Followup for I2C_POSITION_ENCODERS

2.0.x
Scott Lahteine 8 years ago
parent f4246dc8ff
commit fc140c4962

@ -93,7 +93,7 @@ script:
# #
- restore_configs - restore_configs
- opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING ENABLE_LEVELING_FADE_HEIGHT FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL - opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING ENABLE_LEVELING_FADE_HEIGHT FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL
- opt_enable_adv CUSTOM_USER_MENUS - opt_enable_adv CUSTOM_USER_MENUS I2C_POSITION_ENCODERS BABYSTEPPING
- build_marlin - build_marlin
# #
# Test a Sled Z Probe # Test a Sled Z Probe

@ -1271,6 +1271,7 @@
//=========================================================================== //===========================================================================
//====================== I2C Position Encoder Settings ====================== //====================== I2C Position Encoder Settings ======================
//=========================================================================== //===========================================================================
/** /**
* I2C position encoders for closed loop control. * I2C position encoders for closed loop control.
* Developed by Chris Barr at Aus3D. * Developed by Chris Barr at Aus3D.

@ -40,13 +40,14 @@
#include <Wire.h> #include <Wire.h>
void I2CPositionEncoder::init(uint8_t address, AxisEnum axis) {
void I2CPositionEncoder::init(const uint8_t address, const AxisEnum axis) {
encoderAxis = axis; encoderAxis = axis;
i2cAddress = address; i2cAddress = address;
initialised++; initialised++;
SERIAL_ECHOPAIR("Seetting up encoder on ", axis_codes[encoderAxis]); SERIAL_ECHOPAIR("Setting up encoder on ", axis_codes[encoderAxis]);
SERIAL_ECHOLNPAIR(" axis, addr = ", address); SERIAL_ECHOLNPAIR(" axis, addr = ", address);
position = get_position(); position = get_position();
@ -98,13 +99,13 @@
//the encoder likely lost its place when the error occured, so we'll reset and use the printer's //the encoder likely lost its place when the error occured, so we'll reset and use the printer's
//idea of where it the axis is to re-initialise //idea of where it the axis is to re-initialise
double position = stepper.get_axis_position_mm(encoderAxis); float position = stepper.get_axis_position_mm(encoderAxis);
long positionInTicks = position * get_ticks_unit(); int32_t positionInTicks = position * get_ticks_unit();
//shift position from previous to current position //shift position from previous to current position
zeroOffset -= (positionInTicks - get_position()); zeroOffset -= (positionInTicks - get_position());
#if defined(I2CPE_DEBUG) #ifdef I2CPE_DEBUG
SERIAL_ECHOPGM("Current position is "); SERIAL_ECHOPGM("Current position is ");
SERIAL_ECHOLN(position); SERIAL_ECHOLN(position);
@ -126,23 +127,23 @@
} }
lastPosition = position; lastPosition = position;
millis_t positionTime = millis(); const millis_t positionTime = millis();
//only do error correction if setup and enabled //only do error correction if setup and enabled
if (ec && ecMethod != I2CPE_ECM_NONE) { if (ec && ecMethod != I2CPE_ECM_NONE) {
#if defined(I2CPE_EC_THRESH_PROPORTIONAL) #ifdef I2CPE_EC_THRESH_PROPORTIONAL
millis_t deltaTime = positionTime - lastPositionTime; const millis_t deltaTime = positionTime - lastPositionTime;
unsigned long distance = abs(position - lastPosition); const uint32_t distance = abs(position - lastPosition),
unsigned long speed = distance / deltaTime; speed = distance / deltaTime;
float threshold = constrain(speed / 50, 1, 50) * ecThreshold; const float threshold = constrain((speed / 50), 1, 50) * ecThreshold;
#else #else
float threshold = get_error_correct_threshold(); const float threshold = get_error_correct_threshold();
#endif #endif
//check error //check error
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE) #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
double sum = 0, diffSum = 0; float sum = 0, diffSum = 0;
errIdx = (errIdx >= I2CPE_ERR_ARRAY_SIZE - 1) ? 0 : errIdx + 1; errIdx = (errIdx >= I2CPE_ERR_ARRAY_SIZE - 1) ? 0 : errIdx + 1;
err[errIdx] = get_axis_error_steps(false); err[errIdx] = get_axis_error_steps(false);
@ -152,16 +153,16 @@
if (i) diffSum += abs(err[i-1] - err[i]); if (i) diffSum += abs(err[i-1] - err[i]);
} }
long error = (long)(sum/(I2CPE_ERR_ARRAY_SIZE + 1)); //calculate average for error const int32_t error = int32_t(sum / (I2CPE_ERR_ARRAY_SIZE + 1)); //calculate average for error
#else #else
long error = get_axis_error_steps(false); const int32_t error = get_axis_error_steps(false);
#endif #endif
//SERIAL_ECHOPGM("Axis err*r steps: "); //SERIAL_ECHOPGM("Axis error steps: ");
//SERIAL_ECHOLN(error); //SERIAL_ECHOLN(error);
#if defined(I2CPE_ERR_THRESH_ABORT) #ifdef I2CPE_ERR_THRESH_ABORT
if (labs(error) > I2CPE_ERR_THRESH_ABORT * planner.axis_steps_per_mm[encoderAxis]) { if (labs(error) > I2CPE_ERR_THRESH_ABORT * planner.axis_steps_per_mm[encoderAxis]) {
//kill("Significant Error"); //kill("Significant Error");
SERIAL_ECHOPGM("Axis error greater than set threshold, aborting!"); SERIAL_ECHOPGM("Axis error greater than set threshold, aborting!");
@ -215,7 +216,7 @@
homed++; homed++;
trusted++; trusted++;
#if defined(I2CPE_DEBUG) #ifdef I2CPE_DEBUG
SERIAL_ECHO(axis_codes[encoderAxis]); SERIAL_ECHO(axis_codes[encoderAxis]);
SERIAL_ECHOPAIR(" axis encoder homed, offset of ", zeroOffset); SERIAL_ECHOPAIR(" axis encoder homed, offset of ", zeroOffset);
SERIAL_ECHOLNPGM(" ticks."); SERIAL_ECHOLNPGM(" ticks.");
@ -223,36 +224,27 @@
} }
} }
bool I2CPositionEncoder::passes_test(bool report) { bool I2CPositionEncoder::passes_test(const bool report) {
if (H == I2CPE_MAG_SIG_GOOD) {
if (report) {
SERIAL_ECHO(axis_codes[encoderAxis]);
SERIAL_ECHOLNPGM(" axis encoder passes test; field strength good.");
}
return true;
} else if (H == I2CPE_MAG_SIG_MID) {
if (report) {
SERIAL_ECHOPAIR("Warning, ", axis_codes[encoderAxis]);
SERIAL_ECHOLNPGM(" axis encoder passes test; field strength fair.");
}
return true;
} else if (H == I2CPE_MAG_SIG_BAD) {
if (report) {
SERIAL_ECHOPAIR("Warning, ", axis_codes[encoderAxis]);
SERIAL_ECHOLNPGM(" axis magnetic strip not detected!");
}
return false;
}
if (report) { if (report) {
SERIAL_ECHOPAIR("Warning, ", axis_codes[encoderAxis]); if (H != I2CPE_MAG_SIG_GOOD) SERIAL_ECHOPGM("Warning. ");
SERIAL_ECHOLNPGM(" axis encoder not detected!"); SERIAL_ECHO(axis_codes[encoderAxis]);
SERIAL_ECHOPGM(" axis ");
serialprintPGM(H == I2CPE_MAG_SIG_BAD ? PSTR("magnetic strip ") : PSTR("encoder "));
switch (H) {
case I2CPE_MAG_SIG_GOOD:
case I2CPE_MAG_SIG_MID:
SERIAL_ECHOLNPGM("passes test; field strength ");
serialprintPGM(H == I2CPE_MAG_SIG_GOOD ? PSTR("good.\n") : PSTR("fair.\n"));
break;
default:
SERIAL_ECHOLNPGM("not detected!");
}
} }
return false; return (H == I2CPE_MAG_SIG_GOOD || H == I2CPE_MAG_SIG_MID);
} }
double I2CPositionEncoder::get_axis_error_mm(bool report) { float I2CPositionEncoder::get_axis_error_mm(const bool report) {
double target, actual, error; float target, actual, error;
target = stepper.get_axis_position_mm(encoderAxis); target = stepper.get_axis_position_mm(encoderAxis);
actual = mm_from_count(position); actual = mm_from_count(position);
@ -270,7 +262,7 @@
return error; return error;
} }
long I2CPositionEncoder::get_axis_error_steps(bool report) { int32_t I2CPositionEncoder::get_axis_error_steps(const bool report) {
if (!active) { if (!active) {
if (report) { if (report) {
SERIAL_ECHO(axis_codes[encoderAxis]); SERIAL_ECHO(axis_codes[encoderAxis]);
@ -280,8 +272,8 @@
} }
float stepperTicksPerUnit; float stepperTicksPerUnit;
long encoderTicks = position, encoderCountInStepperTicksScaled; int32_t encoderTicks = position, encoderCountInStepperTicksScaled;
//long stepperTicks = stepper.position(encoderAxis); //int32_t stepperTicks = stepper.position(encoderAxis);
// With a rotary encoder we're concerned with ticks/rev; whereas with a linear we're concerned with ticks/mm // With a rotary encoder we're concerned with ticks/rev; whereas with a linear we're concerned with ticks/mm
stepperTicksPerUnit = (type == I2CPE_ENC_TYPE_ROTARY) ? stepperTicks : planner.axis_steps_per_mm[encoderAxis]; stepperTicksPerUnit = (type == I2CPE_ENC_TYPE_ROTARY) ? stepperTicks : planner.axis_steps_per_mm[encoderAxis];
@ -289,8 +281,8 @@
//convert both 'ticks' into same units / base //convert both 'ticks' into same units / base
encoderCountInStepperTicksScaled = LROUND((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit); encoderCountInStepperTicksScaled = LROUND((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit);
long target = stepper.position(encoderAxis), int32_t target = stepper.position(encoderAxis),
error = (encoderCountInStepperTicksScaled - target); error = (encoderCountInStepperTicksScaled - target);
//suppress discontinuities (might be caused by bad I2C readings...?) //suppress discontinuities (might be caused by bad I2C readings...?)
bool suppressOutput = (labs(error - errorPrev) > 100); bool suppressOutput = (labs(error - errorPrev) > 100);
@ -309,7 +301,7 @@
return (suppressOutput ? 0 : error); return (suppressOutput ? 0 : error);
} }
long I2CPositionEncoder::get_raw_count() { int32_t I2CPositionEncoder::get_raw_count() {
uint8_t index = 0; uint8_t index = 0;
i2cLong encoderCount; i2cLong encoderCount;
@ -340,14 +332,11 @@
//only works on XYZ cartesian machines for the time being //only works on XYZ cartesian machines for the time being
if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) return false; if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) return false;
int feedrate; float startCoord[NUM_AXIS] = { 0 }, endCoord[NUM_AXIS] = { 0 };
float startPosition, endPosition;
float startCoord[NUM_AXIS] = {0}, endCoord[NUM_AXIS] = {0};
startPosition = soft_endstop_min[encoderAxis] + 10;
endPosition = soft_endstop_max[encoderAxis] - 10;
feedrate = (int)MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY); const float startPosition = soft_endstop_min[encoderAxis] + 10,
endPosition = soft_endstop_max[encoderAxis] - 10,
feedrate = FLOOR(MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY));
ec = false; ec = false;
@ -367,7 +356,7 @@
// if the module isn't currently trusted, wait until it is (or until it should be if things are working) // if the module isn't currently trusted, wait until it is (or until it should be if things are working)
if (!trusted) { if (!trusted) {
long startWaitingTime = millis(); int32_t startWaitingTime = millis();
while (!trusted && millis() - startWaitingTime < I2CPE_TIME_TRUSTED) while (!trusted && millis() - startWaitingTime < I2CPE_TIME_TRUSTED)
safe_delay(500); safe_delay(500);
} }
@ -381,7 +370,7 @@
return trusted; return trusted;
} }
void I2CPositionEncoder::calibrate_steps_mm(int iter) { void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) {
if (type != I2CPE_ENC_TYPE_LINEAR) { if (type != I2CPE_ENC_TYPE_LINEAR) {
SERIAL_ECHOLNPGM("Steps per mm calibration is only available using linear encoders."); SERIAL_ECHOLNPGM("Steps per mm calibration is only available using linear encoders.");
return; return;
@ -392,14 +381,14 @@
return; return;
} }
float oldStepsMm, newStepsMm, float old_steps_mm, new_steps_mm,
startDistance, endDistance, startDistance, endDistance,
travelDistance, travelledDistance, total = 0, travelDistance, travelledDistance, total = 0,
startCoord[NUM_AXIS] = {0}, endCoord[NUM_AXIS] = {0}; startCoord[NUM_AXIS] = { 0 }, endCoord[NUM_AXIS] = { 0 };
double feedrate; float feedrate;
long startCount, stopCount; int32_t startCount, stopCount;
feedrate = MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY); feedrate = MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY);
@ -447,17 +436,17 @@
SERIAL_ECHOLNPGM("mm."); SERIAL_ECHOLNPGM("mm.");
//Calculate new axis steps per unit //Calculate new axis steps per unit
oldStepsMm = planner.axis_steps_per_mm[encoderAxis]; old_steps_mm = planner.axis_steps_per_mm[encoderAxis];
newStepsMm = (oldStepsMm * travelDistance) / travelledDistance; new_steps_mm = (old_steps_mm * travelDistance) / travelledDistance;
SERIAL_ECHOLNPAIR("Old steps per mm: ", oldStepsMm); SERIAL_ECHOLNPAIR("Old steps per mm: ", old_steps_mm);
SERIAL_ECHOLNPAIR("New steps per mm: ", newStepsMm); SERIAL_ECHOLNPAIR("New steps per mm: ", new_steps_mm);
//Save new value //Save new value
planner.axis_steps_per_mm[encoderAxis] = newStepsMm; planner.axis_steps_per_mm[encoderAxis] = new_steps_mm;
if (iter > 1) { if (iter > 1) {
total += newStepsMm; total += new_steps_mm;
// swap start and end points so next loop runs from current position // swap start and end points so next loop runs from current position
float tempCoord = startCoord[encoderAxis]; float tempCoord = startCoord[encoderAxis];
@ -486,6 +475,12 @@
#endif #endif
} }
bool I2CPositionEncodersMgr::I2CPE_anyaxis;
uint8_t I2CPositionEncodersMgr::I2CPE_addr,
I2CPositionEncodersMgr::I2CPE_idx;
I2CPositionEncoder I2CPositionEncodersMgr::encoders[I2CPE_ENCODER_CNT];
void I2CPositionEncodersMgr::init() { void I2CPositionEncodersMgr::init() {
Wire.begin(); Wire.begin();
@ -494,28 +489,28 @@
encoders[i].init(I2CPE_ENC_1_ADDR, I2CPE_ENC_1_AXIS); encoders[i].init(I2CPE_ENC_1_ADDR, I2CPE_ENC_1_AXIS);
#if defined(I2CPE_ENC_1_TYPE) #ifdef I2CPE_ENC_1_TYPE
encoders[i].set_type(I2CPE_ENC_1_TYPE); encoders[i].set_type(I2CPE_ENC_1_TYPE);
#endif #endif
#if defined(I2CPE_ENC_1_TICKS_UNIT) #ifdef I2CPE_ENC_1_TICKS_UNIT
encoders[i].set_ticks_unit(I2CPE_ENC_1_TICKS_UNIT); encoders[i].set_ticks_unit(I2CPE_ENC_1_TICKS_UNIT);
#endif #endif
#if defined(I2CPE_ENC_1_TICKS_REV) #ifdef I2CPE_ENC_1_TICKS_REV
encoders[i].set_stepper_ticks(I2CPE_ENC_1_TICKS_REV); encoders[i].set_stepper_ticks(I2CPE_ENC_1_TICKS_REV);
#endif #endif
#if defined(I2CPE_ENC_1_INVERT) #ifdef I2CPE_ENC_1_INVERT
encoders[i].set_inverted(I2CPE_ENC_1_INVERT); encoders[i].set_inverted(I2CPE_ENC_1_INVERT);
#endif #endif
#if defined(I2CPE_ENC_1_EC_METHOD) #ifdef I2CPE_ENC_1_EC_METHOD
encoders[i].set_ec_method(I2CPE_ENC_1_EC_METHOD); encoders[i].set_ec_method(I2CPE_ENC_1_EC_METHOD);
#endif #endif
#if defined(I2CPE_ENC_1_EC_THRESH) #ifdef I2CPE_ENC_1_EC_THRESH
encoders[i].set_ec_threshold(I2CPE_ENC_1_EC_THRESH); encoders[i].set_ec_threshold(I2CPE_ENC_1_EC_THRESH);
#endif #endif
encoders[i].set_active(encoders[i].passes_test(true)); encoders[i].set_active(encoders[i].passes_test(true));
#if (I2CPE_ENC_1_AXIS == E_AXIS) #if I2CPE_ENC_1_AXIS == E_AXIS
encoders[i].set_homed(); encoders[i].set_homed();
#endif #endif
#endif #endif
@ -525,28 +520,28 @@
encoders[i].init(I2CPE_ENC_2_ADDR, I2CPE_ENC_2_AXIS); encoders[i].init(I2CPE_ENC_2_ADDR, I2CPE_ENC_2_AXIS);
#if defined(I2CPE_ENC_2_TYPE) #ifdef I2CPE_ENC_2_TYPE
encoders[i].set_type(I2CPE_ENC_2_TYPE); encoders[i].set_type(I2CPE_ENC_2_TYPE);
#endif #endif
#if defined(I2CPE_ENC_2_TICKS_UNIT) #ifdef I2CPE_ENC_2_TICKS_UNIT
encoders[i].set_ticks_unit(I2CPE_ENC_2_TICKS_UNIT); encoders[i].set_ticks_unit(I2CPE_ENC_2_TICKS_UNIT);
#endif #endif
#if defined(I2CPE_ENC_2_TICKS_REV) #ifdef I2CPE_ENC_2_TICKS_REV
encoders[i].set_stepper_ticks(I2CPE_ENC_2_TICKS_REV); encoders[i].set_stepper_ticks(I2CPE_ENC_2_TICKS_REV);
#endif #endif
#if defined(I2CPE_ENC_2_INVERT) #ifdef I2CPE_ENC_2_INVERT
encoders[i].set_inverted(I2CPE_ENC_2_INVERT); encoders[i].set_inverted(I2CPE_ENC_2_INVERT);
#endif #endif
#if defined(I2CPE_ENC_2_EC_METHOD) #ifdef I2CPE_ENC_2_EC_METHOD
encoders[i].set_ec_method(I2CPE_ENC_2_EC_METHOD); encoders[i].set_ec_method(I2CPE_ENC_2_EC_METHOD);
#endif #endif
#if defined(I2CPE_ENC_2_EC_THRESH) #ifdef I2CPE_ENC_2_EC_THRESH
encoders[i].set_ec_threshold(I2CPE_ENC_2_EC_THRESH); encoders[i].set_ec_threshold(I2CPE_ENC_2_EC_THRESH);
#endif #endif
encoders[i].set_active(encoders[i].passes_test(true)); encoders[i].set_active(encoders[i].passes_test(true));
#if (I2CPE_ENC_2_AXIS == E_AXIS) #if I2CPE_ENC_2_AXIS == E_AXIS
encoders[i].set_homed(); encoders[i].set_homed();
#endif #endif
#endif #endif
@ -556,28 +551,28 @@
encoders[i].init(I2CPE_ENC_3_ADDR, I2CPE_ENC_3_AXIS); encoders[i].init(I2CPE_ENC_3_ADDR, I2CPE_ENC_3_AXIS);
#if defined(I2CPE_ENC_3_TYPE) #ifdef I2CPE_ENC_3_TYPE
encoders[i].set_type(I2CPE_ENC_3_TYPE); encoders[i].set_type(I2CPE_ENC_3_TYPE);
#endif #endif
#if defined(I2CPE_ENC_3_TICKS_UNIT) #ifdef I2CPE_ENC_3_TICKS_UNIT
encoders[i].set_ticks_unit(I2CPE_ENC_3_TICKS_UNIT); encoders[i].set_ticks_unit(I2CPE_ENC_3_TICKS_UNIT);
#endif #endif
#if defined(I2CPE_ENC_3_TICKS_REV) #ifdef I2CPE_ENC_3_TICKS_REV
encoders[i].set_stepper_ticks(I2CPE_ENC_3_TICKS_REV); encoders[i].set_stepper_ticks(I2CPE_ENC_3_TICKS_REV);
#endif #endif
#if defined(I2CPE_ENC_3_INVERT) #ifdef I2CPE_ENC_3_INVERT
encoders[i].set_inverted(I2CPE_ENC_3_INVERT); encoders[i].set_inverted(I2CPE_ENC_3_INVERT);
#endif #endif
#if defined(I2CPE_ENC_3_EC_METHOD) #ifdef I2CPE_ENC_3_EC_METHOD
encoders[i].set_ec_method(I2CPE_ENC_3_EC_METHOD); encoders[i].set_ec_method(I2CPE_ENC_3_EC_METHOD);
#endif #endif
#if defined(I2CPE_ENC_3_EC_THRESH) #ifdef I2CPE_ENC_3_EC_THRESH
encoders[i].set_ec_threshold(I2CPE_ENC_3_EC_THRESH); encoders[i].set_ec_threshold(I2CPE_ENC_3_EC_THRESH);
#endif #endif
encoders[i].set_active(encoders[i].passes_test(true)); encoders[i].set_active(encoders[i].passes_test(true));
#if (I2CPE_ENC_3_AXIS == E_AXIS) #if I2CPE_ENC_3_AXIS == E_AXIS
encoders[i].set_homed(); encoders[i].set_homed();
#endif #endif
#endif #endif
@ -587,28 +582,28 @@
encoders[i].init(I2CPE_ENC_4_ADDR, I2CPE_ENC_4_AXIS); encoders[i].init(I2CPE_ENC_4_ADDR, I2CPE_ENC_4_AXIS);
#if defined(I2CPE_ENC_4_TYPE) #ifdef I2CPE_ENC_4_TYPE
encoders[i].set_type(I2CPE_ENC_4_TYPE); encoders[i].set_type(I2CPE_ENC_4_TYPE);
#endif #endif
#if defined(I2CPE_ENC_4_TICKS_UNIT) #ifdef I2CPE_ENC_4_TICKS_UNIT
encoders[i].set_ticks_unit(I2CPE_ENC_4_TICKS_UNIT); encoders[i].set_ticks_unit(I2CPE_ENC_4_TICKS_UNIT);
#endif #endif
#if defined(I2CPE_ENC_4_TICKS_REV) #ifdef I2CPE_ENC_4_TICKS_REV
encoders[i].set_stepper_ticks(I2CPE_ENC_4_TICKS_REV); encoders[i].set_stepper_ticks(I2CPE_ENC_4_TICKS_REV);
#endif #endif
#if defined(I2CPE_ENC_4_INVERT) #ifdef I2CPE_ENC_4_INVERT
encoders[i].set_inverted(I2CPE_ENC_4_INVERT); encoders[i].set_inverted(I2CPE_ENC_4_INVERT);
#endif #endif
#if defined(I2CPE_ENC_4_EC_METHOD) #ifdef I2CPE_ENC_4_EC_METHOD
encoders[i].set_ec_method(I2CPE_ENC_4_EC_METHOD); encoders[i].set_ec_method(I2CPE_ENC_4_EC_METHOD);
#endif #endif
#if defined(I2CPE_ENC_4_EC_THRESH) #ifdef I2CPE_ENC_4_EC_THRESH
encoders[i].set_ec_threshold(I2CPE_ENC_4_EC_THRESH); encoders[i].set_ec_threshold(I2CPE_ENC_4_EC_THRESH);
#endif #endif
encoders[i].set_active(encoders[i].passes_test(true)); encoders[i].set_active(encoders[i].passes_test(true));
#if (I2CPE_ENC_4_AXIS == E_AXIS) #if I2CPE_ENC_4_AXIS == E_AXIS
encoders[i].set_homed(); encoders[i].set_homed();
#endif #endif
#endif #endif
@ -618,56 +613,57 @@
encoders[i].init(I2CPE_ENC_5_ADDR, I2CPE_ENC_5_AXIS); encoders[i].init(I2CPE_ENC_5_ADDR, I2CPE_ENC_5_AXIS);
#if defined(I2CPE_ENC_5_TYPE) #ifdef I2CPE_ENC_5_TYPE
encoders[i].set_type(I2CPE_ENC_5_TYPE); encoders[i].set_type(I2CPE_ENC_5_TYPE);
#endif #endif
#if defined(I2CPE_ENC_5_TICKS_UNIT) #ifdef I2CPE_ENC_5_TICKS_UNIT
encoders[i].set_ticks_unit(I2CPE_ENC_5_TICKS_UNIT); encoders[i].set_ticks_unit(I2CPE_ENC_5_TICKS_UNIT);
#endif #endif
#if defined(I2CPE_ENC_5_TICKS_REV) #ifdef I2CPE_ENC_5_TICKS_REV
encoders[i].set_stepper_ticks(I2CPE_ENC_5_TICKS_REV); encoders[i].set_stepper_ticks(I2CPE_ENC_5_TICKS_REV);
#endif #endif
#if defined(I2CPE_ENC_5_INVERT) #ifdef I2CPE_ENC_5_INVERT
encoders[i].set_inverted(I2CPE_ENC_5_INVERT); encoders[i].set_inverted(I2CPE_ENC_5_INVERT);
#endif #endif
#if defined(I2CPE_ENC_5_EC_METHOD) #ifdef I2CPE_ENC_5_EC_METHOD
encoders[i].set_ec_method(I2CPE_ENC_5_EC_METHOD); encoders[i].set_ec_method(I2CPE_ENC_5_EC_METHOD);
#endif #endif
#if defined(I2CPE_ENC_5_EC_THRESH) #ifdef I2CPE_ENC_5_EC_THRESH
encoders[i].set_ec_threshold(I2CPE_ENC_5_EC_THRESH); encoders[i].set_ec_threshold(I2CPE_ENC_5_EC_THRESH);
#endif #endif
encoders[i].set_active(encoders[i].passes_test(true)); encoders[i].set_active(encoders[i].passes_test(true));
#if (I2CPE_ENC_5_AXIS == E_AXIS) #if I2CPE_ENC_5_AXIS == E_AXIS
encoders[i].set_homed(); encoders[i].set_homed();
#endif #endif
#endif #endif
} }
void I2CPositionEncodersMgr::report_position(uint8_t idx, bool units, bool noOffset) { void I2CPositionEncodersMgr::report_position(const int8_t idx, const bool units, const bool noOffset) {
CHECK_IDX CHECK_IDX();
if (units) { if (units)
SERIAL_ECHOLN(noOffset ? encoders[idx].mm_from_count(encoders[idx].get_raw_count()) : encoders[idx].get_position_mm()); SERIAL_ECHOLN(noOffset ? encoders[idx].mm_from_count(encoders[idx].get_raw_count()) : encoders[idx].get_position_mm());
} else { else {
if (noOffset) { if (noOffset) {
long raw_count = encoders[idx].get_raw_count(); const int32_t raw_count = encoders[idx].get_raw_count();
SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]); SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]);
SERIAL_ECHOPGM(" "); SERIAL_CHAR(' ');
for (uint8_t j = 31; j > 0; j--) for (uint8_t j = 31; j > 0; j--)
SERIAL_ECHO((bool)(0x00000001 & (raw_count >> j))); SERIAL_ECHO((bool)(0x00000001 & (raw_count >> j)));
SERIAL_ECHO((bool)(0x00000001 & (raw_count))); SERIAL_ECHO((bool)(0x00000001 & raw_count));
SERIAL_ECHOLNPAIR(" ", raw_count); SERIAL_CHAR(' ');
} else SERIAL_ECHOLN(raw_count);
}
else
SERIAL_ECHOLN(encoders[idx].get_position()); SERIAL_ECHOLN(encoders[idx].get_position());
} }
} }
void I2CPositionEncodersMgr::change_module_address(uint8_t oldaddr, uint8_t newaddr) { void I2CPositionEncodersMgr::change_module_address(const uint8_t oldaddr, const uint8_t newaddr) {
// First check 'new' address is not in use // First check 'new' address is not in use
Wire.beginTransmission(newaddr); Wire.beginTransmission(newaddr);
if (!Wire.endTransmission()) { if (!Wire.endTransmission()) {
@ -709,7 +705,7 @@
// Now, if this module is configured, find which encoder instance it's supposed to correspond to // Now, if this module is configured, find which encoder instance it's supposed to correspond to
// and enable it (it will likely have failed initialisation on power-up, before the address change). // and enable it (it will likely have failed initialisation on power-up, before the address change).
int8_t idx = idx_from_addr(newaddr); const int8_t idx = idx_from_addr(newaddr);
if (idx >= 0 && !encoders[idx].get_active()) { if (idx >= 0 && !encoders[idx].get_active()) {
SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]); SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]);
SERIAL_ECHOLNPGM(" axis encoder was not detected on printer startup. Trying again."); SERIAL_ECHOLNPGM(" axis encoder was not detected on printer startup. Trying again.");
@ -717,7 +713,7 @@
} }
} }
void I2CPositionEncodersMgr::report_module_firmware(uint8_t address) { void I2CPositionEncodersMgr::report_module_firmware(const uint8_t address) {
// First check there is a module // First check there is a module
Wire.beginTransmission(address); Wire.beginTransmission(address);
if (Wire.endTransmission()) { if (Wire.endTransmission()) {
@ -727,7 +723,7 @@
} }
SERIAL_ECHOPAIR("Requesting version info from module at address ", address); SERIAL_ECHOPAIR("Requesting version info from module at address ", address);
SERIAL_ECHOPGM(":\n"); SERIAL_ECHOLNPGM(":");
Wire.beginTransmission(address); Wire.beginTransmission(address);
Wire.write(I2CPE_SET_REPORT_MODE); Wire.write(I2CPE_SET_REPORT_MODE);
@ -743,7 +739,7 @@
} }
// Set module back to normal (distance) mode // Set module back to normal (distance) mode
Wire.beginTransmission((int)address); Wire.beginTransmission(address);
Wire.write(I2CPE_SET_REPORT_MODE); Wire.write(I2CPE_SET_REPORT_MODE);
Wire.write(I2CPE_REPORT_DISTANCE); Wire.write(I2CPE_REPORT_DISTANCE);
Wire.endTransmission(); Wire.endTransmission();
@ -753,43 +749,43 @@
I2CPE_addr = 0; I2CPE_addr = 0;
if (parser.seen('A')) { if (parser.seen('A')) {
if (!parser.has_value()) { if (!parser.has_value()) {
SERIAL_PROTOCOLLNPGM("?A seen, but no address specified! [30-200]"); SERIAL_PROTOCOLLNPGM("?A seen, but no address specified! [30-200]");
return I2CPE_PARSE_ERR; return I2CPE_PARSE_ERR;
}; };
I2CPE_addr = parser.value_byte(); I2CPE_addr = parser.value_byte();
if (!WITHIN(I2CPE_addr, 30, 200)) { // reserve the first 30 and last 55 if (!WITHIN(I2CPE_addr, 30, 200)) { // reserve the first 30 and last 55
SERIAL_PROTOCOLLNPGM("?Address out of range. [30-200]"); SERIAL_PROTOCOLLNPGM("?Address out of range. [30-200]");
return I2CPE_PARSE_ERR; return I2CPE_PARSE_ERR;
} }
I2CPE_idx = idx_from_addr(I2CPE_addr); I2CPE_idx = idx_from_addr(I2CPE_addr);
if (I2CPE_idx >= I2CPE_ENCODER_CNT) {
if (!WITHIN(I2CPE_idx, 0, I2CPE_ENCODER_CNT - 1)) {
SERIAL_PROTOCOLLNPGM("?No device with this address!"); SERIAL_PROTOCOLLNPGM("?No device with this address!");
return I2CPE_PARSE_ERR; return I2CPE_PARSE_ERR;
} }
} else if (parser.seenval('I')) { }
else if (parser.seenval('I')) {
if (!parser.has_value()) { if (!parser.has_value()) {
SERIAL_PROTOCOLLNPAIR("?I seen, but no index specified! [0-", I2CPE_ENCODER_CNT - 1); SERIAL_PROTOCOLLNPAIR("?I seen, but no index specified! [0-", I2CPE_ENCODER_CNT - 1);
SERIAL_ECHOLNPGM("]"); SERIAL_PROTOCOLLNPGM("]");
return I2CPE_PARSE_ERR; return I2CPE_PARSE_ERR;
}; };
I2CPE_idx = parser.value_byte(); I2CPE_idx = parser.value_byte();
if (I2CPE_idx >= I2CPE_ENCODER_CNT) {
if (!WITHIN(I2CPE_idx, 0, I2CPE_ENCODER_CNT - 1)) {
SERIAL_PROTOCOLLNPAIR("?Index out of range. [0-", I2CPE_ENCODER_CNT - 1); SERIAL_PROTOCOLLNPAIR("?Index out of range. [0-", I2CPE_ENCODER_CNT - 1);
SERIAL_ECHOLNPGM("]"); SERIAL_ECHOLNPGM("]");
return I2CPE_PARSE_ERR; return I2CPE_PARSE_ERR;
} }
I2CPE_addr = encoders[I2CPE_idx].get_address(); I2CPE_addr = encoders[I2CPE_idx].get_address();
} else {
I2CPE_idx = -1;
} }
else
I2CPE_idx = 0xFF;
I2CPE_anyaxis = parser.seen_axis(); I2CPE_anyaxis = parser.seen_axis();
@ -814,15 +810,18 @@
void I2CPositionEncodersMgr::M860() { void I2CPositionEncodersMgr::M860() {
if (parse()) return; if (parse()) return;
bool hasU = parser.seen('U'), hasO = parser.seen('O'); const bool hasU = parser.seen('U'), hasO = parser.seen('O');
if (I2CPE_idx < 0) { if (I2CPE_idx == 0xFF) {
int8_t idx;
LOOP_XYZE(i) { LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
report_position((uint8_t)idx, hasU, hasO); const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) report_position(idx, hasU, hasO);
}
} }
} else report_position((uint8_t)I2CPE_idx, hasU, hasO); }
else
report_position(I2CPE_idx, hasU, hasO);
} }
/** /**
@ -841,13 +840,16 @@
void I2CPositionEncodersMgr::M861() { void I2CPositionEncodersMgr::M861() {
if (parse()) return; if (parse()) return;
if (I2CPE_idx < 0) { if (I2CPE_idx == 0xFF) {
int8_t idx;
LOOP_XYZE(i) { LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
report_status((uint8_t)idx); const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) report_status(idx);
}
} }
} else report_status((uint8_t)I2CPE_idx); }
else
report_status(I2CPE_idx);
} }
/** /**
@ -867,13 +869,16 @@
void I2CPositionEncodersMgr::M862() { void I2CPositionEncodersMgr::M862() {
if (parse()) return; if (parse()) return;
if (I2CPE_idx < 0) { if (I2CPE_idx == 0xFF) {
int8_t idx;
LOOP_XYZE(i) { LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
test_axis((uint8_t)idx); const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) test_axis(idx);
}
} }
} else test_axis((uint8_t)I2CPE_idx); }
else
test_axis(I2CPE_idx);
} }
/** /**
@ -894,15 +899,18 @@
void I2CPositionEncodersMgr::M863() { void I2CPositionEncodersMgr::M863() {
if (parse()) return; if (parse()) return;
int iterations = parser.seenval('P') ? constrain(parser.value_byte(), 1, 10) : 1; const uint8_t iterations = constrain(parser.byteval('P', 1), 1, 10);
if (I2CPE_idx < 0) { if (I2CPE_idx == 0xFF) {
int8_t idx;
LOOP_XYZE(i) { LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
calibrate_steps_mm((uint8_t)idx, iterations); const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) calibrate_steps_mm(idx, iterations);
}
} }
} else calibrate_steps_mm((uint8_t)I2CPE_idx, iterations); }
else
calibrate_steps_mm(I2CPE_idx, iterations);
} }
/** /**
@ -910,9 +918,9 @@
* *
* A<addr> Module current/old I2C address. If not present, * A<addr> Module current/old I2C address. If not present,
* assumes default address (030). [30, 200]. * assumes default address (030). [30, 200].
* N<addr> Module new I2C address. [30, 200]. * S<addr> Module new I2C address. [30, 200].
* *
* If N not specified: * If S is not specified:
* X Use I2CPE_PRESET_ADDR_X (030). * X Use I2CPE_PRESET_ADDR_X (030).
* Y Use I2CPE_PRESET_ADDR_Y (031). * Y Use I2CPE_PRESET_ADDR_Y (031).
* Z Use I2CPE_PRESET_ADDR_Z (032). * Z Use I2CPE_PRESET_ADDR_Z (032).
@ -925,23 +933,24 @@
if (!I2CPE_addr) I2CPE_addr = I2CPE_PRESET_ADDR_X; if (!I2CPE_addr) I2CPE_addr = I2CPE_PRESET_ADDR_X;
if (parser.seen('N')) { if (parser.seen('S')) {
if (!parser.has_value()) { if (!parser.has_value()) {
SERIAL_PROTOCOLLNPGM("?N seen, but no address specified! [30-200]"); SERIAL_PROTOCOLLNPGM("?S seen, but no address specified! [30-200]");
return; return;
}; };
newAddress = parser.value_byte(); newAddress = parser.value_byte();
if (!WITHIN(newAddress, 30, 200)) { if (!WITHIN(newAddress, 30, 200)) {
SERIAL_PROTOCOLLNPGM("?New address out of range. [30-200]"); SERIAL_PROTOCOLLNPGM("?New address out of range. [30-200]");
return; return;
} }
} else if (!I2CPE_anyaxis) { }
SERIAL_PROTOCOLLNPGM("?You must specify N or [XYZE]."); else if (!I2CPE_anyaxis) {
SERIAL_PROTOCOLLNPGM("?You must specify S or [XYZE].");
return; return;
} else { }
if (parser.seen('X')) newAddress = I2CPE_PRESET_ADDR_X; else {
if (parser.seen('X')) newAddress = I2CPE_PRESET_ADDR_X;
else if (parser.seen('Y')) newAddress = I2CPE_PRESET_ADDR_Y; else if (parser.seen('Y')) newAddress = I2CPE_PRESET_ADDR_Y;
else if (parser.seen('Z')) newAddress = I2CPE_PRESET_ADDR_Z; else if (parser.seen('Z')) newAddress = I2CPE_PRESET_ADDR_Z;
else if (parser.seen('E')) newAddress = I2CPE_PRESET_ADDR_E; else if (parser.seen('E')) newAddress = I2CPE_PRESET_ADDR_E;
@ -970,12 +979,15 @@
if (parse()) return; if (parse()) return;
if (!I2CPE_addr) { if (!I2CPE_addr) {
int8_t idx;
LOOP_XYZE(i) { LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
report_module_firmware(encoders[idx].get_address()); const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) report_module_firmware(encoders[idx].get_address());
}
} }
} else report_module_firmware(I2CPE_addr); }
else
report_module_firmware(I2CPE_addr);
} }
/** /**
@ -995,20 +1007,25 @@
void I2CPositionEncodersMgr::M866() { void I2CPositionEncodersMgr::M866() {
if (parse()) return; if (parse()) return;
bool hasR = parser.seen('R'); const bool hasR = parser.seen('R');
if (I2CPE_idx < 0) { if (I2CPE_idx == 0xFF) {
int8_t idx;
LOOP_XYZE(i) { LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) { if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
if (hasR) reset_error_count((uint8_t)idx, AxisEnum(i)); const uint8_t idx = idx_from_axis(AxisEnum(i));
else report_error_count((uint8_t)idx, AxisEnum(i)); if ((int8_t)idx >= 0) {
if (hasR)
reset_error_count(idx, AxisEnum(i));
else
report_error_count(idx, AxisEnum(i));
}
} }
} }
} else {
if (hasR) reset_error_count((uint8_t)I2CPE_idx, encoders[I2CPE_idx].get_axis());
else report_error_count((uint8_t)I2CPE_idx, encoders[I2CPE_idx].get_axis());
} }
else if (hasR)
reset_error_count(I2CPE_idx, encoders[I2CPE_idx].get_axis());
else
report_error_count(I2CPE_idx, encoders[I2CPE_idx].get_axis());
} }
/** /**
@ -1028,19 +1045,22 @@
void I2CPositionEncodersMgr::M867() { void I2CPositionEncodersMgr::M867() {
if (parse()) return; if (parse()) return;
int8_t onoff = parser.seenval('S') ? parser.value_int() : -1; const int8_t onoff = parser.seenval('S') ? parser.value_int() : -1;
if (I2CPE_idx < 0) { if (I2CPE_idx == 0xFF) {
int8_t idx;
LOOP_XYZE(i) { LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) { if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
if (onoff == -1) enable_ec((uint8_t)idx, !encoders[idx].get_ec_enabled(), AxisEnum(i)); const uint8_t idx = idx_from_axis(AxisEnum(i));
else enable_ec((uint8_t)idx, (bool)onoff, AxisEnum(i)); if ((int8_t)idx >= 0) {
const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff;
enable_ec(idx, ena, AxisEnum(i));
}
} }
} }
} else { }
if (onoff == -1) enable_ec((uint8_t)I2CPE_idx, !encoders[I2CPE_idx].get_ec_enabled(), encoders[I2CPE_idx].get_axis()); else {
else enable_ec((uint8_t)I2CPE_idx, (bool)onoff, encoders[I2CPE_idx].get_axis()); const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff;
enable_ec(I2CPE_idx, ena, encoders[I2CPE_idx].get_axis());
} }
} }
@ -1061,20 +1081,25 @@
void I2CPositionEncodersMgr::M868() { void I2CPositionEncodersMgr::M868() {
if (parse()) return; if (parse()) return;
float newThreshold = parser.seenval('T') ? parser.value_float() : -9999; const float newThreshold = parser.seenval('T') ? parser.value_float() : -9999;
if (I2CPE_idx < 0) { if (I2CPE_idx == 0xFF) {
int8_t idx;
LOOP_XYZE(i) { LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) { if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
if (newThreshold != -9999) set_ec_threshold((uint8_t)idx, newThreshold, encoders[idx].get_axis()); const uint8_t idx = idx_from_axis(AxisEnum(i));
else get_ec_threshold((uint8_t)idx, encoders[idx].get_axis()); if ((int8_t)idx >= 0) {
if (newThreshold != -9999)
set_ec_threshold(idx, newThreshold, encoders[idx].get_axis());
else
get_ec_threshold(idx, encoders[idx].get_axis());
}
} }
} }
} else {
if (newThreshold != -9999) set_ec_threshold((uint8_t)I2CPE_idx, newThreshold, encoders[I2CPE_idx].get_axis());
else get_ec_threshold((uint8_t)I2CPE_idx, encoders[I2CPE_idx].get_axis());
} }
else if (newThreshold != -9999)
set_ec_threshold(I2CPE_idx, newThreshold, encoders[I2CPE_idx].get_axis());
else
get_ec_threshold(I2CPE_idx, encoders[I2CPE_idx].get_axis());
} }
/** /**
@ -1092,13 +1117,16 @@
void I2CPositionEncodersMgr::M869() { void I2CPositionEncodersMgr::M869() {
if (parse()) return; if (parse()) return;
if (I2CPE_idx < 0) { if (I2CPE_idx == 0xFF) {
int8_t idx;
LOOP_XYZE(i) { LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
report_error((uint8_t)idx); const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) report_error(idx);
}
} }
} else report_error((uint8_t)I2CPE_idx); }
else
report_error(I2CPE_idx);
} }
#endif #endif // I2C_POSITION_ENCODERS

@ -95,195 +95,202 @@
#define I2CPE_PARSE_OK 0 #define I2CPE_PARSE_OK 0
#define LOOP_PE(VAR) LOOP_L_N(VAR, I2CPE_ENCODER_CNT) #define LOOP_PE(VAR) LOOP_L_N(VAR, I2CPE_ENCODER_CNT)
#define CHECK_IDX if (!WITHIN(idx, 0, I2CPE_ENCODER_CNT - 1)) return; #define CHECK_IDX() do{ if (!WITHIN(idx, 0, I2CPE_ENCODER_CNT - 1)) return; }while(0)
extern const char axis_codes[XYZE]; extern const char axis_codes[XYZE];
typedef union { typedef union {
volatile long val = 0; volatile int32_t val = 0;
uint8_t bval[4]; uint8_t bval[4];
} i2cLong; } i2cLong;
class I2CPositionEncoder { class I2CPositionEncoder {
private: private:
AxisEnum encoderAxis = I2CPE_DEF_AXIS; AxisEnum encoderAxis = I2CPE_DEF_AXIS;
uint8_t i2cAddress = I2CPE_DEF_ADDR, uint8_t i2cAddress = I2CPE_DEF_ADDR,
ecMethod = I2CPE_DEF_EC_METHOD, ecMethod = I2CPE_DEF_EC_METHOD,
type = I2CPE_DEF_TYPE, type = I2CPE_DEF_TYPE,
H = I2CPE_MAG_SIG_NF; // Magnetic field strength H = I2CPE_MAG_SIG_NF; // Magnetic field strength
int encoderTicksPerUnit = I2CPE_DEF_ENC_TICKS_UNIT, int encoderTicksPerUnit = I2CPE_DEF_ENC_TICKS_UNIT,
stepperTicks = I2CPE_DEF_TICKS_REV; stepperTicks = I2CPE_DEF_TICKS_REV,
errorCount = 0,
errorPrev = 0;
float ecThreshold = I2CPE_DEF_EC_THRESH; float ecThreshold = I2CPE_DEF_EC_THRESH;
bool homed = false, bool homed = false,
trusted = false, trusted = false,
initialised = false, initialised = false,
active = false, active = false,
invert = false, invert = false,
ec = true; ec = true;
int errorCount = 0, float axisOffset = 0;
errorPrev = 0;
float axisOffset = 0; int32_t axisOffsetTicks = 0,
zeroOffset = 0,
lastPosition = 0,
position;
long axisOffsetTicks = 0, millis_t lastPositionTime = 0,
zeroOffset = 0, nextErrorCountTime = 0,
lastPosition = 0, lastErrorTime;
position;
unsigned long lastPositionTime = 0,
nextErrorCountTime = 0,
lastErrorTime;
//double positionMm; //calculate //double positionMm; //calculate
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE) #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
uint8_t errIdx = 0; uint8_t errIdx = 0;
int err[I2CPE_ERR_ARRAY_SIZE] = {0}; int err[I2CPE_ERR_ARRAY_SIZE] = { 0 };
#endif #endif
//float positionMm; //calculate
public: public:
void init(uint8_t address, AxisEnum axis); void init(const uint8_t address, const AxisEnum axis);
void reset(); void reset();
void update(); void update();
void set_homed(); void set_homed();
long get_raw_count(); int32_t get_raw_count();
FORCE_INLINE double mm_from_count(long count) { FORCE_INLINE float mm_from_count(const int32_t count) {
if (type == I2CPE_ENC_TYPE_LINEAR) return count / encoderTicksPerUnit; switch (type) {
else if (type == I2CPE_ENC_TYPE_ROTARY) default: return -1;
return (count * stepperTicks) / (encoderTicksPerUnit * planner.axis_steps_per_mm[encoderAxis]); case I2CPE_ENC_TYPE_LINEAR:
return -1; return count / encoderTicksPerUnit;
case I2CPE_ENC_TYPE_ROTARY:
return (count * stepperTicks) / (encoderTicksPerUnit * planner.axis_steps_per_mm[encoderAxis]);
}
} }
FORCE_INLINE double get_position_mm() { return mm_from_count(get_position()); } FORCE_INLINE float get_position_mm() { return mm_from_count(get_position()); }
FORCE_INLINE long get_position() { return get_raw_count() - zeroOffset - axisOffsetTicks; } FORCE_INLINE int32_t get_position() { return get_raw_count() - zeroOffset - axisOffsetTicks; }
long get_axis_error_steps(bool report); int32_t get_axis_error_steps(const bool report);
double get_axis_error_mm(bool report); float get_axis_error_mm(const bool report);
void calibrate_steps_mm(int iter); void calibrate_steps_mm(const uint8_t iter);
bool passes_test(bool report); bool passes_test(const bool report);
bool test_axis(void); bool test_axis(void);
FORCE_INLINE int get_error_count(void) { return errorCount; } FORCE_INLINE int get_error_count(void) { return errorCount; }
FORCE_INLINE void set_error_count(int newCount) { errorCount = newCount; } FORCE_INLINE void set_error_count(const int newCount) { errorCount = newCount; }
FORCE_INLINE uint8_t get_address() { return i2cAddress; } FORCE_INLINE uint8_t get_address() { return i2cAddress; }
FORCE_INLINE void set_address(uint8_t addr) { i2cAddress = addr; } FORCE_INLINE void set_address(const uint8_t addr) { i2cAddress = addr; }
FORCE_INLINE bool get_active(void) { return active; } FORCE_INLINE bool get_active(void) { return active; }
FORCE_INLINE void set_active(bool a) { active = a; } FORCE_INLINE void set_active(const bool a) { active = a; }
FORCE_INLINE void set_inverted(bool i) { invert = i; } FORCE_INLINE void set_inverted(const bool i) { invert = i; }
FORCE_INLINE AxisEnum get_axis() { return encoderAxis; } FORCE_INLINE AxisEnum get_axis() { return encoderAxis; }
FORCE_INLINE bool get_ec_enabled() { return ec; } FORCE_INLINE bool get_ec_enabled() { return ec; }
FORCE_INLINE void set_ec_enabled(bool enabled) { ec = enabled; } FORCE_INLINE void set_ec_enabled(const bool enabled) { ec = enabled; }
FORCE_INLINE uint8_t get_ec_method() { return ecMethod; } FORCE_INLINE uint8_t get_ec_method() { return ecMethod; }
FORCE_INLINE void set_ec_method(byte method) { ecMethod = method; } FORCE_INLINE void set_ec_method(const byte method) { ecMethod = method; }
FORCE_INLINE float get_ec_threshold() { return ecThreshold; } FORCE_INLINE float get_ec_threshold() { return ecThreshold; }
FORCE_INLINE void set_ec_threshold(float newThreshold) { ecThreshold = newThreshold; } FORCE_INLINE void set_ec_threshold(const float newThreshold) { ecThreshold = newThreshold; }
FORCE_INLINE int get_encoder_ticks_mm() { FORCE_INLINE int get_encoder_ticks_mm() {
if (type == I2CPE_ENC_TYPE_LINEAR) return encoderTicksPerUnit; switch (type) {
else if (type == I2CPE_ENC_TYPE_ROTARY) default: return 0;
return (int)((encoderTicksPerUnit / stepperTicks) * planner.axis_steps_per_mm[encoderAxis]); case I2CPE_ENC_TYPE_LINEAR:
return 0; return encoderTicksPerUnit;
case I2CPE_ENC_TYPE_ROTARY:
return (int)((encoderTicksPerUnit / stepperTicks) * planner.axis_steps_per_mm[encoderAxis]);
}
} }
FORCE_INLINE int get_ticks_unit() { return encoderTicksPerUnit; } FORCE_INLINE int get_ticks_unit() { return encoderTicksPerUnit; }
FORCE_INLINE void set_ticks_unit(int ticks) { encoderTicksPerUnit = ticks; } FORCE_INLINE void set_ticks_unit(const int ticks) { encoderTicksPerUnit = ticks; }
FORCE_INLINE uint8_t get_type() { return type; } FORCE_INLINE uint8_t get_type() { return type; }
FORCE_INLINE void set_type(byte newType) { type = newType; } FORCE_INLINE void set_type(const byte newType) { type = newType; }
FORCE_INLINE int get_stepper_ticks() { return stepperTicks; } FORCE_INLINE int get_stepper_ticks() { return stepperTicks; }
FORCE_INLINE void set_stepper_ticks(int ticks) { stepperTicks = ticks; } FORCE_INLINE void set_stepper_ticks(const int ticks) { stepperTicks = ticks; }
FORCE_INLINE float get_axis_offset() { return axisOffset; } FORCE_INLINE float get_axis_offset() { return axisOffset; }
FORCE_INLINE void set_axis_offset(float newOffset) { FORCE_INLINE void set_axis_offset(const float newOffset) {
axisOffset = newOffset; axisOffset = newOffset;
axisOffsetTicks = (long)(axisOffset * get_encoder_ticks_mm()); axisOffsetTicks = int32_t(axisOffset * get_encoder_ticks_mm());
} }
FORCE_INLINE void set_current_position(float newPositionMm) { FORCE_INLINE void set_current_position(const float newPositionMm) {
set_axis_offset(get_position_mm() - newPositionMm + axisOffset); set_axis_offset(get_position_mm() - newPositionMm + axisOffset);
} }
}; };
class I2CPositionEncodersMgr { class I2CPositionEncodersMgr {
private: private:
bool I2CPE_anyaxis; static bool I2CPE_anyaxis;
uint8_t I2CPE_addr; static uint8_t I2CPE_addr, I2CPE_idx;
int8_t I2CPE_idx;
public: public:
void init(void);
static void init(void);
// consider only updating one endoder per call / tick if encoders become too time intensive // consider only updating one endoder per call / tick if encoders become too time intensive
void update(void) { LOOP_PE(i) encoders[i].update(); } static void update(void) { LOOP_PE(i) encoders[i].update(); }
void homed(AxisEnum axis) { static void homed(const AxisEnum axis) {
LOOP_PE(i) LOOP_PE(i)
if (encoders[i].get_axis() == axis) encoders[i].set_homed(); if (encoders[i].get_axis() == axis) encoders[i].set_homed();
} }
void report_position(uint8_t idx, bool units, bool noOffset); static void report_position(const int8_t idx, const bool units, const bool noOffset);
void report_status(uint8_t idx) { static void report_status(const int8_t idx) {
CHECK_IDX CHECK_IDX();
SERIAL_ECHOPAIR("Encoder ",idx); SERIAL_ECHOPAIR("Encoder ",idx);
SERIAL_ECHOPGM(": "); SERIAL_ECHOPGM(": ");
encoders[idx].get_raw_count(); encoders[idx].get_raw_count();
encoders[idx].passes_test(true); encoders[idx].passes_test(true);
} }
void report_error(uint8_t idx) { static void report_error(const int8_t idx) {
CHECK_IDX CHECK_IDX();
encoders[idx].get_axis_error_steps(true); encoders[idx].get_axis_error_steps(true);
} }
void test_axis(uint8_t idx) { static void test_axis(const int8_t idx) {
CHECK_IDX CHECK_IDX();
encoders[idx].test_axis(); encoders[idx].test_axis();
} }
void calibrate_steps_mm(uint8_t idx, int iterations) { static void calibrate_steps_mm(const int8_t idx, const int iterations) {
CHECK_IDX CHECK_IDX();
encoders[idx].calibrate_steps_mm(iterations); encoders[idx].calibrate_steps_mm(iterations);
} }
void change_module_address(uint8_t oldaddr, uint8_t newaddr); static void change_module_address(const uint8_t oldaddr, const uint8_t newaddr);
void report_module_firmware(uint8_t address); static void report_module_firmware(const uint8_t address);
void report_error_count(uint8_t idx, AxisEnum axis) { static void report_error_count(const int8_t idx, const AxisEnum axis) {
CHECK_IDX CHECK_IDX();
SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]); SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]);
SERIAL_ECHOLNPAIR(" axis is ", encoders[idx].get_error_count()); SERIAL_ECHOLNPAIR(" axis is ", encoders[idx].get_error_count());
} }
void reset_error_count(uint8_t idx, AxisEnum axis) { static void reset_error_count(const int8_t idx, const AxisEnum axis) {
CHECK_IDX CHECK_IDX();
encoders[idx].set_error_count(0); encoders[idx].set_error_count(0);
SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]); SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]);
SERIAL_ECHOLNPGM(" axis has been reset."); SERIAL_ECHOLNPGM(" axis has been reset.");
} }
void enable_ec(uint8_t idx, bool enabled, AxisEnum axis) { static void enable_ec(const int8_t idx, const bool enabled, const AxisEnum axis) {
CHECK_IDX CHECK_IDX();
encoders[idx].set_ec_enabled(enabled); encoders[idx].set_ec_enabled(enabled);
SERIAL_ECHOPAIR("Error correction on ", axis_codes[axis]); SERIAL_ECHOPAIR("Error correction on ", axis_codes[axis]);
SERIAL_ECHOPGM(" axis is "); SERIAL_ECHOPGM(" axis is ");
@ -291,66 +298,62 @@
SERIAL_ECHOLNPGM("abled."); SERIAL_ECHOLNPGM("abled.");
} }
void set_ec_threshold(uint8_t idx, float newThreshold, AxisEnum axis) { static void set_ec_threshold(const int8_t idx, const float newThreshold, const AxisEnum axis) {
CHECK_IDX CHECK_IDX();
encoders[idx].set_ec_threshold(newThreshold); encoders[idx].set_ec_threshold(newThreshold);
SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]); SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]);
SERIAL_ECHOPAIR_F(" axis set to ", newThreshold); SERIAL_ECHOPAIR_F(" axis set to ", newThreshold);
SERIAL_ECHOLNPGM("mm."); SERIAL_ECHOLNPGM("mm.");
} }
void get_ec_threshold(uint8_t idx, AxisEnum axis) { static void get_ec_threshold(const int8_t idx, const AxisEnum axis) {
CHECK_IDX CHECK_IDX();
float threshold = encoders[idx].get_ec_threshold(); const float threshold = encoders[idx].get_ec_threshold();
SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]); SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]);
SERIAL_ECHOPAIR_F(" axis is ", threshold); SERIAL_ECHOPAIR_F(" axis is ", threshold);
SERIAL_ECHOLNPGM("mm."); SERIAL_ECHOLNPGM("mm.");
} }
int8_t idx_from_axis(AxisEnum axis) { static int8_t idx_from_axis(const AxisEnum axis) {
LOOP_PE(i) LOOP_PE(i)
if (encoders[i].get_axis() == axis) return i; if (encoders[i].get_axis() == axis) return i;
return -1; return -1;
} }
int8_t idx_from_addr(uint8_t addr) { static int8_t idx_from_addr(const uint8_t addr) {
LOOP_PE(i) LOOP_PE(i)
if (encoders[i].get_address() == addr) return i; if (encoders[i].get_address() == addr) return i;
return -1; return -1;
} }
int8_t parse(); static int8_t parse();
void M860(); static void M860();
void M861(); static void M861();
void M862(); static void M862();
void M863(); static void M863();
void M864(); static void M864();
void M865(); static void M865();
void M866(); static void M866();
void M867(); static void M867();
void M868(); static void M868();
void M869(); static void M869();
I2CPositionEncoder encoders[I2CPE_ENCODER_CNT]; static I2CPositionEncoder encoders[I2CPE_ENCODER_CNT];
}; };
extern I2CPositionEncodersMgr I2CPEM; extern I2CPositionEncodersMgr I2CPEM;
FORCE_INLINE void gcode_M860() { I2CPEM.M860(); } FORCE_INLINE static void gcode_M860() { I2CPEM.M860(); }
FORCE_INLINE void gcode_M861() { I2CPEM.M861(); } FORCE_INLINE static void gcode_M861() { I2CPEM.M861(); }
FORCE_INLINE void gcode_M862() { I2CPEM.M862(); } FORCE_INLINE static void gcode_M862() { I2CPEM.M862(); }
FORCE_INLINE void gcode_M863() { I2CPEM.M863(); } FORCE_INLINE static void gcode_M863() { I2CPEM.M863(); }
FORCE_INLINE void gcode_M864() { I2CPEM.M864(); } FORCE_INLINE static void gcode_M864() { I2CPEM.M864(); }
FORCE_INLINE void gcode_M865() { I2CPEM.M865(); } FORCE_INLINE static void gcode_M865() { I2CPEM.M865(); }
FORCE_INLINE void gcode_M866() { I2CPEM.M866(); } FORCE_INLINE static void gcode_M866() { I2CPEM.M866(); }
FORCE_INLINE void gcode_M867() { I2CPEM.M867(); } FORCE_INLINE static void gcode_M867() { I2CPEM.M867(); }
FORCE_INLINE void gcode_M868() { I2CPEM.M868(); } FORCE_INLINE static void gcode_M868() { I2CPEM.M868(); }
FORCE_INLINE void gcode_M869() { I2CPEM.M869(); } FORCE_INLINE static void gcode_M869() { I2CPEM.M869(); }
#endif //I2C_POSITION_ENCODERS #endif //I2C_POSITION_ENCODERS
#endif //I2CPOSENC_H #endif //I2CPOSENC_H

@ -5141,7 +5141,7 @@ void home_all_axes() { gcode_G28(true); }
* T Don't calibrate tower angle corrections * T Don't calibrate tower angle corrections
* *
* Cn.nn Calibration precision; when omitted calibrates to maximum precision * Cn.nn Calibration precision; when omitted calibrates to maximum precision
* *
* Fn Force to run at least n iterations and takes the best result * Fn Force to run at least n iterations and takes the best result
* *
* Vn Verbose level: * Vn Verbose level:
@ -5687,7 +5687,7 @@ inline void gcode_G92() {
update_software_endstops((AxisEnum)i); update_software_endstops((AxisEnum)i);
#if ENABLED(I2C_POSITION_ENCODERS) #if ENABLED(I2C_POSITION_ENCODERS)
I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum) i)].set_axis_offset(position_shift[i]); I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum)i)].set_axis_offset(position_shift[i]);
#endif #endif
#endif #endif

@ -276,9 +276,7 @@
#if ENABLED(I2C_POSITION_ENCODERS) #if ENABLED(I2C_POSITION_ENCODERS)
#if DISABLED(BABYSTEPPING) #if DISABLED(BABYSTEPPING)
#error "I2C_POSITION_ENCODERS requires BABYSTEPPING." #error "I2C_POSITION_ENCODERS requires BABYSTEPPING."
#endif #elif !WITHIN(I2CPE_ENCODER_CNT, 1, 5)
#if I2CPE_ENCODER_CNT > 5 || I2CPE_ENCODER_CNT < 1
#error "I2CPE_ENCODER_CNT must be between 1 and 5." #error "I2CPE_ENCODER_CNT must be between 1 and 5."
#endif #endif
#endif #endif

@ -328,7 +328,8 @@
g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1; g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1;
if (g29_repetition_cnt >= GRID_MAX_POINTS) { if (g29_repetition_cnt >= GRID_MAX_POINTS) {
set_all_mesh_points_to_value(NAN); set_all_mesh_points_to_value(NAN);
} else { }
else {
while (g29_repetition_cnt--) { while (g29_repetition_cnt--) {
if (cnt > 20) { cnt = 0; idle(); } if (cnt > 20) { cnt = 0; idle(); }
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false); const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
@ -1454,7 +1455,7 @@
void unified_bed_leveling::fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) { void unified_bed_leveling::fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided. g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
#if ENABLED(UBL_MESH_EDIT_MOVES_Z) #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
const bool is_offset = parser.seen('H'); const bool is_offset = parser.seen('H');
const float h_offset = is_offset ? parser.value_linear_units() : Z_CLEARANCE_BETWEEN_PROBES; const float h_offset = is_offset ? parser.value_linear_units() : Z_CLEARANCE_BETWEEN_PROBES;
@ -1463,7 +1464,7 @@
return; return;
} }
#endif #endif
mesh_index_pair location; mesh_index_pair location;
if (!position_is_reachable_xy(lx, ly)) { if (!position_is_reachable_xy(lx, ly)) {

Loading…
Cancel
Save