use progmem instead of sram for mesh_index_to_x/ypos array;

fix maximum mesh_index_ array size at 16 (15+1);
2.0.x
Brian 8 years ago committed by Roxy-3D
parent d5ec34e7ed
commit f1a4758cef

@ -256,8 +256,8 @@
: find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now. : find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
if (location.x_index >= 0 && location.y_index >= 0) { if (location.x_index >= 0 && location.y_index >= 0) {
const float circle_x = ubl.mesh_index_to_xpos[location.x_index], const float circle_x = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])),
circle_y = ubl.mesh_index_to_ypos[location.y_index]; circle_y = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index]));
// Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem // Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
#ifdef DELTA #ifdef DELTA
@ -399,8 +399,8 @@
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if (!is_bit_set(circle_flags, i, j)) { if (!is_bit_set(circle_flags, i, j)) {
const float mx = ubl.mesh_index_to_xpos[i], // We found a circle that needs to be printed const float mx = pgm_read_float(&(ubl.mesh_index_to_xpos[i])), // We found a circle that needs to be printed
my = ubl.mesh_index_to_ypos[j]; my = pgm_read_float(&(ubl.mesh_index_to_ypos[j]));
// Get the distance to this intersection // Get the distance to this intersection
float f = HYPOT(X - mx, Y - my); float f = HYPOT(X - mx, Y - my);
@ -444,11 +444,11 @@
// We found two circles that need a horizontal line to connect them // We found two circles that need a horizontal line to connect them
// Print it! // Print it!
// //
sx = ubl.mesh_index_to_xpos[ i ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge sx = pgm_read_float(&(ubl.mesh_index_to_xpos[ i ])) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
ex = ubl.mesh_index_to_xpos[i + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge ex = pgm_read_float(&(ubl.mesh_index_to_xpos[i + 1])) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
sy = ey = constrain(ubl.mesh_index_to_ypos[j], Y_MIN_POS + 1, Y_MAX_POS - 1); sy = ey = constrain(pgm_read_float(&(ubl.mesh_index_to_ypos[j])), Y_MIN_POS + 1, Y_MAX_POS - 1);
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
if (ubl.g26_debug_flag) { if (ubl.g26_debug_flag) {
@ -475,10 +475,10 @@
// We found two circles that need a vertical line to connect them // We found two circles that need a vertical line to connect them
// Print it! // Print it!
// //
sy = ubl.mesh_index_to_ypos[ j ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge sy = pgm_read_float(&(ubl.mesh_index_to_ypos[ j ])) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
ey = ubl.mesh_index_to_ypos[j + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge ey = pgm_read_float(&(ubl.mesh_index_to_ypos[j + 1])) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
sx = ex = constrain(ubl.mesh_index_to_xpos[i], X_MIN_POS + 1, X_MAX_POS - 1); sx = ex = constrain(pgm_read_float(&(ubl.mesh_index_to_xpos[i])), X_MIN_POS + 1, X_MAX_POS - 1);
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1); sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);

@ -60,9 +60,12 @@
ubl_state unified_bed_leveling::state, unified_bed_leveling::pre_initialized; ubl_state unified_bed_leveling::state, unified_bed_leveling::pre_initialized;
float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y], float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y],
unified_bed_leveling::last_specified_z, unified_bed_leveling::last_specified_z;
unified_bed_leveling::mesh_index_to_xpos[GRID_MAX_POINTS_X + 1], // +1 safety margin for now, until determinism prevails
unified_bed_leveling::mesh_index_to_ypos[GRID_MAX_POINTS_Y + 1]; // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
// until determinism prevails
constexpr float unified_bed_leveling::mesh_index_to_xpos[16],
unified_bed_leveling::mesh_index_to_ypos[16];
bool unified_bed_leveling::g26_debug_flag = false, bool unified_bed_leveling::g26_debug_flag = false,
unified_bed_leveling::has_control_of_lcd_panel = false; unified_bed_leveling::has_control_of_lcd_panel = false;
@ -72,10 +75,6 @@
volatile int unified_bed_leveling::encoder_diff; volatile int unified_bed_leveling::encoder_diff;
unified_bed_leveling::unified_bed_leveling() { unified_bed_leveling::unified_bed_leveling() {
for (uint8_t i = 0; i < COUNT(mesh_index_to_xpos); i++)
mesh_index_to_xpos[i] = UBL_MESH_MIN_X + i * (MESH_X_DIST);
for (uint8_t i = 0; i < COUNT(mesh_index_to_ypos); i++)
mesh_index_to_ypos[i] = UBL_MESH_MIN_Y + i * (MESH_Y_DIST);
reset(); reset();
} }

@ -119,12 +119,31 @@
static ubl_state state, pre_initialized; static ubl_state state, pre_initialized;
static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y], static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
mesh_index_to_xpos[GRID_MAX_POINTS_X + 1], // +1 safety margin for now, until determinism prevails
mesh_index_to_ypos[GRID_MAX_POINTS_Y + 1]; // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
// until determinism prevails
static bool g26_debug_flag, constexpr static float mesh_index_to_xpos[16] PROGMEM = { UBL_MESH_MIN_X+0*(MESH_X_DIST),
has_control_of_lcd_panel; UBL_MESH_MIN_X+1*(MESH_X_DIST), UBL_MESH_MIN_X+2*(MESH_X_DIST),
UBL_MESH_MIN_X+3*(MESH_X_DIST), UBL_MESH_MIN_X+4*(MESH_X_DIST),
UBL_MESH_MIN_X+5*(MESH_X_DIST), UBL_MESH_MIN_X+6*(MESH_X_DIST),
UBL_MESH_MIN_X+7*(MESH_X_DIST), UBL_MESH_MIN_X+8*(MESH_X_DIST),
UBL_MESH_MIN_X+9*(MESH_X_DIST), UBL_MESH_MIN_X+10*(MESH_X_DIST),
UBL_MESH_MIN_X+11*(MESH_X_DIST), UBL_MESH_MIN_X+12*(MESH_X_DIST),
UBL_MESH_MIN_X+13*(MESH_X_DIST), UBL_MESH_MIN_X+14*(MESH_X_DIST),
UBL_MESH_MIN_X+15*(MESH_X_DIST) };
constexpr static float mesh_index_to_ypos[16] PROGMEM = { UBL_MESH_MIN_Y+0*(MESH_Y_DIST),
UBL_MESH_MIN_Y+1*(MESH_Y_DIST), UBL_MESH_MIN_Y+2*(MESH_Y_DIST),
UBL_MESH_MIN_Y+3*(MESH_Y_DIST), UBL_MESH_MIN_Y+4*(MESH_Y_DIST),
UBL_MESH_MIN_Y+5*(MESH_Y_DIST), UBL_MESH_MIN_Y+6*(MESH_Y_DIST),
UBL_MESH_MIN_Y+7*(MESH_Y_DIST), UBL_MESH_MIN_Y+8*(MESH_Y_DIST),
UBL_MESH_MIN_Y+9*(MESH_Y_DIST), UBL_MESH_MIN_Y+10*(MESH_Y_DIST),
UBL_MESH_MIN_Y+11*(MESH_Y_DIST), UBL_MESH_MIN_Y+12*(MESH_Y_DIST),
UBL_MESH_MIN_Y+13*(MESH_Y_DIST), UBL_MESH_MIN_Y+14*(MESH_Y_DIST),
UBL_MESH_MIN_Y+15*(MESH_Y_DIST) };
static bool g26_debug_flag, has_control_of_lcd_panel;
static int8_t eeprom_start; static int8_t eeprom_start;
@ -204,7 +223,7 @@
return NAN; return NAN;
} }
const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)), const float xratio = (RAW_X_POSITION(lx0) - pgm_read_float(&mesh_index_to_xpos[x1_i])) * (1.0 / (MESH_X_DIST)),
z1 = z_values[x1_i][yi]; z1 = z_values[x1_i][yi];
return z1 + xratio * (z_values[x1_i + 1][yi] - z1); return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
@ -223,7 +242,7 @@
return NAN; return NAN;
} }
const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)), const float yratio = (RAW_Y_POSITION(ly0) - pgm_read_float(&mesh_index_to_ypos[y1_i])) * (1.0 / (MESH_Y_DIST)),
z1 = z_values[xi][y1_i]; z1 = z_values[xi][y1_i];
return z1 + yratio * (z_values[xi][y1_i + 1] - z1); return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
@ -254,14 +273,16 @@
} }
const float z1 = calc_z0(RAW_X_POSITION(lx0), const float z1 = calc_z0(RAW_X_POSITION(lx0),
mesh_index_to_xpos[cx], z_values[cx][cy], pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy],
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]), pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy]);
z2 = calc_z0(RAW_X_POSITION(lx0),
mesh_index_to_xpos[cx], z_values[cx][cy + 1], const float z2 = calc_z0(RAW_X_POSITION(lx0),
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]); pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy + 1],
float z0 = calc_z0(RAW_Y_POSITION(ly0), pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy + 1]);
mesh_index_to_ypos[cy], z1,
mesh_index_to_ypos[cy + 1], z2); float z0 = calc_z0(RAW_Y_POSITION(ly0),
pgm_read_float(&mesh_index_to_ypos[cy]), z1,
pgm_read_float(&mesh_index_to_ypos[cy + 1]), z2);
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) { if (DEBUGGING(MESH_ADJUST)) {

@ -757,8 +757,8 @@
location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest); // the '1' says we want the location to be relative to the probe location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest); // the '1' says we want the location to be relative to the probe
if (location.x_index >= 0 && location.y_index >= 0) { if (location.x_index >= 0 && location.y_index >= 0) {
const float rawx = ubl.mesh_index_to_xpos[location.x_index], const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])),
rawy = ubl.mesh_index_to_ypos[location.y_index]; rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index]));
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility) // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) { if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) {
@ -905,8 +905,8 @@
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
if (location.x_index < 0 && location.y_index < 0) continue; if (location.x_index < 0 && location.y_index < 0) continue;
const float rawx = ubl.mesh_index_to_xpos[location.x_index], const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])),
rawy = ubl.mesh_index_to_ypos[location.y_index]; rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index]));
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility) // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) {
@ -1174,7 +1174,7 @@
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: "); SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[i]), 1); SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[i]))), 1);
SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOLPGM(" ");
safe_delay(50); safe_delay(50);
} }
@ -1182,7 +1182,7 @@
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: "); SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) { for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[i]), 1); SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[i]))), 1);
SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOLPGM(" ");
safe_delay(50); safe_delay(50);
} }
@ -1320,8 +1320,8 @@
// We only get here if we found a Mesh Point of the specified type // We only get here if we found a Mesh Point of the specified type
const float rawx = ubl.mesh_index_to_xpos[i], // Check if we can probe this mesh location const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[i])), // Check if we can probe this mesh location
rawy = ubl.mesh_index_to_ypos[j]; rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[j]));
// If using the probe as the reference there are some unreachable locations. // If using the probe as the reference there are some unreachable locations.
// Prune them from the list and ignore them till the next Phase (manual nozzle probing). // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
@ -1386,8 +1386,8 @@
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
// different location the next time through the loop // different location the next time through the loop
const float rawx = ubl.mesh_index_to_xpos[location.x_index], const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])),
rawy = ubl.mesh_index_to_ypos[location.y_index]; rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index]));
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility) // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { // In theory, we don't need this check. if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { // In theory, we don't need this check.
@ -1482,7 +1482,8 @@
//find min & max probeable points in the mesh //find min & max probeable points in the mesh
for (xCount = 0; xCount < GRID_MAX_POINTS_X; xCount++) { for (xCount = 0; xCount < GRID_MAX_POINTS_X; xCount++) {
for (yCount = 0; yCount < GRID_MAX_POINTS_Y; yCount++) { for (yCount = 0; yCount < GRID_MAX_POINTS_Y; yCount++) {
if (WITHIN(ubl.mesh_index_to_xpos[xCount], MIN_PROBE_X, MAX_PROBE_X) && WITHIN(ubl.mesh_index_to_ypos[yCount], MIN_PROBE_Y, MAX_PROBE_Y)) { if (WITHIN(pgm_read_float(&(ubl.mesh_index_to_xpos[xCount])), MIN_PROBE_X, MAX_PROBE_X) &&
WITHIN(pgm_read_float(&(ubl.mesh_index_to_ypos[yCount])), MIN_PROBE_Y, MAX_PROBE_Y)) {
NOMORE(x_min, xCount); NOMORE(x_min, xCount);
NOLESS(x_max, xCount); NOLESS(x_max, xCount);
NOMORE(y_min, yCount); NOMORE(y_min, yCount);
@ -1577,11 +1578,12 @@
} }
//SERIAL_ECHOPAIR("\nCheckpoint: ", 5); //SERIAL_ECHOPAIR("\nCheckpoint: ", 5);
const float probeX = ubl.mesh_index_to_xpos[grid_G_index_to_xpos[xCount]], //where we want the probe to be const float probeX = pgm_read_float(&(ubl.mesh_index_to_xpos[grid_G_index_to_xpos[xCount]])), //where we want the probe to be
probeY = ubl.mesh_index_to_ypos[grid_G_index_to_ypos[yCount]]; probeY = pgm_read_float(&(ubl.mesh_index_to_ypos[grid_G_index_to_ypos[yCount]]));
//SERIAL_ECHOPAIR("\nCheckpoint: ", 6); //SERIAL_ECHOPAIR("\nCheckpoint: ", 6);
const float measured_z = probe_pt(LOGICAL_X_POSITION(probeX), LOGICAL_Y_POSITION(probeY), code_seen('E'), (code_seen('V') && code_has_value()) ? code_value_int() : 0); // takes into account the offsets const float measured_z = probe_pt(LOGICAL_X_POSITION(probeX), LOGICAL_Y_POSITION(probeY), code_seen('E'),
(code_seen('V') && code_has_value()) ? code_value_int() : 0); // takes into account the offsets
//SERIAL_ECHOPAIR("\nmeasured_z: ", measured_z); //SERIAL_ECHOPAIR("\nmeasured_z: ", measured_z);
@ -1595,7 +1597,7 @@
restore_ubl_active_state_and_leave(); restore_ubl_active_state_and_leave();
// ?? ubl.has_control_of_lcd_panel = true; // ?? ubl.has_control_of_lcd_panel = true;
//do_blocking_move_to_xy(ubl.mesh_index_to_xpos[grid_G_index_to_xpos[0]], ubl.mesh_index_to_ypos[grid_G_index_to_ypos[0]]); //do_blocking_move_to_xy(pgm_read_float(&(ubl.mesh_index_to_xpos[grid_G_index_to_xpos[0]])),pgm_read_float(&(ubl.mesh_index_to_ypos[grid_G_index_to_ypos[0]])));
// least squares code // least squares code
double xxx5[] = { 0,50,100,150,200, 20,70,120,165,195, 0,50,100,150,200, 0,55,100,150,200, 0,65,100,150,205 }, double xxx5[] = { 0,50,100,150,200, 20,70,120,165,195, 0,50,100,150,200, 0,55,100,150,200, 0,65,100,150,205 },

@ -154,7 +154,7 @@
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
*/ */
const float xratio = (RAW_X_POSITION(end[X_AXIS]) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), const float xratio = (RAW_X_POSITION(end[X_AXIS]) - pgm_read_float(&(ubl.mesh_index_to_xpos[cell_dest_xi]))) * (1.0 / (MESH_X_DIST)),
z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio * z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]), (ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]),
z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio * z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
@ -163,7 +163,7 @@
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
// are going to apply the Y-Distance into the cell to interpolate the final Z correction. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - pgm_read_float(&(ubl.mesh_index_to_ypos[cell_dest_yi]))) * (1.0 / (MESH_Y_DIST));
float z0 = z1 + (z2 - z1) * yratio; float z0 = z1 + (z2 - z1) * yratio;
@ -262,7 +262,7 @@
current_yi += down_flag; // Line is heading down, we just want to go to the bottom current_yi += down_flag; // Line is heading down, we just want to go to the bottom
while (current_yi != cell_dest_yi + down_flag) { while (current_yi != cell_dest_yi + down_flag) {
current_yi += dyi; current_yi += dyi;
const float next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]); const float next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[current_yi])));
/** /**
* inf_m_flag? the slope of the line is infinite, we won't do the calculations * inf_m_flag? the slope of the line is infinite, we won't do the calculations
@ -304,7 +304,7 @@
*/ */
if (isnan(z0)) z0 = 0.0; if (isnan(z0)) z0 = 0.0;
const float y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]); const float y = LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[current_yi])));
/** /**
* Without this check, it is possible for the algorithm to generate a zero length move in the case * Without this check, it is possible for the algorithm to generate a zero length move in the case
@ -353,7 +353,7 @@
// edge of this cell for the first move. // edge of this cell for the first move.
while (current_xi != cell_dest_xi + left_flag) { while (current_xi != cell_dest_xi + left_flag) {
current_xi += dxi; current_xi += dxi;
const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]), const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[current_xi]))),
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi); float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
@ -389,7 +389,7 @@
*/ */
if (isnan(z0)) z0 = 0.0; if (isnan(z0)) z0 = 0.0;
const float x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]); const float x = LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[current_xi])));
/** /**
* Without this check, it is possible for the algorithm to generate a zero length move in the case * Without this check, it is possible for the algorithm to generate a zero length move in the case
@ -439,8 +439,8 @@
while (xi_cnt > 0 || yi_cnt > 0) { while (xi_cnt > 0 || yi_cnt > 0) {
const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]), const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[current_xi + dxi]))),
next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]), next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[current_yi + dyi]))),
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
// (No need to worry about m being zero. // (No need to worry about m being zero.

Loading…
Cancel
Save