
|
|
|
#define NORM_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE( !INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}}
|
|
|
|
#define REV_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE(INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}}
|
|
|
|
#elif EXTRUDERS > 2
|
|
|
|
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}
|
|
|
|
#define NORM_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}
|
|
|
|
#define REV_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}
|
|
|
|
#elif EXTRUDERS > 1
|
|
|
|
#ifndef DUAL_X_CARRIAGE
|
|
|
|
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
|
|
|
|
#define NORM_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
|
|
|
|
#define REV_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
|
|
|
|
#else
|
|
|
|
extern bool extruder_duplication_enabled;
|
|
|
|
#define WRITE_E_STEP(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
|
|
|
|
#define NORM_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
|
|
|
|
#define REV_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(INVERT_E0_DIR); E1_DIR_WRITE(INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
#define WRITE_E_STEP(v) E0_STEP_WRITE(v)
|
|
|
|
#define NORM_E_DIR() E0_DIR_WRITE(!INVERT_E0_DIR)
|
|
|
|
#define REV_E_DIR() E0_DIR_WRITE(INVERT_E0_DIR)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
|
|
extern bool abort_on_endstop_hit;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Initialize and start the stepper motor subsystem
|
|
|
|
void st_init();
|
|
|
|
|
|
|
|
// Block until all buffered steps are executed
|
|
|
|
void st_synchronize();
|
|
|
|
|
|
|
|
// Set current position in steps
|
|
|
|
void st_set_position(const long &x, const long &y, const long &z, const long &e);
|
|
|
|
void st_set_e_position(const long &e);
|
|
|
|
|
|
|
|
// Get current position in steps
|
|
|
|
long st_get_position(uint8_t axis);
|
|
|
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
// Get current position in mm
|
|
|
|
float st_get_position_mm(uint8_t axis);
|
|
|
|
#endif //ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
|
|
|
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
|
|
|
|
// to notify the subsystem that it is time to go to work.
|
|
|
|
void st_wake_up();
|
|
|
|
|
|
|
|
|
|
|
|
void checkHitEndstops(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
|
|
|
|
void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homing and before a routine call of checkHitEndstops();
|
|
|
|
|
|
|
|
void enable_endstops(bool check); // Enable/disable endstop checking
|
|
|
|
|
|
|
|
void checkStepperErrors(); //Print errors detected by the stepper
|
|
|
|
|
|
|
|
void finishAndDisableSteppers();
|
|
|
|
|
|
|
|
extern block_t *current_block; // A pointer to the block currently being traced
|
|
|
|
|
|
|
|
void quickStop();
|
|
|
|
|
|
|
|
void digitalPotWrite(int address, int value);
|
|
|
|
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2);
|
|
|
|
void microstep_mode(uint8_t driver, uint8_t stepping);
|
|
|
|
void digipot_init();
|
|
|
|
void digipot_current(uint8_t driver, int current);
|
|
|
|
void microstep_init();
|
|
|
|
void microstep_readings();
|
|
|
|
|
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
11 years ago
|
|
|
#ifdef BABYSTEPPING
|
|
|
|
void babystep(const uint8_t axis,const bool direction); // perform a short step with a single stepper motor, outside of any convention
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif
|