Merge branch 'Development' of https://github.com/MarlinFirmware/Marlin into Bulgarian

2.0.x
AnHardt 10 years ago
commit e353d27430

@ -1,105 +0,0 @@
===============================================
Instructions for configuring Bed Auto Leveling
===============================================
There are two options for this feature. You may choose to use a servo mounted on the X carriage or you may use a sled that mounts on the X axis and can be docked when not in use.
See the section for each option below for specifics about installation and configuration. Also included are instructions that apply to both options.
Instructions for Both Options
-----------------------------
Uncomment the "ENABLE_AUTO_BED_LEVELING" define (commented by default)
The following options define the probing positions. These are good starting values.
I recommend to keep a better clearance from borders in the first run and then make the probes as close as possible to borders:
* \#define LEFT_PROBE_BED_POSITION 30
* \#define RIGHT_PROBE_BED_POSITION 140
* \#define BACK_PROBE_BED_POSITION 140
* \#define FRONT_PROBE_BED_POSITION 30
A few more options:
* \#define XY_TRAVEL_SPEED 6000
X and Y axis travel speed between probes, in mm/min.
Bear in mind that really fast moves may render step skipping. 6000 mm/min (100mm/s) is a good value.
* \#define Z_RAISE_BEFORE_PROBING 10
* \#define Z_RAISE_BETWEEN_PROBINGS 10
The Z axis is lifted when traveling to the first probe point by Z_RAISE_BEFORE_PROBING value
and then lifted when traveling from first to second and second to third point by Z_RAISE_BETWEEN_PROBINGS.
All values are in mm as usual.
Servo Option Notes
------------------
You will probably need a swivel Z-MIN endstop in the extruder. A rc servo do a great job.
Check the system working here: http://www.youtube.com/watch?v=3IKMeOYz-1Q (Enable English subtitles)
Teasing ;-) video: http://www.youtube.com/watch?v=x8eqSQNAyro
In order to get the servo working, you need to enable:
* \#define NUM_SERVOS 1 // Servo index starts with 0 for M280 command
* \#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
* \#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 165,60} // X,Y,Z Axis Extend and Retract angles
The first define tells firmware how many servos you have.
The second tells what axis this servo will be attached to. In the example above, we have a servo in Z axis.
The third one tells the angle in 2 situations: Probing (165º) and resting (60º). Check this with command M280 P0 S{angle} (example: M280 P0 S60 moves the servo to 60º)
Next you need to define the Z endstop (probe) offset from hotend.
My preferred method:
* a) Make a small mark in the bed with a marker/felt-tip pen.
* b) Place the hotend tip as *exactly* as possible on the mark, touching the bed. Raise the hotend 0.1mm (a regular paper thickness) and zero all axis (G92 X0 Y0 Z0);
* d) Raise the hotend 10mm (or more) for probe clearance, lower the Z probe (Z-Endstop) with M401 and place it just on that mark by moving X, Y and Z;
* e) Lower the Z in 0.1mm steps, with the probe always touching the mark (it may be necessary to adjust X and Y as well) until you hear the "click" meaning the mechanical endstop was trigged. You can confirm with M119;
* f) Now you have the probe in the same place as your hotend tip was before. Perform a M114 and write down the values, for example: X:24.3 Y:-31.4 Z:5.1;
* g) You can raise the z probe with M402 command;
* h) Fill the defines bellow multiplying the values by "-1" (just change the signal)
* X and Y-Offset must be Integers!
* \#define X_PROBE_OFFSET_FROM_EXTRUDER -24
* \#define Y_PROBE_OFFSET_FROM_EXTRUDER 31
* \#define Z_PROBE_OFFSET_FROM_EXTRUDER -5.1
Sled Option Notes
-----------------
The sled option uses an electromagnet to attach and detach to/from the X carriage. See http://www.thingiverse.com/thing:396692 for more details on how to print and install this feature. It uses the same connections as the servo option.
To use the sled option, you must define two additional things in Configuration.h:
* \#define Z_PROBE_SLED
* \#define SLED_DOCKING_OFFSET 5
Uncomment the Z_PROBE_SLED to define to enable the sled (commented out by default).
Uncomment the SLED_DOCKING_OFFSET to set the extra distance the X axis must travel to dock the sled. This value can be found by moving the X axis to its maximum position then measure the distance to the right X end and subtract the width of the sled (23mm if you printed the sled from Thingiverse).
Next you need to define the Z endstop (probe) offset from hotend.
My preferred method:
* a) Home the X and Y axes.
* b) Move the X axis to about the center of the print bed. Make a mark on the print bed.
* c) Move the Y axis to the maximum position. Make another mark.
* d) Home the X axis and use a straight edge to make a line between the two points.
* e) Repeat (b)-(d) reversing the X and Y. When you are done you will have two lines on the print bed. We will use these to measure the offset for the Z probe endstop.
* f) Move the nozzle so that it is positioned on the center point of the two lines. You can use fine movement of 0.1mm to get it as close as possible. Note the position of X and Y.
* g) Zero the Z axis with the G92 Z0 command.
* h) Raise the Z axis about 20mmm.
* i) Use the G32 command to retrieve the sled.
* j) Now more the X and Y axis to the position recorded in (f).
* k) Lower the Z axis in 0.1mm steps until you hear the "click" meaning the mechanical endstop was trigged. You can confirm with the M119 command. Note the position of the Z axis.
* l) Make a mark on the print bed where the endstop lever has touched the print bed. Raise the Z-axis about 30mm to give yourself some room.
* m) Now measure the distance from the center point to the endstop impact site along the X and Y axis using the lines drawn previously.
* n) Fill in the values below. If the endstop mark is in front of the line running left-to-right, use positive values. If it is behind, use negative values. For the Z axis use the value from (k) and subtract 0.1mm.
For example, suppose you measured the endstop position and it was 20mm to the right of the line running front-to-back, 10mm toward the front of the line running left-to-right, and the value from (k) was 2.85. The values for the defines would be:
* \#define X_PROBE_OFFSET_FROM_EXTRUDER 20
* \#define Y_PROBE_OFFSET_FROM_EXTRUDER 10
* \#define Z_PROBE_OFFSET_FROM_EXTRUDER 2.75
That's it.. enjoy never having to calibrate your Z endstop neither leveling your bed by hand anymore ;-)

@ -1,16 +0,0 @@
# Configuring and compilation
1. Install the latest non-beta arduino software IDE/toolset: http://www.arduino.cc/en/Main/Software
2. Download the Marlin firmware
- [Latest developement version](https://github.com/MarlinFirmware/Marlin/tree/Development)
- [Stable version]()
3. In both cases use the "Download Zip" button on the right.
4. Some boards require special files and/or libraries from the ArduinoAddons directory. Take a look at the dedicated [README](/ArduinoAddons/README.md) for details.
5. Start the arduino IDE.
6. Select Tools -> Board -> Arduino Mega 2560 or your microcontroller
7. Select the correct serial port in Tools ->Serial Port
8. Open Marlin.pde or .ino
9. Click the Verify/Compile button
10. Click the Upload button. If all goes well the firmware is uploading
That's ok. Enjoy Silky Smooth Printing.

@ -1,10 +0,0 @@
Developer Notes
===================
- There are now 2 branches: The __development__ branch is where new features and code changes will be sorted out. This branch may have untested code in it, so please let us know if you find any bugs. When the __development__ branch has reached a state where it is stable, it will be moved to the __stable__ branch.
- We are doing a kind of cleanup in the list of Issues and Pull Requests, the aim is to get to a state where we can certify the code as stable. To get the code tested as widely as possible we require several volunteers with a wide variety of hardware configurations willing to test the firmware and help us to certify it as stable. If you want to help out testing go to this issue and let us know: https://github.com/MarlinFirmware/Marlin/issues/1209
- Before you submit any pull request, we ask that you _PLEASE_ test your code before submission, even if the change seems innocuous. When creating the pull request, please include the hardware you used for testing and a short synopsis of your testing procedure. Untested pull requests are less likely to be merged, as even slight changes create the risk of breaking the main branch.
- If you have a fix don't open an issue telling about it, but test the code and submit a pull request. Use the __development__ branch when you submit.

@ -1,112 +0,0 @@
# Features
* Interrupt based movement with real linear acceleration
* High steprate
* Look ahead (Keep the speed high when possible. High cornering speed)
* Interrupt based temperature protection
* Preliminary support for [Matthew Roberts Advance Algorithm](http://reprap.org/pipermail/reprap-dev/2011-May/003323.html)
* Full endstop support
* SD Card support
* SD Card folders (works in pronterface)
* SD Card autostart support
* LCD support (ideally 20x4)
* LCD menu system for autonomous SD card printing, controlled by an click-encoder.
* EEPROM storage of e.g. max-velocity, max-acceleration, and similar variables
* many small but handy things originating from bkubicek's fork.
* Arc support
* Temperature oversampling
* Dynamic Temperature setpointing aka "AutoTemp"
* Support for [QTMarlin](https://github.com/bkubicek/QTMarlin), a very beta GUI for PID-tuning and velocity-acceleration testing.
* Endstop trigger reporting to the host software.
* Updated sdcardlib
* Heater power reporting. Useful for PID monitoring.
* PID tuning
* [CoreXY kinematics](www.corexy.com/theory.html)
* Delta kinematics
* SCARA kinematics
* Dual X-carriage support for multiple extruder systems
* Configurable serial port to support connection of wireless adaptors.
* Automatic operation of extruder/cold-end cooling fans based on nozzle temperature
* RC Servo Support, specify angle or duration for continuous rotation servos.
* Bed Auto Leveling.
* Support for a filament diameter sensor, which adjusts extrusion volume
The default baudrate is 250000. This baudrate has less jitter and hence errors than the usual 115200 baud, but is less supported by drivers and host-environments.
## Differences and additions to the already good Sprinter firmware
### Look-ahead
Marlin has look-ahead. While sprinter has to break and re-accelerate at each corner,
lookahead will only decelerate and accelerate to a velocity,
so that the change in vectorial velocity magnitude is less than the xy_jerk_velocity.
This is only possible, if some future moves are already processed, hence the name.
It leads to less over-deposition at corners, especially at flat angles.
### Arc support
Slic3r can find curves that, although broken into segments, were ment to describe an arc.
Marlin is able to print those arcs. The advantage is the firmware can choose the resolution,
and can perform the arc with nearly constant velocity, resulting in a nice finish.
Also, less serial communication is needed.
### Temperature Oversampling
To reduce noise and make the PID-differential term more useful, 16 ADC conversion results are averaged.
### AutoTemp
If your gcode contains a wide spread of extruder velocities, or you realtime change the building speed, the temperature should be changed accordingly.
Usually, higher speed requires higher temperature.
This can now be performed by the AutoTemp function
By calling M109 S<mintemp> B<maxtemp> F<factor> you enter the autotemp mode.
You can leave it by calling M109 without any F.
If active, the maximal extruder stepper rate of all buffered moves will be calculated, and named "maxerate" [steps/sec].
The wanted temperature then will be set to t=tempmin+factor*maxerate, while being limited between tempmin and tempmax.
If the target temperature is set manually or by gcode to a value less then tempmin, it will be kept without change.
Ideally, your gcode can be completely free of temperature controls, apart from a M109 S T F in the start.gcode, and a M109 S0 in the end.gcode.
### EEPROM
If you know your PID values, the acceleration and max-velocities of your unique machine, you can set them, and finally store them in the EEPROM.
After each reboot, it will magically load them from EEPROM, independent what your Configuration.h says.
### LCD Menu
If your hardware supports it, you can build yourself a LCD-CardReader+Click+encoder combination. It will enable you to realtime tune temperatures,
accelerations, velocities, flow rates, select and print files from the SD card, preheat, disable the steppers, and do other fancy stuff.
One working hardware is documented here: http://www.thingiverse.com/thing:12663
Also, with just a 20x4 or 16x2 display, useful data is shown.
### SD card directories
If you have an SD card reader attached to your controller, also folders work now. Listing the files in pronterface will show "/path/subpath/file.g".
You can write to file in a subfolder by specifying a similar text using small letters in the path.
Also, backup copies of various operating systems are hidden, as well as files not ending with ".g".
### Autostart
If you place a file auto[0-9].g into the root of the sd card, it will be automatically executed if you boot the printer. The same file will be executed by selecting "Autostart" from the menu.
First *0 will be performed, than *1 and so on. That way, you can heat up or even print automatically without user interaction.
### Endstop trigger reporting
If an endstop is hit while moving towards the endstop, the location at which the firmware thinks that the endstop was triggered is outputed on the serial port.
This is useful, because the user gets a warning message.
However, also tools like QTMarlin can use this for finding acceptable combinations of velocity+acceleration.
### Coding paradigm
Not relevant from a user side, but Marlin was split into thematic junks, and has tried to partially enforced private variables.
This is intended to make it clearer, what interacts which what, and leads to a higher level of modularization.
We think that this is a useful prestep for porting this firmware to e.g. an ARM platform in the future.
A lot of RAM (with enabled LCD ~2200 bytes) was saved by storing char []="some message" in Program memory.
In the serial communication, a #define based level of abstraction was enforced, so that it is clear that
some transfer is information (usually beginning with "echo:"), an error "error:", or just normal protocol,
necessary for backwards compatibility.
### Interrupt based temperature measurements
An interrupt is used to manage ADC conversions, and enforce checking for critical temperatures.
This leads to less blocking in the heater management routine.

@ -1,9 +0,0 @@
Filament Sensor
---------------
Supports the use of a real time filament diameter sensor that measures the diameter of the filament going into the extruder and then adjusts the extrusion rate to compensate for filament that does not match what is defined in the g-code. The diameter can also be displayed on the LCD screen. This potentially eliminates the need to measure filament diameter when changing spools of filament. Gcode becomes independent of the filament diameter. Can also compensate for changing diameter.
For examples of these sensors, see: http://www.thingiverse.com/thing:454584, https://www.youmagine.com/designs/filament-diameter-sensor, http://diy3dprinting.blogspot.com/2014/01/diy-filament-diameter-sensor.html. Any sensor which produces a voltage equivalent to the diameter in mm (i.e. 1v = 1mm) can be used. This provides a very simple interface and may encourage more innovation in this area.
4 new Mcodes are defined to set relevant parameters: M404, M405, M406, M407 - see above.
Implements a delay buffer to handle the transit delay between where the filament is measured and when it gets to the extruder.

@ -1,193 +0,0 @@
## Implemented G Codes
### Movement G and M Codes
```
G0 -> G1
G1 - Coordinated Movement X Y Z E
G2 - CW ARC
G3 - CCW ARC
G4 - Dwell S[seconds] or P[milliseconds]
G92 - Set the "current position" to coordinates: X<xpos> Y<ypos> Z<zpos> E<epos>
M0 - Wait for user, with optional prompt message (requires LCD controller)
M0 Click When Ready ; show "Click When Ready" until the button is pressed.
M1 - Same as M0
M400 - Finish all moves
M999 - Restart after being stopped by error
```
### SD Card M Codes
```
M20 - List SD card
M21 - Init SD card
M22 - Release SD card
M23 - Select SD file (M23 filename.g)
M24 - Start/resume SD print
M25 - Pause SD print
M26 - Set SD position in bytes (M26 S12345)
M27 - Report SD print status
M28 - Start SD write (M28 filename.g)
M29 - Stop SD write
M30 - Delete file from SD (M30 filename.g)
M31 - Output time since last M109 or SD card start to serial
M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
The '#' is necessary when calling from within sd files, as it stops buffer prereading
M540 - Enable/Disable "Stop SD Print on Endstop Hit" (req. ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
M540 S<0|1>
M928 - Start SD logging (M928 filename.g) - ended by M29
```
### Hardware Control
```
M42 - Change pin status via gcode: P<pin> S<value>. If P is omitted the onboard LED pin will be used.
M42 P9 S1 ; set PIN 9 to 1.
M80 - Turn on Power Supply
M81 - Turn off Power Supply
M84 - Disable steppers until next move,
or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
M85 - Set inactivity shutdown timer with parameter S<seconds>. Disable with "M85" or "M85 S0".
M112 - Emergency stop. Requires hardware reset!!
M226 - Wait for a pin to be in some state: P<pin number> S<pin state>
```
### Temperature M Codes
```
M104 - Set extruder target temp
M105 - Read current temp
M106 - Fan on
M107 - Fan off
M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
M140 - Set bed target temp
M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
M301 - Set PID parameters P I and D
M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
M304 - Set bed PID parameters P I and D
```
### Message M Codes
```
M114 - Output current position to serial port
M115 - Capabilities string
M117 - Display message text on the LCD
M119 - Output Endstop status to serial port
```
### Endstops M Codes
```
M120 - Enable endstop detection
M121 - Disable endstop detection
```
### Special Features M Codes
```
M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
M150 - Set BlinkM Color: R<red> U<green> B<blue> via I2C. Range: 0-255
M240 - Trigger a camera to take a photograph. (Add to your per-layer GCode.)
M250 - Set LCD contrast: C<0-63>
M280 - Set servo position absolute. P<servo index> S<angle or microseconds>
M300 - Play beep sound S<frequency Hz> P<duration ms>
M380 - Activate solenoid on active extruder
M381 - Disable all solenoids
M600 - Pause for filament change X<xpos> Y<ypos> Z<lift> E<initial retract> L<later retract for removal>
```
### Units and Measures G and M Codes
```
G90 - Use Absolute Coordinates
G91 - Use Relative Coordinates
M82 - Set E codes absolute (default)
M83 - Set E codes relative while in Absolute Coordinates (G90) mode
M92 - Set axis_steps_per_unit - same syntax as G92
M200 - Set filament diameter and set E axis units to mm^3 (use S0 to set back to mm).: D<mm>
M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
M205 - Advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X=maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
M206 - Set additional homing offset
M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
M220 - Set speed factor override percentage: S<factor in percent>
M221 - Set extrude factor override percentage: S<factor in percent>
```
### Firmware Retraction G and M Codes
```
G10 - Retract filament according to settings of M207
G11 - Retract recover filament according to settings of M208
M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/s]
M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction
```
### Z Probe G and M Codes
```
G28 - Home all Axis
G29 - Detailed Z-Probe, probes the bed at 3 or more points. The printer must be homed with G28 before G29.
G30 - Single Z Probe, probes bed at current XY location.
G31 - Dock Z Probe sled (if enabled)
G32 - Undock Z Probe sled (if enabled)
M48 - Measure Z_Probe repeatability: P<points> X<xpos> Y<ypos> V<verbosity> E=engage L<legs of travel>
As with G29, the E flag causes the probe to stow after each probe.
M401 - Lower Z-probe (if present)
M402 - Raise Z-probe (if present)
```
### Filament Diameter M Codes
```
M404 - Set (or display) Nominal Filament Diameter in mm: [N<diameter>] (e.g., 3mm or 1.75mm)
M405 - Turn on Filament Sensor extrusion control: [D<distance>] to set distance (in cm) from sensor to extruder
M406 - Turn off Filament Sensor extrusion control
M407 - Display measured Filament Diameter
```
### EEPROM Settings M Codes
```
M500 - Store parameters in EEPROM
M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
```
### Delta M Codes
```
M665 - Set Delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
M666 - Set Delta endstop adjustment: X<x-adjustment> Y<y-adjustment> Z<z-adjustment>
M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
```
### Stepper Driver M Codes
```
M17 - Enable/Power all stepper motors
M18 - Disable all stepper motors. (same as M84)
M907 - Set digital trimpot motor current using axis codes.
M908 - Control digital trimpot directly.
M350 - Set microstepping mode.
M351 - Toggle MS1 MS2 pins directly.
```
### SCARA M-Codes
__May change to suit future G-code standards__
```
M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
M365 - SCARA calibration: Scaling factor, X, Y, Z axis
```
## Comments
Comments start at a `;` (semicolon) and end with the end of the line:
N3 T0*57 ; This is a comment
N4 G92 E0*67
; So is this
N5 G28*22
(example taken from the [RepRap wiki](http://reprap.org/wiki/Gcode#Comments))
If you need to use a literal `;` somewhere (for example within `M117`), you can escape semicolons with a `\`
(backslash):
M117 Hello \;)
`\` can also be used to escape `\` itself, if you need a literal `\` in front of a `;`:
M117 backslash: \\;and a comment
Please note that hosts should strip any comments before sending GCODE to the printer in order to save bandwidth.

Binary file not shown.

Binary file not shown.

@ -1,82 +0,0 @@
==============================================
Instructions for configuring Mesh Bed Leveling
==============================================
Background
----------
This mesh based method of leveling/compensating can compensate for an non-flat bed. There are various opinions about doing this. It was primarily written to compensate a RigidBot BIG bed (40x30cm) that was somewhat bent.
Currently there is no automatic way to probe the bed like the Auto Bed Leveling feature. So, you can not enable `ENABLE_AUTO_BED_LEVELING` at the same time. This might soon be implemented though, stay tuned.
Theory
------
The bed is manually probed in a grid maner. During a print the Z axis compensation will be interpolated within each square using a bi-linear method. Because the grid squares can be tilting in different directions a printing move can be split on the borders of the grid squares. During fast travel moves one can sometimes notice a de-acceleration on these borders.
Mesh point probing can either be carried out from the display, or by issuing `G29` commands.
The Z-endstop should be set slightly above the bed. An opto endstop is preferable but a switch with a metal arm that allow some travel though should also work.
Configuration
-------------
In `Configuration.h` there are two options that can be enabled.
`MESH_BED_LEVELING` will enable mesh bed leveling.<br/>
`MANUAL_BED_LEVELING` will add the menu option for bed leveling.
There are also some values that can be set.
The following will set the step distance used when manually turning the display encoder. Default is 0.025
`MBL_Z_STEP`
Following four define the area to cover. Default 10mm from max bed size
`MESH_MIN_X`<br/>
`MESH_MAX_X`<br/>
`MESH_MIN_Y`<br/>
`MESH_MAX_Y`
Following two define the number of points to probe, total number will be these two multiplied. Default is 3x3 points. Don't probe more than 7x7 points (software limited)
`MESH_NUM_X_POINTS`<br/>
`MESH_NUM_Y_POINTS`<br/>
The following will set the Z-endstop height during probing. When initiating a bed leveling probing, a homing will take place and the Z-endstop will be set to this height so lowering through the endstop can take place and the bed should be within this distance. Default is 4mm
`MESH_HOME_SEARCH_Z`
The probed points will also be saved in the EEPROM if it has been enables. Otherwise a new probe sequence needs to be made next time the printer has been turned on.
Probing the bed with the display
--------------------------------
If `MANUAL_BED_LEVELING` has been enabled then will a `Level bed` menu option be available in the `Prepare` menu.
When selecting this option the printer will first do a homing, and then travel to the first probe point. There it will wait. By turning the encoder on the display the hotend can now be lowered until it touches the bed. Using a paper to feel the distance when it gets close. Pressing the encoder/button will store this point and then travel to the next point. Repeating this until all points have been probed.
If the EEPROM has been enable it can be good to issue a `M500` to get these points saved.
Issuing a `G29` will return the state of the mesh leveling and report the probed points.
Probing the bed with G-codes
----------------------------
Probing the bed by G-codes follows the sequence much like doing it with the display.
`G29` or `G29 S0` will return the state of the bed leveling and report the probed points. Where X=1 Y=1 is the top-left value and X=MESH_NUM_X_POINTS Y=MESH_NUM_Y_POINTS is bottom-right value. X per column and Y per row.
`G29 S1` will initiate the bed leveling, homing and traveling to the first point to probe.
Then use your preferred Printer controller program, i.e. Printrun, to lower the hotend until it touches the bed. Using a paper to feel the distance when it gets close.
`G29 S2` will store the point and travel to the next point until last point has been probed.
`G29 S3 Xn Yn Zn.nn` will modify a single probed point. This can be used to tweak a badly probed point. Specify probe point where `Xn` and `Yn`, where `n` in `Xn` is between 1 and `MESH_NUM_X_POINTS`. Likewise for `Yn`. `Zn.nn` is the new Z value in that probed point.
Note
----
Depending how firm feel you aim for on the paper you can use the `Z offset` option in Slic3r to compensate a slight height diff. (I like the paper loose so I needed to put `-0.05` in Slic3r)

@ -1,9 +0,0 @@
__Note for RAMPS users:__
----------------------
-By default, RAMPS have no power on servo bus (if you happen to have a multimeter, check the voltage on servo power pins).
-In order to get the servo working, you need to supply 5V to 5V pin.. You can do it using your power supply (if it has a 5V output) or jumping the "Vcc" from Arduino to the 5V RAMPS rail.
-These 2 pins are located just between the Reset Button and the yellow fuses... There are marks in the board showing 5V and VCC.. just connect them..
-If jumping the arduino Vcc do RAMPS 5V rail, take care to not use a power hungry servo, otherwise you will cause a blackout in the arduino board ;-)

@ -1,30 +0,0 @@
### Version 1.0.3
* Reduced code size, maybe a lot depending on your configuration.
* Improved support for Delta, SCARA, and COREXY kinematics.
* Move parts of Configuration files to `Conditionals.h` and `SanityCheck.h`.
* Clean up of temperature code.
* Enhanced `G29` with improved grid bed leveling based on Roxy code. See documentation.
* Various bugs fixed from 1.0.2.
* EEPROM layout updated to `V17`.
* Added `M204` travel acceleration options.
* `M204` "`P`" parameter replaces "`S`." "`S`" retained for backward compatibility.
* Support for more RAMPS-based boards.
* Configurator utility under development.
* `M404` "`N`" parameter replaced with "`W`." ("`N`" is for line numbers only).
* Much cleanup of the code.
* Improved support for Cyrillic and accented languages.
* LCD controller knob acceleration.
* Improved compatibility with various sensors, MAX6675 thermocouple.
* Filament runout sensor support.
* Filament width measurement support.
* Support for TMC and L6470 stepper drivers.
* Better support of G-Code `;` comments, `\`, `N` line numbers, and `*` checksums.
* Moved GCode handling code into individual functions per-code.
### Version 1.0.2
* Progress bar for character-based LCD displays.
### Version 1.0.1
### Version 1.0.0
* Initial release

@ -276,6 +276,13 @@
#define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER)) #define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
#endif #endif
/**
* Sled Options
*/
#ifdef Z_PROBE_SLED
#define Z_SAFE_HOMING
#endif
/** /**
* MAX_STEP_FREQUENCY differs for TOSHIBA * MAX_STEP_FREQUENCY differs for TOSHIBA
*/ */

@ -270,44 +270,24 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances. #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//=========================================================================== //===========================================================================
//============================= Thermal Runaway Protection ================== //======================== Thermal Runaway Protection =======================
//=========================================================================== //===========================================================================
/*
This is a feature to protect your printer from burn up in flames if it has
a thermistor coming off place (this happened to a friend of mine recently and
motivated me writing this feature).
The issue: If a thermistor come off, it will read a lower temperature than actual.
The system will turn the heater on forever, burning up the filament and anything
else around.
After the temperature reaches the target for the first time, this feature will
start measuring for how long the current temperature stays below the target
minus _HYSTERESIS (set_temperature - THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).
If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to be on the
safe side, the system will he halt.
Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem if
your extruder heater takes 2 minutes to hit the target on heating.
*/
// If you want to enable this feature for all your extruder heaters,
// uncomment the 2 defines below:
// Parameters for all extruder heaters /**
//#define THERMAL_RUNAWAY_PROTECTION_PERIOD 40 //in seconds * Thermal Runaway Protection protects your printer from damage and fire if a
//#define THERMAL_RUNAWAY_PROTECTION_HYSTERESIS 4 // in degree Celsius * thermistor falls out or temperature sensors fail in any way.
*
// If you want to enable this feature for your bed heater, * The issue: If a thermistor falls out or a temperature sensor fails,
// uncomment the 2 defines below: * Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
// Parameters for the bed heater *
//#define THERMAL_RUNAWAY_PROTECTION_BED_PERIOD 20 //in seconds * The solution: Once the temperature reaches the target, start observing.
//#define THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS 2 // in degree Celsius * If the temperature stays too far below the target (hysteresis) for too long,
* the firmware will halt as a safety precaution.
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//=========================================================================== //===========================================================================
//============================= Mechanical Settings ========================= //============================= Mechanical Settings =========================
@ -377,7 +357,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way. // Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.
#define INVERT_X_DIR false #define INVERT_X_DIR false
#define INVERT_Y_DIR false #define INVERT_Y_DIR true
#define INVERT_Z_DIR false #define INVERT_Z_DIR false
// @section extruder // @section extruder
@ -411,17 +391,20 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#define Z_MAX_POS 200 #define Z_MAX_POS 200
//=========================================================================== //===========================================================================
//============================= Filament Runout Sensor ====================== //========================= Filament Runout Sensor ==========================
//=========================================================================== //===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament //#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made. // In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
// It is assumed that when logic high = filament available // It is assumed that when logic high = filament available
// when logic low = filament ran out // when logic low = filament ran out
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned #ifdef FILAMENT_RUNOUT_SENSOR
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined. const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//=========================================================================== //===========================================================================
//============================ Mesh Bed Leveling ============================ //=========================== Manual Bed Leveling ===========================
//=========================================================================== //===========================================================================
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling // #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
@ -442,7 +425,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
//=========================================================================== //===========================================================================
//============================= Bed Auto Leveling =========================== //============================ Bed Auto Leveling ============================
//=========================================================================== //===========================================================================
// @section bedlevel // @section bedlevel
@ -622,10 +605,9 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#ifdef EEPROM_SETTINGS #ifdef EEPROM_SETTINGS
// To disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out: // To disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
#define EEPROM_CHITCHAT // please keep turned on if you can. #define EEPROM_CHITCHAT // Please keep turned on if you can.
#endif #endif
// @section temperature // @section temperature
// Preheat Constants // Preheat Constants

@ -14,13 +14,27 @@
#endif #endif
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control #define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
//// Heating sanity check: /**
// This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature * Thermal Protection parameters
// If the temperature has not increased at the end of that period, the target temperature is set to zero. */
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature #ifdef THERMAL_PROTECTION_HOTENDS
// differ by at least 2x WATCH_TEMP_INCREASE #define THERMAL_PROTECTION_PERIOD 40 // Seconds
//#define WATCH_TEMP_PERIOD 40000 //40 seconds #define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to transpire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
*/
#define WATCH_TEMP_PERIOD 16 // Seconds
#define WATCH_TEMP_INCREASE 4 // Degrees Celsius
#endif
#ifdef THERMAL_PROTECTION_BED
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
#endif
#ifdef PIDTEMP #ifdef PIDTEMP
// this adds an experimental additional term to the heating power, proportional to the extrusion speed. // this adds an experimental additional term to the heating power, proportional to the extrusion speed.
@ -31,14 +45,16 @@
#endif #endif
#endif #endif
/**
//automatic temperature: The hot end target temperature is calculated by all the buffered lines of gcode. * Automatic Temperature:
//The maximum buffered steps/sec of the extruder motor are called "se". * The hotend target temperature is calculated by all the buffered lines of gcode.
//You enter the autotemp mode by a M109 S<mintemp> B<maxtemp> F<factor> * The maximum buffered steps/sec of the extruder motor is called "se".
// the target temperature is set to mintemp+factor*se[steps/sec] and limited by mintemp and maxtemp * Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
// you exit the value by any M109 without F* * The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
// Also, if the temperature is set to a value <mintemp, it is not changed by autotemp. * mintemp and maxtemp. Turn this off by excuting M109 without F*
// on an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode * Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
#define AUTOTEMP #define AUTOTEMP
#ifdef AUTOTEMP #ifdef AUTOTEMP
#define AUTOTEMP_OLDWEIGHT 0.98 #define AUTOTEMP_OLDWEIGHT 0.98
@ -376,6 +392,15 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define MAX_CMD_SIZE 96 #define MAX_CMD_SIZE 96
#define BUFSIZE 4 #define BUFSIZE 4
// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK
// @section fwretract // @section fwretract
// Firmware based and LCD controlled retract // Firmware based and LCD controlled retract

@ -266,8 +266,8 @@ VPATH += $(ARDUINO_INSTALL_DIR)/hardware/teensy/cores/teensy
endif endif
CXXSRC = WMath.cpp WString.cpp Print.cpp Marlin_main.cpp \ CXXSRC = WMath.cpp WString.cpp Print.cpp Marlin_main.cpp \
MarlinSerial.cpp Sd2Card.cpp SdBaseFile.cpp SdFatUtil.cpp \ MarlinSerial.cpp Sd2Card.cpp SdBaseFile.cpp SdFatUtil.cpp \
SdFile.cpp SdVolume.cpp motion_control.cpp planner.cpp \ SdFile.cpp SdVolume.cpp planner.cpp stepper.cpp \
stepper.cpp temperature.cpp cardreader.cpp configuration_store.cpp \ temperature.cpp cardreader.cpp configuration_store.cpp \
watchdog.cpp SPI.cpp servo.cpp Tone.cpp ultralcd.cpp digipot_mcp4451.cpp \ watchdog.cpp SPI.cpp servo.cpp Tone.cpp ultralcd.cpp digipot_mcp4451.cpp \
vector_3.cpp qr_solve.cpp vector_3.cpp qr_solve.cpp
ifeq ($(LIQUID_TWI2), 0) ifeq ($(LIQUID_TWI2), 0)

@ -21,6 +21,10 @@
#include "fastio.h" #include "fastio.h"
#include "Configuration.h" #include "Configuration.h"
#ifndef SANITYCHECK_H
#error Your Configuration.h and Configuration_adv.h files are outdated!
#endif
#if (ARDUINO >= 100) #if (ARDUINO >= 100)
#include "Arduino.h" #include "Arduino.h"
#else #else
@ -109,7 +113,6 @@ FORCE_INLINE void serialprintPGM(const char *str) {
} }
void get_command(); void get_command();
void process_commands();
void manage_inactivity(bool ignore_stepper_queue=false); void manage_inactivity(bool ignore_stepper_queue=false);
@ -195,13 +198,14 @@ void manage_inactivity(bool ignore_stepper_queue=false);
*/ */
enum AxisEnum {X_AXIS=0, Y_AXIS=1, A_AXIS=0, B_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5}; enum AxisEnum {X_AXIS=0, Y_AXIS=1, A_AXIS=0, B_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
enum EndstopEnum {X_MIN=0, Y_MIN=1, Z_MIN=2, Z_PROBE=3, X_MAX=4, Y_MAX=5, Z_MAX=6};
void enable_all_steppers(); void enable_all_steppers();
void disable_all_steppers(); void disable_all_steppers();
void FlushSerialRequestResend(); void FlushSerialRequestResend();
void ClearToSend(); void ok_to_send();
void get_coordinates();
#ifdef DELTA #ifdef DELTA
void calculate_delta(float cartesian[3]); void calculate_delta(float cartesian[3]);
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING

File diff suppressed because it is too large Load Diff

@ -313,4 +313,16 @@
#error [XYZ]_HOME_RETRACT_MM settings have been renamed [XYZ]_HOME_BUMP_MM #error [XYZ]_HOME_RETRACT_MM settings have been renamed [XYZ]_HOME_BUMP_MM
#endif #endif
#if WATCH_TEMP_PERIOD > 500
#error WATCH_TEMP_PERIOD now uses seconds instead of milliseconds
#endif
#if !defined(THERMAL_PROTECTION_HOTENDS) && (defined(WATCH_TEMP_PERIOD) || defined(THERMAL_PROTECTION_PERIOD))
#error Thermal Runaway Protection for hotends must now be enabled with THERMAL_PROTECTION_HOTENDS
#endif
#if !defined(THERMAL_PROTECTION_BED) && defined(THERMAL_PROTECTION_BED_PERIOD)
#error Thermal Runaway Protection for the bed must now be enabled with THERMAL_PROTECTION_BED
#endif
#endif //SANITYCHECK_H #endif //SANITYCHECK_H

@ -1097,8 +1097,9 @@ int16_t SdBaseFile::read(void* buf, uint16_t nbyte) {
fail: fail:
return -1; return -1;
} }
//------------------------------------------------------------------------------
/** Read the next directory entry from a directory file. /**
* Read the next entry in a directory.
* *
* \param[out] dir The dir_t struct that will receive the data. * \param[out] dir The dir_t struct that will receive the data.
* *
@ -1114,50 +1115,38 @@ int8_t SdBaseFile::readDir(dir_t* dir, char* longFilename) {
if (!isDir() || (0X1F & curPosition_)) return -1; if (!isDir() || (0X1F & curPosition_)) return -1;
//If we have a longFilename buffer, mark it as invalid. If we find a long filename it will be filled automaticly. //If we have a longFilename buffer, mark it as invalid. If we find a long filename it will be filled automaticly.
if (longFilename != NULL) if (longFilename != NULL) longFilename[0] = '\0';
{
longFilename[0] = '\0';
}
while (1) { while (1) {
n = read(dir, sizeof(dir_t)); n = read(dir, sizeof(dir_t));
if (n != sizeof(dir_t)) return n == 0 ? 0 : -1; if (n != sizeof(dir_t)) return n == 0 ? 0 : -1;
// last entry if DIR_NAME_FREE // last entry if DIR_NAME_FREE
if (dir->name[0] == DIR_NAME_FREE) return 0; if (dir->name[0] == DIR_NAME_FREE) return 0;
// skip empty entries and entry for . and .. // skip empty entries and entry for . and ..
if (dir->name[0] == DIR_NAME_DELETED || dir->name[0] == '.') continue; if (dir->name[0] == DIR_NAME_DELETED || dir->name[0] == '.') continue;
//Fill the long filename if we have a long filename entry,
// long filename entries are stored before the actual filename. // Fill the long filename if we have a long filename entry.
if (DIR_IS_LONG_NAME(dir) && longFilename != NULL) // Long filename entries are stored before the short filename.
{ if (longFilename != NULL && DIR_IS_LONG_NAME(dir)) {
vfat_t *VFAT = (vfat_t*)dir; vfat_t *VFAT = (vfat_t*)dir;
//Sanity check the VFAT entry. The first cluster is always set to zero. And th esequence number should be higher then 0 // Sanity-check the VFAT entry. The first cluster is always set to zero. And the sequence number should be higher than 0
if (VFAT->firstClusterLow == 0 && (VFAT->sequenceNumber & 0x1F) > 0 && (VFAT->sequenceNumber & 0x1F) <= MAX_VFAT_ENTRIES) if (VFAT->firstClusterLow == 0 && (VFAT->sequenceNumber & 0x1F) > 0 && (VFAT->sequenceNumber & 0x1F) <= MAX_VFAT_ENTRIES) {
{ // TODO: Store the filename checksum to verify if a none-long filename aware system modified the file table.
//TODO: Store the filename checksum to verify if a none-long filename aware system modified the file table. n = ((VFAT->sequenceNumber & 0x1F) - 1) * FILENAME_LENGTH;
n = ((VFAT->sequenceNumber & 0x1F) - 1) * FILENAME_LENGTH; for (uint8_t i=0; i<FILENAME_LENGTH; i++)
longFilename[n+0] = VFAT->name1[0]; longFilename[n+i] = (i < 5) ? VFAT->name1[i] : (i < 11) ? VFAT->name2[i-5] : VFAT->name3[i-11];
longFilename[n+1] = VFAT->name1[1]; // If this VFAT entry is the last one, add a NUL terminator at the end of the string
longFilename[n+2] = VFAT->name1[2]; if (VFAT->sequenceNumber & 0x40) longFilename[n+FILENAME_LENGTH] = '\0';
longFilename[n+3] = VFAT->name1[3]; }
longFilename[n+4] = VFAT->name1[4];
longFilename[n+5] = VFAT->name2[0];
longFilename[n+6] = VFAT->name2[1];
longFilename[n+7] = VFAT->name2[2];
longFilename[n+8] = VFAT->name2[3];
longFilename[n+9] = VFAT->name2[4];
longFilename[n+10] = VFAT->name2[5];
longFilename[n+11] = VFAT->name3[0];
longFilename[n+12] = VFAT->name3[1];
//If this VFAT entry is the last one, add a NUL terminator at the end of the string
if (VFAT->sequenceNumber & 0x40)
longFilename[n+FILENAME_LENGTH] = '\0';
}
} }
// return if normal file or subdirectory // Return if normal file or subdirectory
if (DIR_IS_FILE_OR_SUBDIR(dir)) return n; if (DIR_IS_FILE_OR_SUBDIR(dir)) return n;
} }
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
// Read next directory entry into the cache // Read next directory entry into the cache
// Assumes file is correctly positioned // Assumes file is correctly positioned

@ -14,6 +14,7 @@
#define BOARD_RAMPS_13_EEB 34 // RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed) #define BOARD_RAMPS_13_EEB 34 // RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)
#define BOARD_RAMPS_13_EFF 35 // RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Fan) #define BOARD_RAMPS_13_EFF 35 // RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Fan)
#define BOARD_RAMPS_13_EEF 36 // RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Fan) #define BOARD_RAMPS_13_EEF 36 // RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Fan)
#define BOARD_RAMPS_13_SF 38 // RAMPS 1.3 / 1.4 (Power outputs: Spindle, Controller Fan)
#define BOARD_FELIX2 37 // Felix 2.0+ Electronics Board (RAMPS like) #define BOARD_FELIX2 37 // Felix 2.0+ Electronics Board (RAMPS like)
#define BOARD_DUEMILANOVE_328P 4 // Duemilanove w/ ATMega328P pin assignments #define BOARD_DUEMILANOVE_328P 4 // Duemilanove w/ ATMega328P pin assignments
#define BOARD_GEN6 5 // Gen6 #define BOARD_GEN6 5 // Gen6
@ -50,6 +51,7 @@
#define BOARD_ELEFU_3 21 // Elefu Ra Board (v3) #define BOARD_ELEFU_3 21 // Elefu Ra Board (v3)
#define BOARD_5DPRINT 88 // 5DPrint D8 Driver Board #define BOARD_5DPRINT 88 // 5DPrint D8 Driver Board
#define BOARD_LEAPFROG 999 // Leapfrog #define BOARD_LEAPFROG 999 // Leapfrog
#define BOARD_MKS_BASE 40 // MKS BASE 1.0
#define BOARD_WITBOX 41 // bq WITBOX #define BOARD_WITBOX 41 // bq WITBOX
#define BOARD_HEPHESTOS 42 // bq Prusa i3 Hephestos #define BOARD_HEPHESTOS 42 // bq Prusa i3 Hephestos
#define BOARD_BAM_DICE 401 // 2PrintBeta BAM&DICE with STK drivers #define BOARD_BAM_DICE 401 // 2PrintBeta BAM&DICE with STK drivers

@ -20,6 +20,7 @@ CardReader::CardReader() {
autostart_stilltocheck = true; //the SD start is delayed, because otherwise the serial cannot answer fast enough to make contact with the host software. autostart_stilltocheck = true; //the SD start is delayed, because otherwise the serial cannot answer fast enough to make contact with the host software.
autostart_index = 0; autostart_index = 0;
//power to SD reader //power to SD reader
#if SDPOWER > -1 #if SDPOWER > -1
OUT_WRITE(SDPOWER, HIGH); OUT_WRITE(SDPOWER, HIGH);
@ -39,24 +40,43 @@ char *createFilename(char *buffer, const dir_t &p) { //buffer > 12characters
return buffer; return buffer;
} }
/**
* Dive into a folder and recurse depth-first to perform a pre-set operation lsAction:
* LS_Count - Add +1 to nrFiles for every file within the parent
* LS_GetFilename - Get the filename of the file indexed by nrFiles
* LS_SerialPrint - Print the full path of each file to serial output
*/
void CardReader::lsDive(const char *prepend, SdFile parent, const char * const match/*=NULL*/) { void CardReader::lsDive(const char *prepend, SdFile parent, const char * const match/*=NULL*/) {
dir_t p; dir_t p;
uint8_t cnt = 0; uint8_t cnt = 0;
// Read the next entry from a directory
while (parent.readDir(p, longFilename) > 0) { while (parent.readDir(p, longFilename) > 0) {
if (DIR_IS_SUBDIR(&p) && lsAction != LS_Count && lsAction != LS_GetFilename) { // hence LS_SerialPrint
char path[FILENAME_LENGTH*2]; // If the entry is a directory and the action is LS_SerialPrint
if (DIR_IS_SUBDIR(&p) && lsAction != LS_Count && lsAction != LS_GetFilename) {
// Allocate enough stack space for the full path to a folder
int len = strlen(prepend) + FILENAME_LENGTH + 1;
char path[len];
// Get the short name for the item, which we know is a folder
char lfilename[FILENAME_LENGTH]; char lfilename[FILENAME_LENGTH];
createFilename(lfilename, p); createFilename(lfilename, p);
path[0] = 0; // Append the FOLDERNAME12/ to the passed string.
if (prepend[0] == 0) strcat(path, "/"); //avoid leading / if already in prepend // It contains the full path to the "parent" argument.
// We now have the full path to the item in this folder.
path[0] = '\0';
if (prepend[0] == '\0') strcat(path, "/"); // a root slash if prepend is empty
strcat(path, prepend); strcat(path, prepend);
strcat(path, lfilename); strcat(path, lfilename);
strcat(path, "/"); strcat(path, "/");
//Serial.print(path); // Serial.print(path);
// Get a new directory object using the full path
// and dive recursively into it.
SdFile dir; SdFile dir;
if (!dir.open(parent, lfilename, O_READ)) { if (!dir.open(parent, lfilename, O_READ)) {
if (lsAction == LS_SerialPrint) { if (lsAction == LS_SerialPrint) {
@ -66,14 +86,13 @@ void CardReader::lsDive(const char *prepend, SdFile parent, const char * const m
} }
} }
lsDive(path, dir); lsDive(path, dir);
//close done automatically by destructor of SdFile // close() is done automatically by destructor of SdFile
} }
else { else {
char pn0 = p.name[0]; char pn0 = p.name[0];
if (pn0 == DIR_NAME_FREE) break; if (pn0 == DIR_NAME_FREE) break;
if (pn0 == DIR_NAME_DELETED || pn0 == '.') continue; if (pn0 == DIR_NAME_DELETED || pn0 == '.') continue;
char lf0 = longFilename[0]; if (longFilename[0] == '.') continue;
if (lf0 == '.') continue;
if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue; if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue;
@ -81,24 +100,27 @@ void CardReader::lsDive(const char *prepend, SdFile parent, const char * const m
if (!filenameIsDir && (p.name[8] != 'G' || p.name[9] == '~')) continue; if (!filenameIsDir && (p.name[8] != 'G' || p.name[9] == '~')) continue;
//if (cnt++ != nr) continue; switch (lsAction) {
createFilename(filename, p); case LS_Count:
if (lsAction == LS_SerialPrint) { nrFiles++;
SERIAL_PROTOCOL(prepend); break;
SERIAL_PROTOCOLLN(filename); case LS_SerialPrint:
} createFilename(filename, p);
else if (lsAction == LS_Count) { SERIAL_PROTOCOL(prepend);
nrFiles++; SERIAL_PROTOCOLLN(filename);
} break;
else if (lsAction == LS_GetFilename) { case LS_GetFilename:
if (match != NULL) { createFilename(filename, p);
if (strcasecmp(match, filename) == 0) return; if (match != NULL) {
} if (strcasecmp(match, filename) == 0) return;
else if (cnt == nrFiles) return; }
cnt++; else if (cnt == nrFiles) return;
cnt++;
break;
} }
} }
} } // while readDir
} }
void CardReader::ls() { void CardReader::ls() {
@ -237,7 +259,7 @@ void CardReader::openFile(char* name, bool read, bool replace_current/*=true*/)
char *dirname_start, *dirname_end; char *dirname_start, *dirname_end;
if (name[0] == '/') { if (name[0] == '/') {
dirname_start = &name[1]; dirname_start = &name[1];
while(dirname_start > 0) { while (dirname_start > 0) {
dirname_end = strchr(dirname_start, '/'); dirname_end = strchr(dirname_start, '/');
//SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name)); //SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name));
//SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end - name)); //SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end - name));
@ -287,14 +309,14 @@ void CardReader::openFile(char* name, bool read, bool replace_current/*=true*/)
else { else {
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL); SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(fname); SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLCHAR('.'); SERIAL_PROTOCOLPGM(".\n");
} }
} }
else { //write else { //write
if (!file.open(curDir, fname, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) { if (!file.open(curDir, fname, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) {
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL); SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(fname); SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLCHAR('.'); SERIAL_PROTOCOLPGM(".\n");
} }
else { else {
saving = true; saving = true;

@ -676,9 +676,9 @@ void Config_PrintSettings(bool forReplay) {
SERIAL_ECHOLNPGM("Mesh bed leveling:"); SERIAL_ECHOLNPGM("Mesh bed leveling:");
CONFIG_ECHO_START; CONFIG_ECHO_START;
} }
SERIAL_ECHOPAIR(" M420 S", (int32_t)mbl.active); SERIAL_ECHOPAIR(" M420 S", (unsigned long)mbl.active);
SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS); SERIAL_ECHOPAIR(" X", (unsigned long)MESH_NUM_X_POINTS);
SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS); SERIAL_ECHOPAIR(" Y", (unsigned long)MESH_NUM_Y_POINTS);
SERIAL_EOL; SERIAL_EOL;
for (int y=0; y<MESH_NUM_Y_POINTS; y++) { for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
for (int x=0; x<MESH_NUM_X_POINTS; x++) { for (int x=0; x<MESH_NUM_X_POINTS; x++) {

@ -270,44 +270,24 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances. #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//=========================================================================== //===========================================================================
//============================= Thermal Runaway Protection ================== //======================== Thermal Runaway Protection =======================
//=========================================================================== //===========================================================================
/*
This is a feature to protect your printer from burn up in flames if it has
a thermistor coming off place (this happened to a friend of mine recently and
motivated me writing this feature).
The issue: If a thermistor come off, it will read a lower temperature than actual.
The system will turn the heater on forever, burning up the filament and anything
else around.
After the temperature reaches the target for the first time, this feature will
start measuring for how long the current temperature stays below the target
minus _HYSTERESIS (set_temperature - THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).
If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to be on the
safe side, the system will he halt.
Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem if
your extruder heater takes 2 minutes to hit the target on heating.
*/
// If you want to enable this feature for all your extruder heaters,
// uncomment the 2 defines below:
// Parameters for all extruder heaters /**
//#define THERMAL_RUNAWAY_PROTECTION_PERIOD 40 //in seconds * Thermal Runaway Protection protects your printer from damage and fire if a
//#define THERMAL_RUNAWAY_PROTECTION_HYSTERESIS 4 // in degree Celsius * thermistor falls out or temperature sensors fail in any way.
*
// If you want to enable this feature for your bed heater, * The issue: If a thermistor falls out or a temperature sensor fails,
// uncomment the 2 defines below: * Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
// Parameters for the bed heater *
//#define THERMAL_RUNAWAY_PROTECTION_BED_PERIOD 20 //in seconds * The solution: Once the temperature reaches the target, start observing.
//#define THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS 2 // in degree Celsius * If the temperature stays too far below the target (hysteresis) for too long,
* the firmware will halt as a safety precaution.
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//=========================================================================== //===========================================================================
//============================= Mechanical Settings ========================= //============================= Mechanical Settings =========================
@ -377,7 +357,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way. // Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.
#define INVERT_X_DIR false #define INVERT_X_DIR false
#define INVERT_Y_DIR false #define INVERT_Y_DIR true
#define INVERT_Z_DIR false #define INVERT_Z_DIR false
// @section extruder // @section extruder
@ -411,17 +391,20 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#define Z_MAX_POS 200 #define Z_MAX_POS 200
//=========================================================================== //===========================================================================
//============================= Filament Runout Sensor ====================== //========================= Filament Runout Sensor ==========================
//=========================================================================== //===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament //#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made. // In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
// It is assumed that when logic high = filament available // It is assumed that when logic high = filament available
// when logic low = filament ran out // when logic low = filament ran out
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned #ifdef FILAMENT_RUNOUT_SENSOR
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined. const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//=========================================================================== //===========================================================================
//============================ Manual Bed Leveling ========================== //=========================== Manual Bed Leveling ===========================
//=========================================================================== //===========================================================================
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling // #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
@ -442,7 +425,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
//=========================================================================== //===========================================================================
//============================= Bed Auto Leveling =========================== //============================ Bed Auto Leveling ============================
//=========================================================================== //===========================================================================
// @section bedlevel // @section bedlevel

@ -14,14 +14,38 @@
#endif #endif
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control #define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
//// Heating sanity check: /**
// This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature * Thermal Protection parameters
// If the temperature has not increased at the end of that period, the target temperature is set to zero. */
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature #ifdef THERMAL_PROTECTION_HOTENDS
// differ by at least 2x WATCH_TEMP_INCREASE #define THERMAL_PROTECTION_PERIOD 40 // Seconds
//#define WATCH_TEMP_PERIOD 40000 //40 seconds #define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to transpire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
*/
#define WATCH_TEMP_PERIOD 16 // Seconds
#define WATCH_TEMP_INCREASE 4 // Degrees Celsius
#endif
#ifdef THERMAL_PROTECTION_BED
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
#endif
/**
* Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by excuting M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
#ifdef PIDTEMP #ifdef PIDTEMP
// this adds an experimental additional term to the heating power, proportional to the extrusion speed. // this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated. // if Kc is chosen well, the additional required power due to increased melting should be compensated.
@ -376,6 +400,15 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define MAX_CMD_SIZE 96 #define MAX_CMD_SIZE 96
#define BUFSIZE 4 #define BUFSIZE 4
// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK
// @section fwretract // @section fwretract
// Firmware based and LCD controlled retract // Firmware based and LCD controlled retract

@ -30,6 +30,7 @@
// eu Basque-Euskera // eu Basque-Euskera
// kana Japanese // kana Japanese
// kana_utf Japanese // kana_utf Japanese
// cn Chinese
#ifndef LANGUAGE_INCLUDE #ifndef LANGUAGE_INCLUDE
// pick your language from the list above // pick your language from the list above
@ -122,21 +123,22 @@
#define MSG_PLANNER_BUFFER_BYTES " PlannerBufferBytes: " #define MSG_PLANNER_BUFFER_BYTES " PlannerBufferBytes: "
#define MSG_OK "ok" #define MSG_OK "ok"
#define MSG_FILE_SAVED "Done saving file." #define MSG_FILE_SAVED "Done saving file."
#define MSG_ERR_LINE_NO1 "Line Number out of sequence. Expected: " #define MSG_ERR_LINE_NO "Line Number is not Last Line Number+1, Last Line: "
#define MSG_ERR_LINE_NO2 " Got: "
#define MSG_ERR_CHECKSUM_MISMATCH "checksum mismatch, Last Line: " #define MSG_ERR_CHECKSUM_MISMATCH "checksum mismatch, Last Line: "
#define MSG_ERR_NO_CHECKSUM "No Checksum with line number, Last Line: " #define MSG_ERR_NO_CHECKSUM "No Checksum with line number, Last Line: "
#define MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM "No Line Number with checksum, Last Line: " #define MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM "No Line Number with checksum, Last Line: "
#define MSG_FILE_PRINTED "Done printing file" #define MSG_FILE_PRINTED "Done printing file"
#define MSG_BEGIN_FILE_LIST "Begin file list" #define MSG_BEGIN_FILE_LIST "Begin file list"
#define MSG_END_FILE_LIST "End file list" #define MSG_END_FILE_LIST "End file list"
#define MSG_M104_INVALID_EXTRUDER "M104 Invalid extruder " #define MSG_INVALID_EXTRUDER "Invalid extruder"
#define MSG_M105_INVALID_EXTRUDER "M105 Invalid extruder " #define MSG_INVALID_SOLENOID "Invalid solenoid"
#define MSG_M200_INVALID_EXTRUDER "M200 Invalid extruder " #define MSG_M104_INVALID_EXTRUDER "M104 " MSG_INVALID_EXTRUDER " "
#define MSG_M218_INVALID_EXTRUDER "M218 Invalid extruder " #define MSG_M105_INVALID_EXTRUDER "M105 " MSG_INVALID_EXTRUDER " "
#define MSG_M221_INVALID_EXTRUDER "M221 Invalid extruder " #define MSG_M109_INVALID_EXTRUDER "M109 " MSG_INVALID_EXTRUDER " "
#define MSG_M200_INVALID_EXTRUDER "M200 " MSG_INVALID_EXTRUDER " "
#define MSG_M218_INVALID_EXTRUDER "M218 " MSG_INVALID_EXTRUDER " "
#define MSG_M221_INVALID_EXTRUDER "M221 " MSG_INVALID_EXTRUDER " "
#define MSG_ERR_NO_THERMISTORS "No thermistors - no temperature" #define MSG_ERR_NO_THERMISTORS "No thermistors - no temperature"
#define MSG_M109_INVALID_EXTRUDER "M109 Invalid extruder "
#define MSG_HEATING "Heating..." #define MSG_HEATING "Heating..."
#define MSG_HEATING_COMPLETE "Heating done." #define MSG_HEATING_COMPLETE "Heating done."
#define MSG_BED_HEATING "Bed Heating." #define MSG_BED_HEATING "Bed Heating."
@ -148,8 +150,6 @@
#define MSG_RESEND "Resend: " #define MSG_RESEND "Resend: "
#define MSG_UNKNOWN_COMMAND "Unknown command: \"" #define MSG_UNKNOWN_COMMAND "Unknown command: \""
#define MSG_ACTIVE_EXTRUDER "Active Extruder: " #define MSG_ACTIVE_EXTRUDER "Active Extruder: "
#define MSG_INVALID_EXTRUDER "Invalid extruder"
#define MSG_INVALID_SOLENOID "Invalid solenoid"
#define MSG_X_MIN "x_min: " #define MSG_X_MIN "x_min: "
#define MSG_X_MAX "x_max: " #define MSG_X_MAX "x_max: "
#define MSG_Y_MIN "y_min: " #define MSG_Y_MIN "y_min: "
@ -161,6 +161,7 @@
#define MSG_ERR_MATERIAL_INDEX "M145 S<index> out of range (0-1)" #define MSG_ERR_MATERIAL_INDEX "M145 S<index> out of range (0-1)"
#define MSG_ERR_M421_REQUIRES_XYZ "M421 requires XYZ parameters" #define MSG_ERR_M421_REQUIRES_XYZ "M421 requires XYZ parameters"
#define MSG_ERR_MESH_INDEX_OOB "Mesh XY index is out of bounds" #define MSG_ERR_MESH_INDEX_OOB "Mesh XY index is out of bounds"
#define MSG_ERR_M428_TOO_FAR "Too far from reference point"
#define MSG_M119_REPORT "Reporting endstop status" #define MSG_M119_REPORT "Reporting endstop status"
#define MSG_ENDSTOP_HIT "TRIGGERED" #define MSG_ENDSTOP_HIT "TRIGGERED"
#define MSG_ENDSTOP_OPEN "open" #define MSG_ENDSTOP_OPEN "open"

@ -273,7 +273,6 @@ static void lcd_implementation_status_screen() {
u8g.drawFrame(42, 49 - TALL_FONT_CORRECTION, 10, 4); u8g.drawFrame(42, 49 - TALL_FONT_CORRECTION, 10, 4);
u8g.drawPixel(50, 43 - TALL_FONT_CORRECTION); u8g.drawPixel(50, 43 - TALL_FONT_CORRECTION);
// Progress bar frame // Progress bar frame
u8g.drawFrame(54, 49, 73, 4 - TALL_FONT_CORRECTION); u8g.drawFrame(54, 49, 73, 4 - TALL_FONT_CORRECTION);
@ -333,19 +332,28 @@ static void lcd_implementation_status_screen() {
u8g.drawPixel(8,XYZ_BASELINE - 5); u8g.drawPixel(8,XYZ_BASELINE - 5);
u8g.drawPixel(8,XYZ_BASELINE - 3); u8g.drawPixel(8,XYZ_BASELINE - 3);
u8g.setPrintPos(10,XYZ_BASELINE); u8g.setPrintPos(10,XYZ_BASELINE);
lcd_print(ftostr31ns(current_position[X_AXIS])); if (axis_known_position[X_AXIS])
lcd_print(ftostr31ns(current_position[X_AXIS]));
else
lcd_printPGM(PSTR("---"));
u8g.setPrintPos(43,XYZ_BASELINE); u8g.setPrintPos(43,XYZ_BASELINE);
lcd_print('Y'); lcd_print('Y');
u8g.drawPixel(49,XYZ_BASELINE - 5); u8g.drawPixel(49,XYZ_BASELINE - 5);
u8g.drawPixel(49,XYZ_BASELINE - 3); u8g.drawPixel(49,XYZ_BASELINE - 3);
u8g.setPrintPos(51,XYZ_BASELINE); u8g.setPrintPos(51,XYZ_BASELINE);
lcd_print(ftostr31ns(current_position[Y_AXIS])); if (axis_known_position[Y_AXIS])
lcd_print(ftostr31ns(current_position[Y_AXIS]));
else
lcd_printPGM(PSTR("---"));
u8g.setPrintPos(83,XYZ_BASELINE); u8g.setPrintPos(83,XYZ_BASELINE);
lcd_print('Z'); lcd_print('Z');
u8g.drawPixel(89,XYZ_BASELINE - 5); u8g.drawPixel(89,XYZ_BASELINE - 5);
u8g.drawPixel(89,XYZ_BASELINE - 3); u8g.drawPixel(89,XYZ_BASELINE - 3);
u8g.setPrintPos(91,XYZ_BASELINE); u8g.setPrintPos(91,XYZ_BASELINE);
lcd_print(ftostr31(current_position[Z_AXIS])); if (axis_known_position[Z_AXIS])
lcd_print(ftostr32sp(current_position[Z_AXIS]));
else
lcd_printPGM(PSTR("---.--"));
u8g.setColorIndex(1); // black on white u8g.setColorIndex(1); // black on white
// Feedrate // Feedrate

@ -236,44 +236,24 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances. #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//=========================================================================== //===========================================================================
//============================= Thermal Runaway Protection ================== //======================== Thermal Runaway Protection =======================
//=========================================================================== //===========================================================================
/*
This is a feature to protect your printer from burn up in flames if it has
a thermistor coming off place (this happened to a friend of mine recently and
motivated me writing this feature).
The issue: If a thermistor come off, it will read a lower temperature than actual.
The system will turn the heater on forever, burning up the filament and anything
else around.
After the temperature reaches the target for the first time, this feature will
start measuring for how long the current temperature stays below the target
minus _HYSTERESIS (set_temperature - THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).
If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to be on the
safe side, the system will he halt.
Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem if
your extruder heater takes 2 minutes to hit the target on heating.
*/
// If you want to enable this feature for all your extruder heaters,
// uncomment the 2 defines below:
// Parameters for all extruder heaters /**
//#define THERMAL_RUNAWAY_PROTECTION_PERIOD 40 //in seconds * Thermal Runaway Protection protects your printer from damage and fire if a
//#define THERMAL_RUNAWAY_PROTECTION_HYSTERESIS 4 // in degree Celsius * thermistor falls out or temperature sensors fail in any way.
*
// If you want to enable this feature for your bed heater, * The issue: If a thermistor falls out or a temperature sensor fails,
// uncomment the 2 defines below: * Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
// Parameters for the bed heater *
//#define THERMAL_RUNAWAY_PROTECTION_BED_PERIOD 20 //in seconds * The solution: Once the temperature reaches the target, start observing.
//#define THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS 2 // in degree Celsius * If the temperature stays too far below the target (hysteresis) for too long,
* the firmware will halt as a safety precaution.
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//=========================================================================== //===========================================================================
//============================= Mechanical Settings ========================= //============================= Mechanical Settings =========================
@ -350,17 +330,20 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#define Z_MAX_POS 235 #define Z_MAX_POS 235
//=========================================================================== //===========================================================================
//============================= Filament Runout Sensor ====================== //========================= Filament Runout Sensor ==========================
//=========================================================================== //===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament //#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made. // In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
// It is assumed that when logic high = filament available // It is assumed that when logic high = filament available
// when logic low = filament ran out // when logic low = filament ran out
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned #ifdef FILAMENT_RUNOUT_SENSOR
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined. const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//=========================================================================== //===========================================================================
//============================ Manual Bed Leveling ========================== //=========================== Manual Bed Leveling ===========================
//=========================================================================== //===========================================================================
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling // #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
@ -381,7 +364,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
//=========================================================================== //===========================================================================
//============================= Bed Auto Leveling =========================== //============================ Bed Auto Leveling ============================
//=========================================================================== //===========================================================================
//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line) //#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)

@ -236,44 +236,24 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances. #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//=========================================================================== //===========================================================================
//============================= Thermal Runaway Protection ================== //======================== Thermal Runaway Protection =======================
//=========================================================================== //===========================================================================
/*
This is a feature to protect your printer from burn up in flames if it has
a thermistor coming off place (this happened to a friend of mine recently and
motivated me writing this feature).
The issue: If a thermistor come off, it will read a lower temperature than actual.
The system will turn the heater on forever, burning up the filament and anything
else around.
After the temperature reaches the target for the first time, this feature will
start measuring for how long the current temperature stays below the target
minus _HYSTERESIS (set_temperature - THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).
If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to be on the
safe side, the system will he halt.
Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem if
your extruder heater takes 2 minutes to hit the target on heating.
*/
// If you want to enable this feature for all your extruder heaters,
// uncomment the 2 defines below:
// Parameters for all extruder heaters /**
//#define THERMAL_RUNAWAY_PROTECTION_PERIOD 40 //in seconds * Thermal Runaway Protection protects your printer from damage and fire if a
//#define THERMAL_RUNAWAY_PROTECTION_HYSTERESIS 4 // in degree Celsius * thermistor falls out or temperature sensors fail in any way.
*
// If you want to enable this feature for your bed heater, * The issue: If a thermistor falls out or a temperature sensor fails,
// uncomment the 2 defines below: * Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
// Parameters for the bed heater *
//#define THERMAL_RUNAWAY_PROTECTION_BED_PERIOD 20 //in seconds * The solution: Once the temperature reaches the target, start observing.
//#define THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS 2 // in degree Celsius * If the temperature stays too far below the target (hysteresis) for too long,
* the firmware will halt as a safety precaution.
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//=========================================================================== //===========================================================================
//============================= Mechanical Settings ========================= //============================= Mechanical Settings =========================
@ -350,17 +330,20 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#define Z_MAX_POS 235 #define Z_MAX_POS 235
//=========================================================================== //===========================================================================
//============================= Filament Runout Sensor ====================== //========================= Filament Runout Sensor ==========================
//=========================================================================== //===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament //#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made. // In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
// It is assumed that when logic high = filament available // It is assumed that when logic high = filament available
// when logic low = filament ran out // when logic low = filament ran out
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned #ifdef FILAMENT_RUNOUT_SENSOR
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined. const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//=========================================================================== //===========================================================================
//============================ Manual Bed Leveling ========================== //=========================== Manual Bed Leveling ===========================
//=========================================================================== //===========================================================================
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling // #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
@ -377,7 +360,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
//=========================================================================== //===========================================================================
//============================= Bed Auto Leveling =========================== //============================ Bed Auto Leveling ============================
//=========================================================================== //===========================================================================
//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line) //#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)

@ -14,14 +14,38 @@
#endif #endif
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control #define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
//// Heating sanity check: /**
// This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature * Thermal Protection parameters
// If the temperature has not increased at the end of that period, the target temperature is set to zero. */
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature #ifdef THERMAL_PROTECTION_HOTENDS
// differ by at least 2x WATCH_TEMP_INCREASE #define THERMAL_PROTECTION_PERIOD 40 // Seconds
//#define WATCH_TEMP_PERIOD 40000 //40 seconds #define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to transpire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
*/
#define WATCH_TEMP_PERIOD 16 // Seconds
#define WATCH_TEMP_INCREASE 4 // Degrees Celsius
#endif
#ifdef THERMAL_PROTECTION_BED
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
#endif
/**
* Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by excuting M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
#ifdef PIDTEMP #ifdef PIDTEMP
// this adds an experimental additional term to the heating power, proportional to the extrusion speed. // this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated. // if Kc is chosen well, the additional required power due to increased melting should be compensated.
@ -376,6 +400,15 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define MAX_CMD_SIZE 96 #define MAX_CMD_SIZE 96
#define BUFSIZE 4 #define BUFSIZE 4
// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK
// @section fwretract // @section fwretract
// Firmware based and LCD controlled retract // Firmware based and LCD controlled retract

@ -257,44 +257,24 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances. #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//=========================================================================== //===========================================================================
//============================= Thermal Runaway Protection ================== //======================== Thermal Runaway Protection =======================
//=========================================================================== //===========================================================================
/*
This is a feature to protect your printer from burn up in flames if it has
a thermistor coming off place (this happened to a friend of mine recently and
motivated me writing this feature).
The issue: If a thermistor come off, it will read a lower temperature than actual.
The system will turn the heater on forever, burning up the filament and anything
else around.
After the temperature reaches the target for the first time, this feature will
start measuring for how long the current temperature stays below the target
minus _HYSTERESIS (set_temperature - THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).
If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to be on the
safe side, the system will he halt.
Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem if
your extruder heater takes 2 minutes to hit the target on heating.
*/
// If you want to enable this feature for all your extruder heaters,
// uncomment the 2 defines below:
// Parameters for all extruder heaters /**
//#define THERMAL_RUNAWAY_PROTECTION_PERIOD 40 //in seconds * Thermal Runaway Protection protects your printer from damage and fire if a
//#define THERMAL_RUNAWAY_PROTECTION_HYSTERESIS 4 // in degree Celsius * thermistor falls out or temperature sensors fail in any way.
*
// If you want to enable this feature for your bed heater, * The issue: If a thermistor falls out or a temperature sensor fails,
// uncomment the 2 defines below: * Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
// Parameters for the bed heater *
//#define THERMAL_RUNAWAY_PROTECTION_BED_PERIOD 20 //in seconds * The solution: Once the temperature reaches the target, start observing.
//#define THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS 2 // in degree Celsius * If the temperature stays too far below the target (hysteresis) for too long,
* the firmware will halt as a safety precaution.
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//=========================================================================== //===========================================================================
//============================= Mechanical Settings ========================= //============================= Mechanical Settings =========================
@ -371,17 +351,20 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
#define Z_MAX_POS 180 #define Z_MAX_POS 180
//=========================================================================== //===========================================================================
//============================= Filament Runout Sensor ====================== //========================= Filament Runout Sensor ==========================
//=========================================================================== //===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament //#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made. // In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
// It is assumed that when logic high = filament available // It is assumed that when logic high = filament available
// when logic low = filament ran out // when logic low = filament ran out
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned #ifdef FILAMENT_RUNOUT_SENSOR
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined. const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//=========================================================================== //===========================================================================
//============================ Manual Bed Leveling ========================== //=========================== Manual Bed Leveling ===========================
//=========================================================================== //===========================================================================
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling // #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
@ -402,7 +385,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
//=========================================================================== //===========================================================================
//============================= Bed Auto Leveling =========================== //============================ Bed Auto Leveling ============================
//=========================================================================== //===========================================================================
//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line) //#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)

@ -14,14 +14,38 @@
#endif #endif
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control #define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
//// Heating sanity check: /**
// This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature * Thermal Protection parameters
// If the temperature has not increased at the end of that period, the target temperature is set to zero. */
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature #ifdef THERMAL_PROTECTION_HOTENDS
// differ by at least 2x WATCH_TEMP_INCREASE #define THERMAL_PROTECTION_PERIOD 40 // Seconds
//#define WATCH_TEMP_PERIOD 40000 //40 seconds #define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to transpire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
*/
#define WATCH_TEMP_PERIOD 16 // Seconds
#define WATCH_TEMP_INCREASE 4 // Degrees Celsius
#endif
#ifdef THERMAL_PROTECTION_BED
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
#endif
/**
* Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by excuting M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
#ifdef PIDTEMP #ifdef PIDTEMP
// this adds an experimental additional term to the heating power, proportional to the extrusion speed. // this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated. // if Kc is chosen well, the additional required power due to increased melting should be compensated.
@ -374,7 +398,16 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//The ASCII buffer for receiving from the serial: //The ASCII buffer for receiving from the serial:
#define MAX_CMD_SIZE 96 #define MAX_CMD_SIZE 96
#define BUFSIZE 5 #define BUFSIZE 4
// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK
// @section fwretract // @section fwretract

@ -286,44 +286,24 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances. #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//=========================================================================== //===========================================================================
//============================= Thermal Runaway Protection ================== //======================== Thermal Runaway Protection =======================
//=========================================================================== //===========================================================================
/*
This is a feature to protect your printer from burn up in flames if it has
a thermistor coming off place (this happened to a friend of mine recently and
motivated me writing this feature).
The issue: If a thermistor come off, it will read a lower temperature than actual.
The system will turn the heater on forever, burning up the filament and anything
else around.
After the temperature reaches the target for the first time, this feature will
start measuring for how long the current temperature stays below the target
minus _HYSTERESIS (set_temperature - THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).
If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to be on the
safe side, the system will he halt.
Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem if
your extruder heater takes 2 minutes to hit the target on heating.
*/
// If you want to enable this feature for all your extruder heaters,
// uncomment the 2 defines below:
// Parameters for all extruder heaters /**
//#define THERMAL_RUNAWAY_PROTECTION_PERIOD 40 //in seconds * Thermal Runaway Protection protects your printer from damage and fire if a
//#define THERMAL_RUNAWAY_PROTECTION_HYSTERESIS 4 // in degree Celsius * thermistor falls out or temperature sensors fail in any way.
*
// If you want to enable this feature for your bed heater, * The issue: If a thermistor falls out or a temperature sensor fails,
// uncomment the 2 defines below: * Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
// Parameters for the bed heater *
//#define THERMAL_RUNAWAY_PROTECTION_BED_PERIOD 20 //in seconds * The solution: Once the temperature reaches the target, start observing.
//#define THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS 2 // in degree Celsius * If the temperature stays too far below the target (hysteresis) for too long,
* the firmware will halt as a safety precaution.
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//=========================================================================== //===========================================================================
//============================= Mechanical Settings ========================= //============================= Mechanical Settings =========================
@ -427,17 +407,20 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#define Z_MAX_POS 200 #define Z_MAX_POS 200
//=========================================================================== //===========================================================================
//============================= Filament Runout Sensor ====================== //========================= Filament Runout Sensor ==========================
//=========================================================================== //===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament //#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made. // In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
// It is assumed that when logic high = filament available // It is assumed that when logic high = filament available
// when logic low = filament ran out // when logic low = filament ran out
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned #ifdef FILAMENT_RUNOUT_SENSOR
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined. const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//=========================================================================== //===========================================================================
//============================ Mesh Bed Leveling ============================ //=========================== Manual Bed Leveling ===========================
//=========================================================================== //===========================================================================
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling // #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
@ -458,7 +441,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
//=========================================================================== //===========================================================================
//============================= Bed Auto Leveling =========================== //============================ Bed Auto Leveling ============================
//=========================================================================== //===========================================================================
// @section bedlevel // @section bedlevel

@ -14,14 +14,38 @@
#endif #endif
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control #define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
//// Heating sanity check: /**
// This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature * Thermal Protection parameters
// If the temperature has not increased at the end of that period, the target temperature is set to zero. */
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature #ifdef THERMAL_PROTECTION_HOTENDS
// differ by at least 2x WATCH_TEMP_INCREASE #define THERMAL_PROTECTION_PERIOD 40 // Seconds
//#define WATCH_TEMP_PERIOD 40000 //40 seconds #define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to transpire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
*/
#define WATCH_TEMP_PERIOD 16 // Seconds
#define WATCH_TEMP_INCREASE 4 // Degrees Celsius
#endif
#ifdef THERMAL_PROTECTION_BED
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
#endif
/**
* Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by excuting M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
#ifdef PIDTEMP #ifdef PIDTEMP
// this adds an experimental additional term to the heating power, proportional to the extrusion speed. // this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated. // if Kc is chosen well, the additional required power due to increased melting should be compensated.
@ -376,6 +400,15 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define MAX_CMD_SIZE 96 #define MAX_CMD_SIZE 96
#define BUFSIZE 4 #define BUFSIZE 4
// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK
// @section fwretract // @section fwretract
// Firmware based and LCD controlled retract // Firmware based and LCD controlled retract

@ -0,0 +1,799 @@
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
#include "boards.h"
//===========================================================================
//============================= Getting Started =============================
//===========================================================================
/*
Here are some standard links for getting your machine calibrated:
* http://reprap.org/wiki/Calibration
* http://youtu.be/wAL9d7FgInk
* http://calculator.josefprusa.cz
* http://reprap.org/wiki/Triffid_Hunter%27s_Calibration_Guide
* http://www.thingiverse.com/thing:5573
* https://sites.google.com/site/repraplogphase/calibration-of-your-reprap
* http://www.thingiverse.com/thing:298812
*/
// This configuration file contains the basic settings.
// Advanced settings can be found in Configuration_adv.h
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
//===========================================================================
//============================= DELTA Printer ===============================
//===========================================================================
// For a Delta printer replace the configuration files with the files in the
// example_configurations/delta directory.
//
//===========================================================================
//============================= SCARA Printer ===============================
//===========================================================================
// For a Scara printer replace the configuration files with the files in the
// example_configurations/SCARA directory.
//
// @section info
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_VERSION "1.0.3 dev"
#define STRING_VERSION_CONFIG_H __DATE__ " " __TIME__ // build date and time
#define STRING_CONFIG_H_AUTHOR "RepRapWorld.com" // Who made the changes.
#define STRING_SPLASH_LINE1 "v" STRING_VERSION // will be shown during bootup in line 1
//#define STRING_SPLASH_LINE2 STRING_VERSION_CONFIG_H // will be shown during bootup in line2
// @section machine
// SERIAL_PORT selects which serial port should be used for communication with the host.
// This allows the connection of wireless adapters (for instance) to non-default port pins.
// Serial port 0 is still used by the Arduino bootloader regardless of this setting.
// :[0,1,2,3,4,5,6,7]
#define SERIAL_PORT 0
// This determines the communication speed of the printer
// :[2400,9600,19200,38400,57600,115200,250000]
#define BAUDRATE 250000
// This enables the serial port associated to the Bluetooth interface
//#define BTENABLED // Enable BT interface on AT90USB devices
// The following define selects which electronics board you have.
// Please choose the name from boards.h that matches your setup
#ifndef MOTHERBOARD
#define MOTHERBOARD BOARD_MEGATRONICS_3
#endif
// Optional custom name for your RepStrap or other custom machine
// Displayed in the LCD "Ready" message
// #define CUSTOM_MACHINE_NAME "3D Printer"
// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)
// You can use an online service to generate a random UUID. (eg http://www.uuidgenerator.net/version4)
// #define MACHINE_UUID "00000000-0000-0000-0000-000000000000"
// This defines the number of extruders
// :[1,2,3,4]
#define EXTRUDERS 1
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
//#define EXTRUDER_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
//#define EXTRUDER_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis
//// The following define selects which power supply you have. Please choose the one that matches your setup
// 1 = ATX
// 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)
// :{1:'ATX',2:'X-Box 360'}
#define POWER_SUPPLY 1
// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it.
// #define PS_DEFAULT_OFF
// @section temperature
//===========================================================================
//============================= Thermal Settings ============================
//===========================================================================
//
//--NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
//
//// Temperature sensor settings:
// -2 is thermocouple with MAX6675 (only for sensor 0)
// -1 is thermocouple with AD595
// 0 is not used
// 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
// 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
// 3 is Mendel-parts thermistor (4.7k pullup)
// 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
// 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
// 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
// 7 is 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
// 71 is 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
// 11 is 100k beta 3950 1% thermistor (4.7k pullup)
// 12 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)
// 13 is 100k Hisens 3950 1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE"
// 20 is the PT100 circuit found in the Ultimainboard V2.x
// 60 is 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
//
// 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
// (but gives greater accuracy and more stable PID)
// 51 is 100k thermistor - EPCOS (1k pullup)
// 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
//
// 1047 is Pt1000 with 4k7 pullup
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard)
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
// Use it for Testing or Development purposes. NEVER for production machine.
// #define DUMMY_THERMISTOR_998_VALUE 25
// #define DUMMY_THERMISTOR_999_VALUE 100
// :{ '0': "Not used", '4': "10k !! do not use for a hotend. Bad resolution at high temp. !!", '1': "100k / 4.7k - EPCOS", '51': "100k / 1k - EPCOS", '6': "100k / 4.7k EPCOS - Not as accurate as Table 1", '5': "100K / 4.7k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '7': "100k / 4.7k Honeywell 135-104LAG-J01", '71': "100k / 4.7k Honeywell 135-104LAF-J01", '8': "100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT", '9': "100k / 4.7k GE Sensing AL03006-58.2K-97-G1", '10': "100k / 4.7k RS 198-961", '11': "100k / 4.7k beta 3950 1%", '12': "100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT (calibrated for Makibox hot bed)", '13': "100k Hisens 3950 1% up to 300°C for hotend 'Simple ONE ' & hotend 'All In ONE'", '60': "100k Maker's Tool Works Kapton Bed Thermistor beta=3950", '55': "100k / 1k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '2': "200k / 4.7k - ATC Semitec 204GT-2", '52': "200k / 1k - ATC Semitec 204GT-2", '-2': "Thermocouple + MAX6675 (only for sensor 0)", '-1': "Thermocouple + AD595", '3': "Mendel-parts / 4.7k", '1047': "Pt1000 / 4.7k", '1010': "Pt1000 / 1k (non standard)", '20': "PT100 (Ultimainboard V2.x)", '147': "Pt100 / 4.7k", '110': "Pt100 / 1k (non-standard)", '998': "Dummy 1", '999': "Dummy 2" }
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_BED 1
// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
//#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10
// Actual temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 10 // (seconds)
#define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.
// The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken.
// Otherwise this would lead to the heater being powered on all the time.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define BED_MAXTEMP 150
// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
// average current. The value should be an integer and the heat bed will be turned on for 1 interval of
// HEATER_BED_DUTY_CYCLE_DIVIDER intervals.
//#define HEATER_BED_DUTY_CYCLE_DIVIDER 4
// If you want the M105 heater power reported in watts, define the BED_WATTS, and (shared for all extruders) EXTRUDER_WATTS
//#define EXTRUDER_WATTS (12.0*12.0/6.7) // P=I^2/R
//#define BED_WATTS (12.0*12.0/1.1) // P=I^2/R
//===========================================================================
//============================= PID Settings ================================
//===========================================================================
// PID Tuning Guide here: http://reprap.org/wiki/PID_Tuning
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#ifdef PIDTEMP
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
//#define PID_PARAMS_PER_EXTRUDER // Uses separate PID parameters for each extruder (useful for mismatched extruders)
// Set/get with gcode: M301 E[extruder number, 0-2]
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker
#define DEFAULT_Kp 22.2
#define DEFAULT_Ki 1.08
#define DEFAULT_Kd 114
// MakerGear
// #define DEFAULT_Kp 7.0
// #define DEFAULT_Ki 0.1
// #define DEFAULT_Kd 12
// Mendel Parts V9 on 12V
// #define DEFAULT_Kp 63.0
// #define DEFAULT_Ki 2.25
// #define DEFAULT_Kd 440
#endif // PIDTEMP
//===========================================================================
//============================= PID > Bed Temperature Control ===============
//===========================================================================
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
//
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED
//
//#define BED_LIMIT_SWITCHING
// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
//#define PID_BED_DEBUG // Sends debug data to the serial port.
#ifdef PIDTEMPBED
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 10.00
#define DEFAULT_bedKi .023
#define DEFAULT_bedKd 305.4
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
// #define DEFAULT_bedKp 97.1
// #define DEFAULT_bedKi 1.41
// #define DEFAULT_bedKd 1675.16
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED
// @section extruder
//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
//can be software-disabled for whatever purposes by
#define PREVENT_DANGEROUS_EXTRUDE
//if PREVENT_DANGEROUS_EXTRUDE is on, you can still disable (uncomment) very long bits of extrusion separately.
#define PREVENT_LENGTHY_EXTRUDE
#define EXTRUDE_MINTEMP 170
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//===========================================================================
//======================== Thermal Runaway Protection =======================
//===========================================================================
/**
* Thermal Runaway Protection protects your printer from damage and fire if a
* thermistor falls out or temperature sensors fail in any way.
*
* The issue: If a thermistor falls out or a temperature sensor fails,
* Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
*
* The solution: Once the temperature reaches the target, start observing.
* If the temperature stays too far below the target (hysteresis) for too long,
* the firmware will halt as a safety precaution.
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//===========================================================================
//============================= Mechanical Settings =========================
//===========================================================================
// @section machine
// Uncomment this option to enable CoreXY kinematics
// #define COREXY
// Enable this option for Toshiba steppers
// #define CONFIG_STEPPERS_TOSHIBA
// @section homing
// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
#ifndef ENDSTOPPULLUPS
// fine endstop settings: Individual pullups. will be ignored if ENDSTOPPULLUPS is defined
// #define ENDSTOPPULLUP_XMAX
// #define ENDSTOPPULLUP_YMAX
// #define ENDSTOPPULLUP_ZMAX
// #define ENDSTOPPULLUP_XMIN
// #define ENDSTOPPULLUP_YMIN
// #define ENDSTOPPULLUP_ZMIN
// #define ENDSTOPPULLUP_ZPROBE
#endif
// Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup).
const bool X_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Y_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Z_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool X_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Y_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
//#define DISABLE_MAX_ENDSTOPS
//#define DISABLE_MIN_ENDSTOPS
// @section machine
// If you want to enable the Z Probe pin, but disable its use, uncomment the line below.
// This only affects a Z Probe Endstop if you have separate Z min endstop as well and have
// activated Z_PROBE_ENDSTOP below. If you are using the Z Min endstop on your Z Probe,
// this has no effect.
//#define DISABLE_Z_PROBE_ENDSTOP
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
// :{0:'Low',1:'High'}
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders
// Disables axis when it's not being used.
// WARNING: When motors turn off there is a chance of losing position accuracy!
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
// @section extruder
#define DISABLE_E false // For all extruders
#define DISABLE_INACTIVE_EXTRUDER true //disable only inactive extruders and keep active extruder enabled
// @section machine
// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.
#define INVERT_X_DIR false
#define INVERT_Y_DIR true
#define INVERT_Z_DIR false
// @section extruder
// For direct drive extruder v9 set to true, for geared extruder set to false.
#define INVERT_E0_DIR false
#define INVERT_E1_DIR false
#define INVERT_E2_DIR false
#define INVERT_E3_DIR false
// @section homing
// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
// :[-1,1]
#define X_HOME_DIR -1
#define Y_HOME_DIR -1
#define Z_HOME_DIR -1
#define min_software_endstops true // If true, axis won't move to coordinates less than HOME_POS.
#define max_software_endstops true // If true, axis won't move to coordinates greater than the defined lengths below.
// @section machine
// Travel limits after homing (units are in mm)
#define X_MIN_POS 0
#define Y_MIN_POS 0
#define Z_MIN_POS 0
#define X_MAX_POS 200
#define Y_MAX_POS 200
#define Z_MAX_POS 200
//===========================================================================
//========================= Filament Runout Sensor ==========================
//===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
// It is assumed that when logic high = filament available
// when logic low = filament ran out
#ifdef FILAMENT_RUNOUT_SENSOR
const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//=========================== Manual Bed Leveling ===========================
//===========================================================================
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
// #define MESH_BED_LEVELING // Enable mesh bed leveling
#ifdef MANUAL_BED_LEVELING
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis
#endif // MANUAL_BED_LEVELING
#ifdef MESH_BED_LEVELING
#define MESH_MIN_X 10
#define MESH_MAX_X (X_MAX_POS - MESH_MIN_X)
#define MESH_MIN_Y 10
#define MESH_MAX_Y (Y_MAX_POS - MESH_MIN_Y)
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited
#define MESH_NUM_Y_POINTS 3
#define MESH_HOME_SEARCH_Z 4 // Z after Home, bed somewhere below but above 0.0
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Bed Auto Leveling ============================
//===========================================================================
// @section bedlevel
//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)
#define Z_PROBE_REPEATABILITY_TEST // If not commented out, Z-Probe Repeatability test will be included if Auto Bed Leveling is Enabled.
#ifdef ENABLE_AUTO_BED_LEVELING
// There are 2 different ways to specify probing locations
//
// - "grid" mode
// Probe several points in a rectangular grid.
// You specify the rectangle and the density of sample points.
// This mode is preferred because there are more measurements.
//
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You specify the XY coordinates of all 3 points.
// Enable this to sample the bed in a grid (least squares solution)
// Note: this feature generates 10KB extra code size
#define AUTO_BED_LEVELING_GRID
#ifdef AUTO_BED_LEVELING_GRID
#define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170
#define FRONT_PROBE_BED_POSITION 20
#define BACK_PROBE_BED_POSITION 170
#define MIN_PROBE_EDGE 10 // The probe square sides can be no smaller than this
// Set the number of grid points per dimension
// You probably don't need more than 3 (squared=9)
#define AUTO_BED_LEVELING_GRID_POINTS 2
#else // !AUTO_BED_LEVELING_GRID
// Arbitrary points to probe. A simple cross-product
// is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15
#define ABL_PROBE_PT_2_Y 20
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif // AUTO_BED_LEVELING_GRID
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
// X and Y offsets must be integers
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // Probe on: -left +right
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // Probe on: -front +behind
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case
#define XY_TRAVEL_SPEED 8000 // X and Y axis travel speed between probes, in mm/min
#define Z_RAISE_BEFORE_PROBING 15 //How much the extruder will be raised before traveling to the first probing point.
#define Z_RAISE_BETWEEN_PROBINGS 5 //How much the extruder will be raised when traveling from between next probing points
#define Z_RAISE_AFTER_PROBING 15 //How much the extruder will be raised after the last probing point.
// #define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10" //These commands will be executed in the end of G29 routine.
//Useful to retract a deployable probe.
//#define Z_PROBE_SLED // turn on if you have a z-probe mounted on a sled like those designed by Charles Bell
//#define SLED_DOCKING_OFFSET 5 // the extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.
//If defined, the Probe servo will be turned on only during movement and then turned off to avoid jerk
//The value is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it.
// You MUST HAVE the SERVO_ENDSTOPS defined to use here a value higher than zero otherwise your code will not compile.
// #define PROBE_SERVO_DEACTIVATION_DELAY 300
//If you have enabled the Bed Auto Leveling and are using the same Z Probe for Z Homing,
//it is highly recommended you let this Z_SAFE_HOMING enabled!!!
#define Z_SAFE_HOMING // This feature is meant to avoid Z homing with probe outside the bed area.
// When defined, it will:
// - Allow Z homing only after X and Y homing AND stepper drivers still enabled
// - If stepper drivers timeout, it will need X and Y homing again before Z homing
// - Position the probe in a defined XY point before Z Homing when homing all axis (G28)
// - Block Z homing only when the probe is outside bed area.
#ifdef Z_SAFE_HOMING
#define Z_SAFE_HOMING_X_POINT (X_MAX_LENGTH/2) // X point for Z homing when homing all axis (G28)
#define Z_SAFE_HOMING_Y_POINT (Y_MAX_LENGTH/2) // Y point for Z homing when homing all axis (G28)
#endif
// Support for a dedicated Z PROBE endstop separate from the Z MIN endstop.
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
// D32 is currently selected in the RAMPS 1.3/1.4 pin file. All other boards will need changes to the respective pins_XXXXX.h file.
// WARNING: Setting the wrong pin may have unexpected and potentially disastrous outcomes. Use with caution and do your homework.
//#define Z_PROBE_ENDSTOP
#endif // ENABLE_AUTO_BED_LEVELING
// @section homing
// The position of the homing switches
//#define MANUAL_HOME_POSITIONS // If defined, MANUAL_*_HOME_POS below will be used
//#define BED_CENTER_AT_0_0 // If defined, the center of the bed is at (X=0, Y=0)
// Manual homing switch locations:
// For deltabots this means top and center of the Cartesian print volume.
#ifdef MANUAL_HOME_POSITIONS
#define MANUAL_X_HOME_POS 0
#define MANUAL_Y_HOME_POS 0
#define MANUAL_Z_HOME_POS 0
//#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.
#endif
// @section movement
/**
* MOVEMENT SETTINGS
*/
#define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0} // set the homing speeds (mm/min)
// default settings
#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402*2,78.7402*2,5120.00,760*1*1.5} // default steps per unit for Ultimaker
#define DEFAULT_MAX_FEEDRATE {300, 300, 5, 25} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {3000,3000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for Skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 3000 // E acceleration in mm/s^2 for retracts
#define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration in mm/s^2 for travel (non printing) moves
// The speed change that does not require acceleration (i.e. the software might assume it can be done instantaneously)
#define DEFAULT_XYJERK 20.0 // (mm/sec)
#define DEFAULT_ZJERK 0.4 // (mm/sec)
#define DEFAULT_EJERK 5.0 // (mm/sec)
//=============================================================================
//============================= Additional Features ===========================
//=============================================================================
// @section more
// Custom M code points
#define CUSTOM_M_CODES
#ifdef CUSTOM_M_CODES
#ifdef ENABLE_AUTO_BED_LEVELING
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
#define Z_PROBE_OFFSET_RANGE_MIN -20
#define Z_PROBE_OFFSET_RANGE_MAX 20
#endif
#endif
// @section extras
// EEPROM
// The microcontroller can store settings in the EEPROM, e.g. max velocity...
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//define this to enable EEPROM support
//#define EEPROM_SETTINGS
#ifdef EEPROM_SETTINGS
// To disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
#define EEPROM_CHITCHAT // please keep turned on if you can.
#endif
// @section temperature
// Preheat Constants
#define PLA_PREHEAT_HOTEND_TEMP 180
#define PLA_PREHEAT_HPB_TEMP 70
#define PLA_PREHEAT_FAN_SPEED 0 // Insert Value between 0 and 255
#define ABS_PREHEAT_HOTEND_TEMP 240
#define ABS_PREHEAT_HPB_TEMP 110
#define ABS_PREHEAT_FAN_SPEED 0 // Insert Value between 0 and 255
//==============================LCD and SD support=============================
// @section lcd
// Define your display language below. Replace (en) with your language code and uncomment.
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu, kana, kana_utf8, cn, test
// See also language.h
#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
// Choose ONE of these 3 charsets. This has to match your hardware. Ignored for full graphic display.
// To find out what type you have - compile with (test) - upload - click to get the menu. You'll see two typical lines from the upper half of the charset.
// See also documentation/LCDLanguageFont.md
#define DISPLAY_CHARSET_HD44780_JAPAN // this is the most common hardware
//#define DISPLAY_CHARSET_HD44780_WESTERN
//#define DISPLAY_CHARSET_HD44780_CYRILLIC
#define ULTRA_LCD //general LCD support, also 16x2
//#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
#define SD_CHECK_AND_RETRY // Use CRC checks and retries on the SD communication
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
//#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
//#define ULTIPANEL //the UltiPanel as on Thingiverse
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
// 0 to disable buzzer feedback. Test with M300 S<frequency Hz> P<duration ms>
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL
// The Panucatt Devices Viki 2.0 and mini Viki with Graphic LCD
// http://panucatt.com
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define VIKI2
//#define miniVIKI
// The RepRapDiscount Smart Controller (white PCB)
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//#define REPRAP_DISCOUNT_SMART_CONTROLLER
// The GADGETS3D G3D LCD/SD Controller (blue PCB)
// http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel
//#define G3D_PANEL
// The RepRapDiscount FULL GRAPHIC Smart Controller (quadratic white PCB)
// http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller
//
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER
// The RepRapWorld REPRAPWORLD_KEYPAD v1.1
// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626
#define REPRAPWORLD_KEYPAD
#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // how much should be moved when a key is pressed, eg 10.0 means 10mm per click
// The Elefu RA Board Control Panel
// http://www.elefu.com/index.php?route=product/product&product_id=53
// REMEMBER TO INSTALL LiquidCrystal_I2C.h in your ARDUINO library folder: https://github.com/kiyoshigawa/LiquidCrystal_I2C
//#define RA_CONTROL_PANEL
/**
* I2C Panels
*/
//#define LCD_I2C_SAINSMART_YWROBOT
// PANELOLU2 LCD with status LEDs, separate encoder and click inputs
//#define LCD_I2C_PANELOLU2
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// Shift register panels
// ---------------------
// 2 wire Non-latching LCD SR from:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
//#define SAV_3DLCD
// @section extras
// Increase the FAN pwm frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN
// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not as annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM
// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
#define SOFT_PWM_SCALE 0
// Temperature status LEDs that display the hotend and bet temperature.
// If all hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.
// Otherwise the RED led is on. There is 1C hysteresis.
//#define TEMP_STAT_LEDS
// M240 Triggers a camera by emulating a Canon RC-1 Remote
// Data from: http://www.doc-diy.net/photo/rc-1_hacked/
// #define PHOTOGRAPH_PIN 23
// SkeinForge sends the wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX
// Support for the BariCUDA Paste Extruder.
//#define BARICUDA
//define BlinkM/CyzRgb Support
//#define BLINKM
/*********************************************************************\
* R/C SERVO support
* Sponsored by TrinityLabs, Reworked by codexmas
**********************************************************************/
// Number of servos
//
// If you select a configuration below, this will receive a default value and does not need to be set manually
// set it manually if you have more servos than extruders and wish to manually control some
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command
// Servo Endstops
//
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
//#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 70,0} // X,Y,Z Axis Extend and Retract angles
/**********************************************************************\
* Support for a filament diameter sensor
* Also allows adjustment of diameter at print time (vs at slicing)
* Single extruder only at this point (extruder 0)
*
* Motherboards
* 34 - RAMPS1.4 - uses Analog input 5 on the AUX2 connector
* 81 - Printrboard - Uses Analog input 2 on the Exp1 connector (version B,C,D,E)
* 301 - Rambo - uses Analog input 3
* Note may require analog pins to be defined for different motherboards
**********************************************************************/
// Uncomment below to enable
//#define FILAMENT_SENSOR
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
#define DEFAULT_NOMINAL_FILAMENT_DIA 3.0 //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software. Used for sensor reading validation
#define MEASURED_UPPER_LIMIT 3.3 //upper limit factor used for sensor reading validation in mm
#define MEASURED_LOWER_LIMIT 1.9 //lower limit factor for sensor reading validation in mm
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
//defines used in the code
#define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA //set measured to nominal initially
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"
#endif //CONFIGURATION_H

@ -30,7 +30,7 @@ Here are some standard links for getting your machine calibrated:
// You might need Z-Min endstop on SCARA-Printer to use this feature. Actually untested! // You might need Z-Min endstop on SCARA-Printer to use this feature. Actually untested!
// Uncomment to use Morgan scara mode // Uncomment to use Morgan scara mode
#define SCARA #define SCARA
#define scara_segments_per_second 200 //careful, two much will decrease performance... #define SCARA_SEGMENTS_PER_SECOND 200 // If movement is choppy try lowering this value
// Length of inner support arm // Length of inner support arm
#define Linkage_1 150 //mm Preprocessor cannot handle decimal point... #define Linkage_1 150 //mm Preprocessor cannot handle decimal point...
// Length of outer support arm Measure arm lengths precisely and enter // Length of outer support arm Measure arm lengths precisely and enter
@ -288,44 +288,24 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances. #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//=========================================================================== //===========================================================================
//============================= Thermal Runaway Protection ================== //======================== Thermal Runaway Protection =======================
//=========================================================================== //===========================================================================
/*
This is a feature to protect your printer from burn up in flames if it has
a thermistor coming off place (this happened to a friend of mine recently and
motivated me writing this feature).
The issue: If a thermistor come off, it will read a lower temperature than actual.
The system will turn the heater on forever, burning up the filament and anything
else around.
After the temperature reaches the target for the first time, this feature will
start measuring for how long the current temperature stays below the target
minus _HYSTERESIS (set_temperature - THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).
If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to be on the
safe side, the system will he halt.
Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem if
your extruder heater takes 2 minutes to hit the target on heating.
*/
// If you want to enable this feature for all your extruder heaters,
// uncomment the 2 defines below:
// Parameters for all extruder heaters
//#define THERMAL_RUNAWAY_PROTECTION_PERIOD 40 //in seconds
//#define THERMAL_RUNAWAY_PROTECTION_HYSTERESIS 4 // in degree Celsius
// If you want to enable this feature for your bed heater, /**
// uncomment the 2 defines below: * Thermal Runaway Protection protects your printer from damage and fire if a
* thermistor falls out or temperature sensors fail in any way.
// Parameters for the bed heater *
//#define THERMAL_RUNAWAY_PROTECTION_BED_PERIOD 20 //in seconds * The issue: If a thermistor falls out or a temperature sensor fails,
//#define THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS 2 // in degree Celsius * Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
*
* The solution: Once the temperature reaches the target, start observing.
* If the temperature stays too far below the target (hysteresis) for too long,
* the firmware will halt as a safety precaution.
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//=========================================================================== //===========================================================================
//============================= Mechanical Settings ========================= //============================= Mechanical Settings =========================
@ -402,17 +382,20 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#define Z_MAX_POS 225 #define Z_MAX_POS 225
//=========================================================================== //===========================================================================
//============================= Filament Runout Sensor ====================== //========================= Filament Runout Sensor ==========================
//=========================================================================== //===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament //#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made. // In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
// It is assumed that when logic high = filament available // It is assumed that when logic high = filament available
// when logic low = filament ran out // when logic low = filament ran out
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned #ifdef FILAMENT_RUNOUT_SENSOR
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined. const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//=========================================================================== //===========================================================================
//============================ Manual Bed Leveling ========================== //=========================== Manual Bed Leveling ===========================
//=========================================================================== //===========================================================================
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling // #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
@ -433,7 +416,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
//=========================================================================== //===========================================================================
//============================= Bed Auto Leveling =========================== //============================ Bed Auto Leveling ============================
//=========================================================================== //===========================================================================
//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line) //#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)

@ -14,14 +14,38 @@
#endif #endif
#define BED_CHECK_INTERVAL 3000 //ms between checks in bang-bang control #define BED_CHECK_INTERVAL 3000 //ms between checks in bang-bang control
//// Heating sanity check: /**
// This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature * Thermal Protection parameters
// If the temperature has not increased at the end of that period, the target temperature is set to zero. */
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature #ifdef THERMAL_PROTECTION_HOTENDS
// differ by at least 2x WATCH_TEMP_INCREASE #define THERMAL_PROTECTION_PERIOD 40 // Seconds
//#define WATCH_TEMP_PERIOD 40000 //40 seconds #define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to transpire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
*/
#define WATCH_TEMP_PERIOD 16 // Seconds
#define WATCH_TEMP_INCREASE 4 // Degrees Celsius
#endif
#ifdef THERMAL_PROTECTION_BED
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
#endif
/**
* Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by excuting M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
#ifdef PIDTEMP #ifdef PIDTEMP
// this adds an experimental additional term to the heating power, proportional to the extrusion speed. // this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated. // if Kc is chosen well, the additional required power due to increased melting should be compensated.
@ -376,6 +400,15 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define MAX_CMD_SIZE 96 #define MAX_CMD_SIZE 96
#define BUFSIZE 4 #define BUFSIZE 4
// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK
// @section fwretract // @section fwretract
// Firmware based and LCD controlled retract // Firmware based and LCD controlled retract

@ -256,44 +256,24 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances. #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//=========================================================================== //===========================================================================
//============================= Thermal Runaway Protection ================== //======================== Thermal Runaway Protection =======================
//=========================================================================== //===========================================================================
/*
This is a feature to protect your printer from burn up in flames if it has
a thermistor coming off place (this happened to a friend of mine recently and
motivated me writing this feature).
The issue: If a thermistor come off, it will read a lower temperature than actual.
The system will turn the heater on forever, burning up the filament and anything
else around.
After the temperature reaches the target for the first time, this feature will
start measuring for how long the current temperature stays below the target
minus _HYSTERESIS (set_temperature - THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).
If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to be on the
safe side, the system will he halt.
Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem if
your extruder heater takes 2 minutes to hit the target on heating.
*/
// If you want to enable this feature for all your extruder heaters,
// uncomment the 2 defines below:
// Parameters for all extruder heaters /**
//#define THERMAL_RUNAWAY_PROTECTION_PERIOD 40 //in seconds * Thermal Runaway Protection protects your printer from damage and fire if a
//#define THERMAL_RUNAWAY_PROTECTION_HYSTERESIS 4 // in degree Celsius * thermistor falls out or temperature sensors fail in any way.
*
// If you want to enable this feature for your bed heater, * The issue: If a thermistor falls out or a temperature sensor fails,
// uncomment the 2 defines below: * Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
// Parameters for the bed heater *
//#define THERMAL_RUNAWAY_PROTECTION_BED_PERIOD 20 //in seconds * The solution: Once the temperature reaches the target, start observing.
//#define THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS 2 // in degree Celsius * If the temperature stays too far below the target (hysteresis) for too long,
* the firmware will halt as a safety precaution.
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//=========================================================================== //===========================================================================
//============================= Mechanical Settings ========================= //============================= Mechanical Settings =========================
@ -370,17 +350,20 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
#define Z_MAX_POS 200 #define Z_MAX_POS 200
//=========================================================================== //===========================================================================
//============================= Filament Runout Sensor ====================== //========================= Filament Runout Sensor ==========================
//=========================================================================== //===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament //#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made. // In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
// It is assumed that when logic high = filament available // It is assumed that when logic high = filament available
// when logic low = filament ran out // when logic low = filament ran out
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned #ifdef FILAMENT_RUNOUT_SENSOR
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined. const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//=========================================================================== //===========================================================================
//============================ Manual Bed Leveling ========================== //=========================== Manual Bed Leveling ===========================
//=========================================================================== //===========================================================================
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling // #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
@ -401,7 +384,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
//=========================================================================== //===========================================================================
//============================= Bed Auto Leveling =========================== //============================ Bed Auto Leveling ============================
//=========================================================================== //===========================================================================
//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line) //#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)

@ -14,14 +14,38 @@
#endif #endif
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control #define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
//// Heating sanity check: /**
// This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature * Thermal Protection parameters
// If the temperature has not increased at the end of that period, the target temperature is set to zero. */
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature #ifdef THERMAL_PROTECTION_HOTENDS
// differ by at least 2x WATCH_TEMP_INCREASE #define THERMAL_PROTECTION_PERIOD 40 // Seconds
//#define WATCH_TEMP_PERIOD 40000 //40 seconds #define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to transpire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
*/
#define WATCH_TEMP_PERIOD 16 // Seconds
#define WATCH_TEMP_INCREASE 4 // Degrees Celsius
#endif
#ifdef THERMAL_PROTECTION_BED
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
#endif
/**
* Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by excuting M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
#ifdef PIDTEMP #ifdef PIDTEMP
// this adds an experimental additional term to the heating power, proportional to the extrusion speed. // this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated. // if Kc is chosen well, the additional required power due to increased melting should be compensated.
@ -374,7 +398,16 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//The ASCII buffer for receiving from the serial: //The ASCII buffer for receiving from the serial:
#define MAX_CMD_SIZE 96 #define MAX_CMD_SIZE 96
#define BUFSIZE 5 #define BUFSIZE 4
// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK
// @section fwretract // @section fwretract

@ -0,0 +1,803 @@
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
#include "boards.h"
//===========================================================================
//============================= Getting Started =============================
//===========================================================================
/*
Here are some standard links for getting your machine calibrated:
* http://reprap.org/wiki/Calibration
* http://youtu.be/wAL9d7FgInk
* http://calculator.josefprusa.cz
* http://reprap.org/wiki/Triffid_Hunter%27s_Calibration_Guide
* http://www.thingiverse.com/thing:5573
* https://sites.google.com/site/repraplogphase/calibration-of-your-reprap
* http://www.thingiverse.com/thing:298812
*/
// This configuration file contains the basic settings.
// Advanced settings can be found in Configuration_adv.h
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
//===========================================================================
//============================= DELTA Printer ===============================
//===========================================================================
// For a Delta printer replace the configuration files with the files in the
// example_configurations/delta directory.
//
//===========================================================================
//============================= SCARA Printer ===============================
//===========================================================================
// For a Delta printer replace the configuration files with the files in the
// example_configurations/SCARA directory.
//
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_VERSION "1.0.3 dev"
#define STRING_VERSION_CONFIG_H __DATE__ " " __TIME__ // build date and time
#define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes.
#define STRING_SPLASH_LINE1 "v" STRING_VERSION // will be shown during bootup in line 1
//#define STRING_SPLASH_LINE2 STRING_VERSION_CONFIG_H // will be shown during bootup in line2
// SERIAL_PORT selects which serial port should be used for communication with the host.
// This allows the connection of wireless adapters (for instance) to non-default port pins.
// Serial port 0 is still used by the Arduino bootloader regardless of this setting.
#define SERIAL_PORT 0
// This determines the communication speed of the printer
#define BAUDRATE 250000
// This enables the serial port associated to the Bluetooth interface
//#define BTENABLED // Enable BT interface on AT90USB devices
// The following define selects which electronics board you have.
// Please choose the name from boards.h that matches your setup
#ifndef MOTHERBOARD
#define MOTHERBOARD BOARD_RUMBA
#endif
// Optional custom name for your RepStrap or other custom machine
// Displayed in the LCD "Ready" message
#define CUSTOM_MACHINE_NAME "BI V2.5"
// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)
// You can use an online service to generate a random UUID. (eg http://www.uuidgenerator.net/version4)
// #define MACHINE_UUID "00000000-0000-0000-0000-000000000000"
// This defines the number of extruders
#define EXTRUDERS 2
//// The following define selects which power supply you have. Please choose the one that matches your setup
// 1 = ATX
// 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)
#define POWER_SUPPLY 1
// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it.
// #define PS_DEFAULT_OFF
//===========================================================================
//============================== Delta Settings =============================
//===========================================================================
// Enable DELTA kinematics and most of the default configuration for Deltas
#define DELTA
// Make delta curves from many straight lines (linear interpolation).
// This is a trade-off between visible corners (not enough segments)
// and processor overload (too many expensive sqrt calls).
#define DELTA_SEGMENTS_PER_SECOND 100
// NOTE NB all values for DELTA_* values MUST be floating point, so always have a decimal point in them
// Center-to-center distance of the holes in the diagonal push rods.
#define DELTA_DIAGONAL_ROD 440.0 // mm
// Horizontal offset from middle of printer to smooth rod center.
#define DELTA_SMOOTH_ROD_OFFSET 330.0 // mm
// Horizontal offset of the universal joints on the end effector.
#define DELTA_EFFECTOR_OFFSET 50.0 // mm
// Horizontal offset of the universal joints on the carriages.
#define DELTA_CARRIAGE_OFFSET 20.0 // mm
// Horizontal distance bridged by diagonal push rods when effector is centered.
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
#define DELTA_PRINTABLE_RADIUS 160
//===========================================================================
//============================= Thermal Settings ============================
//===========================================================================
//
//--NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
//
//// Temperature sensor settings:
// -2 is thermocouple with MAX6675 (only for sensor 0)
// -1 is thermocouple with AD595
// 0 is not used
// 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
// 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
// 3 is Mendel-parts thermistor (4.7k pullup)
// 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
// 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
// 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
// 7 is 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
// 71 is 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
// 11 is 100k beta 3950 1% thermistor (4.7k pullup)
// 12 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)
// 13 is 100k Hisens 3950 1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE"
// 20 is the PT100 circuit found in the Ultimainboard V2.x
// 60 is 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
//
// 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
// (but gives greater accuracy and more stable PID)
// 51 is 100k thermistor - EPCOS (1k pullup)
// 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
//
// 1047 is Pt1000 with 4k7 pullup
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard)
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
// Use it for Testing or Development purposes. NEVER for production machine.
// #define DUMMY_THERMISTOR_998_VALUE 25
// #define DUMMY_THERMISTOR_999_VALUE 100
// :{ '0': "Not used", '4': "10k !! do not use for a hotend. Bad resolution at high temp. !!", '1': "100k / 4.7k - EPCOS", '51': "100k / 1k - EPCOS", '6': "100k / 4.7k EPCOS - Not as accurate as Table 1", '5': "100K / 4.7k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '7': "100k / 4.7k Honeywell 135-104LAG-J01", '71': "100k / 4.7k Honeywell 135-104LAF-J01", '8': "100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT", '9': "100k / 4.7k GE Sensing AL03006-58.2K-97-G1", '10': "100k / 4.7k RS 198-961", '11': "100k / 4.7k beta 3950 1%", '12': "100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT (calibrated for Makibox hot bed)", '13': "100k Hisens 3950 1% up to 300°C for hotend 'Simple ONE ' & hotend 'All In ONE'", '60': "100k Maker's Tool Works Kapton Bed Thermistor beta=3950", '55': "100k / 1k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '2': "200k / 4.7k - ATC Semitec 204GT-2", '52': "200k / 1k - ATC Semitec 204GT-2", '-2': "Thermocouple + MAX6675 (only for sensor 0)", '-1': "Thermocouple + AD595", '3': "Mendel-parts / 4.7k", '1047': "Pt1000 / 4.7k", '1010': "Pt1000 / 1k (non standard)", '20': "PT100 (Ultimainboard V2.x)", '147': "Pt100 / 4.7k", '110': "Pt100 / 1k (non-standard)", '998': "Dummy 1", '999': "Dummy 2" }
#define TEMP_SENSOR_0 5
#define TEMP_SENSOR_1 5
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_BED 1
// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
//#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10
// Actual temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 10 // (seconds)
#define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.
// The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken.
// Otherwise this would lead to the heater being powered on all the time.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define BED_MAXTEMP 150
// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
// average current. The value should be an integer and the heat bed will be turned on for 1 interval of
// HEATER_BED_DUTY_CYCLE_DIVIDER intervals.
//#define HEATER_BED_DUTY_CYCLE_DIVIDER 4
// If you want the M105 heater power reported in watts, define the BED_WATTS, and (shared for all extruders) EXTRUDER_WATTS
//#define EXTRUDER_WATTS (12.0*12.0/6.7) // P=I^2/R
//#define BED_WATTS (12.0*12.0/1.1) // P=I^2/R
//===========================================================================
//============================= PID Settings ================================
//===========================================================================
// PID Tuning Guide here: http://reprap.org/wiki/PID_Tuning
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#ifdef PIDTEMP
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
//#define PID_PARAMS_PER_EXTRUDER // Uses separate PID parameters for each extruder (useful for mismatched extruders)
// Set/get with gcode: M301 E[extruder number, 0-2]
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker
#define DEFAULT_Kp 22.2
#define DEFAULT_Ki 1.08
#define DEFAULT_Kd 114
// MakerGear
// #define DEFAULT_Kp 7.0
// #define DEFAULT_Ki 0.1
// #define DEFAULT_Kd 12
// Mendel Parts V9 on 12V
// #define DEFAULT_Kp 63.0
// #define DEFAULT_Ki 2.25
// #define DEFAULT_Kd 440
#endif // PIDTEMP
//===========================================================================
//============================= PID > Bed Temperature Control ===============
//===========================================================================
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
//
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED
//
//#define BED_LIMIT_SWITCHING
// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
//#define PID_BED_DEBUG // Sends debug data to the serial port.
#ifdef PIDTEMPBED
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 10.00
#define DEFAULT_bedKi .023
#define DEFAULT_bedKd 305.4
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
// #define DEFAULT_bedKp 97.1
// #define DEFAULT_bedKi 1.41
// #define DEFAULT_bedKd 1675.16
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED
//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
//can be software-disabled for whatever purposes by
#define PREVENT_DANGEROUS_EXTRUDE
//if PREVENT_DANGEROUS_EXTRUDE is on, you can still disable (uncomment) very long bits of extrusion separately.
#define PREVENT_LENGTHY_EXTRUDE
#define EXTRUDE_MINTEMP 170
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//===========================================================================
//======================== Thermal Runaway Protection =======================
//===========================================================================
/**
* Thermal Runaway Protection protects your printer from damage and fire if a
* thermistor falls out or temperature sensors fail in any way.
*
* The issue: If a thermistor falls out or a temperature sensor fails,
* Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
*
* The solution: Once the temperature reaches the target, start observing.
* If the temperature stays too far below the target (hysteresis) for too long,
* the firmware will halt as a safety precaution.
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//===========================================================================
//============================= Mechanical Settings =========================
//===========================================================================
// Uncomment this option to enable CoreXY kinematics
// #define COREXY
// Enable this option for Toshiba steppers
// #define CONFIG_STEPPERS_TOSHIBA
// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
#ifndef ENDSTOPPULLUPS
// fine endstop settings: Individual pullups. will be ignored if ENDSTOPPULLUPS is defined
// #define ENDSTOPPULLUP_XMAX
// #define ENDSTOPPULLUP_YMAX
// #define ENDSTOPPULLUP_ZMAX
// #define ENDSTOPPULLUP_XMIN
// #define ENDSTOPPULLUP_YMIN
// #define ENDSTOPPULLUP_ZMIN
#endif
// Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup).
const bool X_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Y_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool X_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Y_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
//#define DISABLE_MAX_ENDSTOPS
#define DISABLE_MIN_ENDSTOPS // Deltas only use min endstops for probing
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders
// Disables axis when it's not being used.
// WARNING: When motors turn off there is a chance of losing position accuracy!
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
#define DISABLE_E false // For all extruders
#define DISABLE_INACTIVE_EXTRUDER true //disable only inactive extruders and keep active extruder enabled
// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.
#define INVERT_X_DIR false // DELTA does not invert
#define INVERT_Y_DIR false
#define INVERT_Z_DIR false
#define INVERT_E0_DIR false
#define INVERT_E1_DIR false
#define INVERT_E2_DIR false
#define INVERT_E3_DIR false
// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
#define X_HOME_DIR 1 // deltas always home to max
#define Y_HOME_DIR 1
#define Z_HOME_DIR 1
#define min_software_endstops true // If true, axis won't move to coordinates less than HOME_POS.
#define max_software_endstops true // If true, axis won't move to coordinates greater than the defined lengths below.
// Travel limits after homing (units are in mm)
#define X_MIN_POS -DELTA_PRINTABLE_RADIUS
#define Y_MIN_POS -DELTA_PRINTABLE_RADIUS
#define Z_MIN_POS 0
#define X_MAX_POS DELTA_PRINTABLE_RADIUS
#define Y_MAX_POS DELTA_PRINTABLE_RADIUS
#define Z_MAX_POS MANUAL_Z_HOME_POS
//===========================================================================
//========================= Filament Runout Sensor ==========================
//===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
// It is assumed that when logic high = filament available
// when logic low = filament ran out
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
//===========================================================================
//=========================== Manual Bed Leveling ===========================
//===========================================================================
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
// #define MESH_BED_LEVELING // Enable mesh bed leveling
#ifdef MANUAL_BED_LEVELING
#define MBL_Z_STEP 0.025
#endif // MANUAL_BED_LEVELING
#ifdef MESH_BED_LEVELING
#define MESH_MIN_X 10
#define MESH_MAX_X (X_MAX_POS - MESH_MIN_X)
#define MESH_MIN_Y 10
#define MESH_MAX_Y (Y_MAX_POS - MESH_MIN_Y)
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited
#define MESH_NUM_Y_POINTS 3
#define MESH_HOME_SEARCH_Z 4 // Z after Home, bed somewhere below but above 0.0
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Bed Auto Leveling ============================
//===========================================================================
//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)
//#define Z_PROBE_REPEATABILITY_TEST // Z-Probe Repeatability test is not supported in Deltas yet.
#ifdef ENABLE_AUTO_BED_LEVELING
// There are 2 different ways to specify probing locations
//
// - "grid" mode
// Probe several points in a rectangular grid.
// You specify the rectangle and the density of sample points.
// This mode is preferred because there are more measurements.
//
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You specify the XY coordinates of all 3 points.
// Enable this to sample the bed in a grid (least squares solution)
// Note: this feature generates 10KB extra code size
#define AUTO_BED_LEVELING_GRID // Deltas only support grid mode
#ifdef AUTO_BED_LEVELING_GRID
#define DELTA_PROBABLE_RADIUS (DELTA_PRINTABLE_RADIUS - 10)
#define LEFT_PROBE_BED_POSITION -DELTA_PROBABLE_RADIUS
#define RIGHT_PROBE_BED_POSITION DELTA_PROBABLE_RADIUS
#define FRONT_PROBE_BED_POSITION -DELTA_PROBABLE_RADIUS
#define BACK_PROBE_BED_POSITION DELTA_PROBABLE_RADIUS
#define MIN_PROBE_EDGE 10 // The probe square sides can be no smaller than this
// Non-linear bed leveling will be used.
// Compensate by interpolating between the nearest four Z probe values for each point.
// Useful for deltas where the print surface may appear like a bowl or dome shape.
// Works best with ACCURATE_BED_LEVELING_POINTS 5 or higher.
#define AUTO_BED_LEVELING_GRID_POINTS 9
#else // !AUTO_BED_LEVELING_GRID
// Arbitrary points to probe. A simple cross-product
// is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15
#define ABL_PROBE_PT_2_Y 20
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif // AUTO_BED_LEVELING_GRID
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
// X and Y offsets must be integers
#define X_PROBE_OFFSET_FROM_EXTRUDER 0 // Probe on: -left +right
#define Y_PROBE_OFFSET_FROM_EXTRUDER -10 // Probe on: -front +behind
#define Z_PROBE_OFFSET_FROM_EXTRUDER -3.5 // -below (always!)
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case
#define XY_TRAVEL_SPEED 4000 // X and Y axis travel speed between probes, in mm/min
#define Z_RAISE_BEFORE_PROBING 15 //How much the extruder will be raised before traveling to the first probing point.
#define Z_RAISE_BETWEEN_PROBINGS 5 //How much the extruder will be raised when traveling from between next probing points
#define Z_RAISE_AFTER_PROBING 50 //How much the extruder will be raised after the last probing point.
// #define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10" //These commands will be executed in the end of G29 routine.
//Useful to retract a deployable probe.
//#define Z_PROBE_SLED // turn on if you have a z-probe mounted on a sled like those designed by Charles Bell
//#define SLED_DOCKING_OFFSET 5 // the extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.
// Allen key retractable z-probe as seen on many Kossel delta printers - http://reprap.org/wiki/Kossel#Automatic_bed_leveling_probe
// Deploys by touching z-axis belt. Retracts by pushing the probe down. Uses Z_MIN_PIN.
//#define Z_PROBE_ALLEN_KEY
#ifdef Z_PROBE_ALLEN_KEY
#define Z_PROBE_ALLEN_KEY_DEPLOY_X 30
#define Z_PROBE_ALLEN_KEY_DEPLOY_Y DELTA_PRINTABLE_RADIUS
#define Z_PROBE_ALLEN_KEY_DEPLOY_Z 100
#define Z_PROBE_ALLEN_KEY_STOW_X -64
#define Z_PROBE_ALLEN_KEY_STOW_Y 56
#define Z_PROBE_ALLEN_KEY_STOW_Z 23
#define Z_PROBE_ALLEN_KEY_STOW_DEPTH 20
#endif
//If defined, the Probe servo will be turned on only during movement and then turned off to avoid jerk
//The value is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it.
// You MUST HAVE the SERVO_ENDSTOPS defined to use here a value higher than zero otherwise your code will not compile.
// #define PROBE_SERVO_DEACTIVATION_DELAY 300
//If you have enabled the Bed Auto Leveling and are using the same Z Probe for Z Homing,
//it is highly recommended you let this Z_SAFE_HOMING enabled!!!
#define Z_SAFE_HOMING // This feature is meant to avoid Z homing with probe outside the bed area.
// When defined, it will:
// - Allow Z homing only after X and Y homing AND stepper drivers still enabled
// - If stepper drivers timeout, it will need X and Y homing again before Z homing
// - Position the probe in a defined XY point before Z Homing when homing all axis (G28)
// - Block Z homing only when the probe is outside bed area.
#ifdef Z_SAFE_HOMING
#define Z_SAFE_HOMING_X_POINT (X_MAX_LENGTH/2) // X point for Z homing when homing all axis (G28)
#define Z_SAFE_HOMING_Y_POINT (Y_MAX_LENGTH/2) // Y point for Z homing when homing all axis (G28)
#endif
// Support for a dedicated Z PROBE endstop separate from the Z MIN endstop.
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
// D32 is currently selected in the RAMPS 1.3/1.4 pin file. All other boards will need changes to the respective pins_XXXXX.h file.
// WARNING: Setting the wrong pin may have unexpected and potentially disastrous outcomes. Use with caution and do your homework.
//#define Z_PROBE_ENDSTOP
#endif // ENABLE_AUTO_BED_LEVELING
// The position of the homing switches
#define MANUAL_HOME_POSITIONS // If defined, MANUAL_*_HOME_POS below will be used
//#define BED_CENTER_AT_0_0 // If defined, the center of the bed is at (X=0, Y=0)
// Manual homing switch locations:
// For deltabots this means top and center of the Cartesian print volume.
#ifdef MANUAL_HOME_POSITIONS
#define MANUAL_X_HOME_POS 0
#define MANUAL_Y_HOME_POS 0
#define MANUAL_Z_HOME_POS 405 // For delta: Distance between nozzle and print surface after homing.
#endif
/**
* MOVEMENT SETTINGS
*/
// delta homing speeds must be the same on xyz
#define HOMING_FEEDRATE {200*30, 200*30, 200*30, 0} // set the homing speeds (mm/min)
// default settings
// delta speeds must be the same on xyz
#define DEFAULT_AXIS_STEPS_PER_UNIT {72.9, 72.9, 72.9, 291} // default steps per unit for BI v2.5 (cable drive)
#define DEFAULT_MAX_FEEDRATE {500, 500, 500, 150} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {9000,9000,9000,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 3000 // E acceleration in mm/s^2 for retracts
#define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration in mm/s^2 for travel (non printing) moves
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
// #define EXTRUDER_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
// #define EXTRUDER_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis
// The speed change that does not require acceleration (i.e. the software might assume it can be done instantaneously)
#define DEFAULT_XYJERK 15.0 // (mm/sec)
#define DEFAULT_ZJERK 15.0 // (mm/sec) Must be same as XY for delta
#define DEFAULT_EJERK 5.0 // (mm/sec)
//=============================================================================
//============================= Additional Features ===========================
//=============================================================================
// Custom M code points
#define CUSTOM_M_CODES
#ifdef CUSTOM_M_CODES
#ifdef ENABLE_AUTO_BED_LEVELING
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
#define Z_PROBE_OFFSET_RANGE_MIN -20
#define Z_PROBE_OFFSET_RANGE_MAX 20
#endif
#endif
// EEPROM
// The microcontroller can store settings in the EEPROM, e.g. max velocity...
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//define this to enable EEPROM support
//#define EEPROM_SETTINGS
#ifdef EEPROM_SETTINGS
// To disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
#define EEPROM_CHITCHAT // please keep turned on if you can.
#endif
// Preheat Constants
#define PLA_PREHEAT_HOTEND_TEMP 180
#define PLA_PREHEAT_HPB_TEMP 70
#define PLA_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
#define ABS_PREHEAT_HOTEND_TEMP 240
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
//==============================LCD and SD support=============================
// Define your display language below. Replace (en) with your language code and uncomment.
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu, kana, kana_utf8, cn, test
// See also language.h
#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
// Choose ONE of these 3 charsets. This has to match your hardware. Ignored for full graphic display.
// To find out what type you have - compile with (test) - upload - click to get the menu. You'll see two typical lines from the upper half of the charset.
// See also documentation/LCDLanguageFont.md
#define DISPLAY_CHARSET_HD44780_JAPAN // this is the most common hardware
//#define DISPLAY_CHARSET_HD44780_WESTERN
//#define DISPLAY_CHARSET_HD44780_CYRILLIC
//#define ULTRA_LCD //general LCD support, also 16x2
//#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
//#define SD_CHECK_AND_RETRY // Use CRC checks and retries on the SD communication
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
//#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
//#define ULTIPANEL //the UltiPanel as on Thingiverse
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
// 0 to disable buzzer feedback. Test with M300 S<frequency Hz> P<duration ms>
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL
// The Panucatt Devices Viki 2.0 and mini Viki with Graphic LCD
// http://panucatt.com
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define VIKI2
//#define miniVIKI
// The RepRapDiscount Smart Controller (white PCB)
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//#define REPRAP_DISCOUNT_SMART_CONTROLLER
// The GADGETS3D G3D LCD/SD Controller (blue PCB)
// http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel
//#define G3D_PANEL
// The RepRapDiscount FULL GRAPHIC Smart Controller (quadratic white PCB)
// http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller
//
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER
// The RepRapWorld REPRAPWORLD_KEYPAD v1.1
// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626
//#define REPRAPWORLD_KEYPAD
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // how much should be moved when a key is pressed, eg 10.0 means 10mm per click
// The Elefu RA Board Control Panel
// http://www.elefu.com/index.php?route=product/product&product_id=53
// REMEMBER TO INSTALL LiquidCrystal_I2C.h in your ARDUINO library folder: https://github.com/kiyoshigawa/LiquidCrystal_I2C
//#define RA_CONTROL_PANEL
// Delta calibration menu
// uncomment to add three points calibration menu option.
// See http://minow.blogspot.com/index.html#4918805519571907051
// If needed, adjust the X, Y, Z calibration coordinates
// in ultralcd.cpp@lcd_delta_calibrate_menu()
// #define DELTA_CALIBRATION_MENU
/**
* I2C Panels
*/
//#define LCD_I2C_SAINSMART_YWROBOT
// PANELOLU2 LCD with status LEDs, separate encoder and click inputs
//#define LCD_I2C_PANELOLU2
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// Shift register panels
// ---------------------
// 2 wire Non-latching LCD SR from:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
//#define SAV_3DLCD
// Increase the FAN pwm frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN
// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not as annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM
// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
#define SOFT_PWM_SCALE 0
// Temperature status LEDs that display the hotend and bet temperature.
// If all hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.
// Otherwise the RED led is on. There is 1C hysteresis.
//#define TEMP_STAT_LEDS
// M240 Triggers a camera by emulating a Canon RC-1 Remote
// Data from: http://www.doc-diy.net/photo/rc-1_hacked/
// #define PHOTOGRAPH_PIN 23
// SF send wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX
// Support for the BariCUDA Paste Extruder.
//#define BARICUDA
//define BlinkM/CyzRgb Support
//#define BLINKM
/*********************************************************************\
* R/C SERVO support
* Sponsored by TrinityLabs, Reworked by codexmas
**********************************************************************/
// Number of servos
//
// If you select a configuration below, this will receive a default value and does not need to be set manually
// set it manually if you have more servos than extruders and wish to manually control some
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command
// Servo Endstops
//
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M851 to set the z-probe vertical offset from the nozzle. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
//#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 70,0} // X,Y,Z Axis Extend and Retract angles
/**********************************************************************\
* Support for a filament diameter sensor
* Also allows adjustment of diameter at print time (vs at slicing)
* Single extruder only at this point (extruder 0)
*
* Motherboards
* 34 - RAMPS1.4 - uses Analog input 5 on the AUX2 connector
* 81 - Printrboard - Uses Analog input 2 on the Exp1 connector (version B,C,D,E)
* 301 - Rambo - uses Analog input 3
* Note may require analog pins to be defined for different motherboards
**********************************************************************/
// Uncomment below to enable
//#define FILAMENT_SENSOR
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
#define DEFAULT_NOMINAL_FILAMENT_DIA 1.75 //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software. Used for sensor reading validation
#define MEASURED_UPPER_LIMIT 3.30 //upper limit factor used for sensor reading validation in mm
#define MEASURED_LOWER_LIMIT 1.90 //lower limit factor for sensor reading validation in mm
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
//defines used in the code
#define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA //set measured to nominal initially
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"
#endif //CONFIGURATION_H

@ -0,0 +1,585 @@
#ifndef CONFIGURATION_ADV_H
#define CONFIGURATION_ADV_H
#include "Conditionals.h"
// @section temperature
//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
#ifdef BED_LIMIT_SWITCHING
#define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
#endif
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
/**
* Thermal Protection parameters
*/
#ifdef THERMAL_PROTECTION_HOTENDS
#define THERMAL_PROTECTION_PERIOD 40 // Seconds
#define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to transpire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
*/
#define WATCH_TEMP_PERIOD 16 // Seconds
#define WATCH_TEMP_INCREASE 4 // Degrees Celsius
#endif
#ifdef THERMAL_PROTECTION_BED
#define THERMAL_PROTECTION_BED_PERIOD 120 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 4 // Degrees Celsius
#endif
/**
* Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by excuting M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
#ifdef PIDTEMP
// this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated.
#define PID_ADD_EXTRUSION_RATE
#ifdef PID_ADD_EXTRUSION_RATE
#define DEFAULT_Kc (1) //heating power=Kc*(e_speed)
#endif
#endif
//automatic temperature: The hot end target temperature is calculated by all the buffered lines of gcode.
//The maximum buffered steps/sec of the extruder motor are called "se".
//You enter the autotemp mode by a M109 S<mintemp> B<maxtemp> F<factor>
// the target temperature is set to mintemp+factor*se[steps/sec] and limited by mintemp and maxtemp
// you exit the value by any M109 without F*
// Also, if the temperature is set to a value <mintemp, it is not changed by autotemp.
// on an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
#define AUTOTEMP
#ifdef AUTOTEMP
#define AUTOTEMP_OLDWEIGHT 0.98
#endif
//Show Temperature ADC value
//The M105 command return, besides traditional information, the ADC value read from temperature sensors.
//#define SHOW_TEMP_ADC_VALUES
// @section extruder
// extruder run-out prevention.
//if the machine is idle, and the temperature over MINTEMP, every couple of SECONDS some filament is extruded
//#define EXTRUDER_RUNOUT_PREVENT
#define EXTRUDER_RUNOUT_MINTEMP 190
#define EXTRUDER_RUNOUT_SECONDS 30.
#define EXTRUDER_RUNOUT_ESTEPS 14. //mm filament
#define EXTRUDER_RUNOUT_SPEED 1500. //extrusion speed
#define EXTRUDER_RUNOUT_EXTRUDE 100
// @section temperature
//These defines help to calibrate the AD595 sensor in case you get wrong temperature measurements.
//The measured temperature is defined as "actualTemp = (measuredTemp * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET"
#define TEMP_SENSOR_AD595_OFFSET 0.0
#define TEMP_SENSOR_AD595_GAIN 1.0
//This is for controlling a fan to cool down the stepper drivers
//it will turn on when any driver is enabled
//and turn off after the set amount of seconds from last driver being disabled again
#define CONTROLLERFAN_PIN -1 //Pin used for the fan to cool controller (-1 to disable)
#define CONTROLLERFAN_SECS 60 //How many seconds, after all motors were disabled, the fan should run
#define CONTROLLERFAN_SPEED 255 // == full speed
// When first starting the main fan, run it at full speed for the
// given number of milliseconds. This gets the fan spinning reliably
// before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu)
//#define FAN_KICKSTART_TIME 100
// @section extruder
// Extruder cooling fans
// Configure fan pin outputs to automatically turn on/off when the associated
// extruder temperature is above/below EXTRUDER_AUTO_FAN_TEMPERATURE.
// Multiple extruders can be assigned to the same pin in which case
// the fan will turn on when any selected extruder is above the threshold.
#define EXTRUDER_0_AUTO_FAN_PIN -1
#define EXTRUDER_1_AUTO_FAN_PIN -1
#define EXTRUDER_2_AUTO_FAN_PIN -1
#define EXTRUDER_3_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
//===========================================================================
//=============================Mechanical Settings===========================
//===========================================================================
// @section homing
#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing
// @section extras
//#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats.
// A single Z stepper driver is usually used to drive 2 stepper motors.
// Uncomment this define to utilize a separate stepper driver for each Z axis motor.
// Only a few motherboards support this, like RAMPS, which have dual extruder support (the 2nd, often unused, extruder driver is used
// to control the 2nd Z axis stepper motor). The pins are currently only defined for a RAMPS motherboards.
// On a RAMPS (or other 5 driver) motherboard, using this feature will limit you to using 1 extruder.
//#define Z_DUAL_STEPPER_DRIVERS
#ifdef Z_DUAL_STEPPER_DRIVERS
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
// If the Z stepper axis is closer to the bed, the measure Z > Z2 (yes, it is.. think about it) and the Z adjust would be positive.
// Play a little bit with small adjustments (0.5mm) and check the behaviour.
// The M119 (endstops report) will start reporting the Z2 Endstop as well.
#define Z_DUAL_ENDSTOPS
#ifdef Z_DUAL_ENDSTOPS
#define Z2_STEP_PIN E2_STEP_PIN // Stepper to be used to Z2 axis.
#define Z2_DIR_PIN E2_DIR_PIN
#define Z2_ENABLE_PIN E2_ENABLE_PIN
#define Z2_MAX_PIN 36 //Endstop used for Z2 axis. In this case I'm using XMAX in a Rumba Board (pin 36)
const bool Z2_MAX_ENDSTOP_INVERTING = false;
#define DISABLE_XMAX_ENDSTOP //Better to disable the XMAX to avoid conflict. Just rename "XMAX_ENDSTOP" by the endstop you are using for Z2 axis.
#endif
#endif // Z_DUAL_STEPPER_DRIVERS
// Same again but for Y Axis.
//#define Y_DUAL_STEPPER_DRIVERS
// Define if the two Y drives need to rotate in opposite directions
#define INVERT_Y2_VS_Y_DIR true
// Enable this for dual x-carriage printers.
// A dual x-carriage design has the advantage that the inactive extruder can be parked which
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
// allowing faster printing speeds.
//#define DUAL_X_CARRIAGE
#ifdef DUAL_X_CARRIAGE
// Configuration for second X-carriage
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
// the second x-carriage always homes to the maximum endstop.
#define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
// However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software
// override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
// without modifying the firmware (through the "M218 T1 X???" command).
// Remember: you should set the second extruder x-offset to 0 in your slicer.
// Pins for second x-carriage stepper driver (defined here to avoid further complicating pins.h)
#define X2_ENABLE_PIN 29
#define X2_STEP_PIN 25
#define X2_DIR_PIN 23
// There are a few selectable movement modes for dual x-carriages using M605 S<mode>
// Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results
// as long as it supports dual x-carriages. (M605 S0)
// Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so
// that additional slicer support is not required. (M605 S1)
// Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all
// actions of the first x-carriage. This allows the printer to print 2 arbitrary items at
// once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm])
// This is the default power-up mode which can be later using M605.
#define DEFAULT_DUAL_X_CARRIAGE_MODE 0
// Default settings in "Auto-park Mode"
#define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder
#define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder
// Default x offset in duplication mode (typically set to half print bed width)
#define DEFAULT_DUPLICATION_X_OFFSET 100
#endif //DUAL_X_CARRIAGE
// @section homing
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
#define X_HOME_BUMP_MM 5
#define Y_HOME_BUMP_MM 5
#define Z_HOME_BUMP_MM 5 // deltas need the same for all three axis
#define HOMING_BUMP_DIVISOR {10, 10, 20} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
// When G28 is called, this option will make Y home before X
// #define HOME_Y_BEFORE_X
// @section machine
#define AXIS_RELATIVE_MODES {false, false, false, false}
// @section machine
//By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step.
#define INVERT_X_STEP_PIN false
#define INVERT_Y_STEP_PIN false
#define INVERT_Z_STEP_PIN false
#define INVERT_E_STEP_PIN false
// Default stepper release if idle. Set to 0 to deactivate.
#define DEFAULT_STEPPER_DEACTIVE_TIME 0
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 0.0
// @section lcd
#ifdef ULTIPANEL
#define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // Feedrates for manual moves along X, Y, Z, E from panel
#define ULTIPANEL_FEEDMULTIPLY // Comment to disable setting feedrate multiplier via encoder
#endif
// @section extras
// minimum time in microseconds that a movement needs to take if the buffer is emptied.
#define DEFAULT_MINSEGMENTTIME 20000
// If defined the movements slow down when the look ahead buffer is only half full
// (don't use SLOWDOWN with DELTA because DELTA generates hundreds of segments per second)
//#define SLOWDOWN
// Frequency limit
// See nophead's blog for more info
// Not working O
//#define XY_FREQUENCY_LIMIT 15
// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
// of the buffer and all stops. This should not be much greater than zero and should only be changed
// if unwanted behavior is observed on a user's machine when running at very slow speeds.
#define MINIMUM_PLANNER_SPEED 0.05// (mm/sec)
// Microstep setting (Only functional when stepper driver microstep pins are connected to MCU.
#define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16]
// Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards)
#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)
// uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro
//#define DIGIPOT_I2C
// Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8
#define DIGIPOT_I2C_NUM_CHANNELS 8
// actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}
//===========================================================================
//=============================Additional Features===========================
//===========================================================================
#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceeds this value, multiply steps moved x10 to quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceeds this value, multiply steps moved x100 to really quickly advance the value
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again
// @section lcd
#ifdef SDSUPPORT
// If you are using a RAMPS board or cheap E-bay purchased boards that do not detect when an SD card is inserted
// You can get round this by connecting a push button or single throw switch to the pin defined as SDCARDCARDDETECT
// in the pins.h file. When using a push button pulling the pin to ground this will need inverted. This setting should
// be commented out otherwise
#define SDCARDDETECTINVERTED
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
#define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place.
#define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order.
// if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that.
// using:
//#define MENU_ADDAUTOSTART
// Show a progress bar on HD44780 LCDs for SD printing
//#define LCD_PROGRESS_BAR
#ifdef LCD_PROGRESS_BAR
// Amount of time (ms) to show the bar
#define PROGRESS_BAR_BAR_TIME 2000
// Amount of time (ms) to show the status message
#define PROGRESS_BAR_MSG_TIME 3000
// Amount of time (ms) to retain the status message (0=forever)
#define PROGRESS_MSG_EXPIRE 0
// Enable this to show messages for MSG_TIME then hide them
//#define PROGRESS_MSG_ONCE
#endif
#endif // SDSUPPORT
// @section more
// The hardware watchdog should reset the microcontroller disabling all outputs, in case the firmware gets stuck and doesn't do temperature regulation.
//#define USE_WATCHDOG
#ifdef USE_WATCHDOG
// If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on.
// The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset.
// However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled.
//#define WATCHDOG_RESET_MANUAL
#endif
// Enable the option to stop SD printing when hitting and endstops, needs to be enabled from the LCD menu when this option is enabled.
//#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
// @section lcd
// Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process
// it can e.g. be used to change z-positions in the print startup phase in real-time
// does not respect endstops!
//#define BABYSTEPPING
#ifdef BABYSTEPPING
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#endif
// @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#ifdef ADVANCE
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#define STEPS_MM_E 836
#endif
// @section extras
// Arc interpretation settings:
#define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25
const unsigned int dropsegments=5; //everything with less than this number of steps will be ignored as move and joined with the next movement
// @section temperature
// Control heater 0 and heater 1 in parallel.
//#define HEATERS_PARALLEL
//===========================================================================
//================================= Buffers =================================
//===========================================================================
// @section hidden
// The number of linear motions that can be in the plan at any give time.
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ring-buffering.
#ifdef SDSUPPORT
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#endif
// @section more
//The ASCII buffer for receiving from the serial:
#define MAX_CMD_SIZE 96
#define BUFSIZE 4
// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK
// @section fwretract
// Firmware based and LCD controlled retract
// M207 and M208 can be used to define parameters for the retraction.
// The retraction can be called by the slicer using G10 and G11
// until then, intended retractions can be detected by moves that only extrude and the direction.
// the moves are than replaced by the firmware controlled ones.
#define FWRETRACT //ONLY PARTIALLY TESTED
#ifdef FWRETRACT
#define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt
#define RETRACT_LENGTH 5 //default retract length (positive mm)
#define RETRACT_LENGTH_SWAP 13 //default swap retract length (positive mm), for extruder change
#define RETRACT_FEEDRATE 100 //default feedrate for retracting (mm/s)
#define RETRACT_ZLIFT 0 //default retract Z-lift
#define RETRACT_RECOVER_LENGTH 0 //default additional recover length (mm, added to retract length when recovering)
#define RETRACT_RECOVER_LENGTH_SWAP 0 //default additional swap recover length (mm, added to retract length when recovering from extruder change)
#define RETRACT_RECOVER_FEEDRATE 100 //default feedrate for recovering from retraction (mm/s)
#endif
// Add support for experimental filament exchange support M600; requires display
#ifdef ULTIPANEL
//#define FILAMENTCHANGEENABLE
#ifdef FILAMENTCHANGEENABLE
#define FILAMENTCHANGE_XPOS 3
#define FILAMENTCHANGE_YPOS 3
#define FILAMENTCHANGE_ZADD 10
#define FILAMENTCHANGE_FIRSTRETRACT -2
#define FILAMENTCHANGE_FINALRETRACT -100
#endif
#endif
/******************************************************************************\
* enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the arduino IDE for this
******************************************************************************/
// @section tmc
//#define HAVE_TMCDRIVER
#ifdef HAVE_TMCDRIVER
// #define X_IS_TMC
#define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps
// #define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps
// #define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps
// #define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps
// #define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps
// #define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps
// #define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps
// #define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps
// #define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps
// #define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps
#endif
/******************************************************************************\
* enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the arduino IDE for this
******************************************************************************/
// @section l6470
//#define HAVE_L6470DRIVER
#ifdef HAVE_L6470DRIVER
// #define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif
#include "Conditionals.h"
#include "SanityCheck.h"
#endif //CONFIGURATION_ADV_H

@ -286,44 +286,24 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances. #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//=========================================================================== //===========================================================================
//============================= Thermal Runaway Protection ================== //======================== Thermal Runaway Protection =======================
//=========================================================================== //===========================================================================
/*
This is a feature to protect your printer from burn up in flames if it has
a thermistor coming off place (this happened to a friend of mine recently and
motivated me writing this feature).
The issue: If a thermistor come off, it will read a lower temperature than actual.
The system will turn the heater on forever, burning up the filament and anything
else around.
After the temperature reaches the target for the first time, this feature will
start measuring for how long the current temperature stays below the target
minus _HYSTERESIS (set_temperature - THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).
If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to be on the
safe side, the system will he halt.
Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem if
your extruder heater takes 2 minutes to hit the target on heating.
*/
// If you want to enable this feature for all your extruder heaters,
// uncomment the 2 defines below:
// Parameters for all extruder heaters
//#define THERMAL_RUNAWAY_PROTECTION_PERIOD 40 //in seconds
//#define THERMAL_RUNAWAY_PROTECTION_HYSTERESIS 4 // in degree Celsius
// If you want to enable this feature for your bed heater, /**
// uncomment the 2 defines below: * Thermal Runaway Protection protects your printer from damage and fire if a
* thermistor falls out or temperature sensors fail in any way.
// Parameters for the bed heater *
//#define THERMAL_RUNAWAY_PROTECTION_BED_PERIOD 20 //in seconds * The issue: If a thermistor falls out or a temperature sensor fails,
//#define THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS 2 // in degree Celsius * Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
*
* The solution: Once the temperature reaches the target, start observing.
* If the temperature stays too far below the target (hysteresis) for too long,
* the firmware will halt as a safety precaution.
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//=========================================================================== //===========================================================================
//============================= Mechanical Settings ========================= //============================= Mechanical Settings =========================
@ -400,17 +380,20 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
#define Z_MAX_POS MANUAL_Z_HOME_POS #define Z_MAX_POS MANUAL_Z_HOME_POS
//=========================================================================== //===========================================================================
//============================= Filament Runout Sensor ====================== //========================= Filament Runout Sensor ==========================
//=========================================================================== //===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament //#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made. // In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
// It is assumed that when logic high = filament available // It is assumed that when logic high = filament available
// when logic low = filament ran out // when logic low = filament ran out
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned #ifdef FILAMENT_RUNOUT_SENSOR
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined. const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//=========================================================================== //===========================================================================
//============================ Manual Bed Leveling ========================== //=========================== Manual Bed Leveling ===========================
//=========================================================================== //===========================================================================
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling // #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
@ -431,7 +414,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
//=========================================================================== //===========================================================================
//============================= Bed Auto Leveling =========================== //============================ Bed Auto Leveling ============================
//=========================================================================== //===========================================================================
//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line) //#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)

@ -14,14 +14,38 @@
#endif #endif
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control #define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
//// Heating sanity check: /**
// This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature * Thermal Protection parameters
// If the temperature has not increased at the end of that period, the target temperature is set to zero. */
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature #ifdef THERMAL_PROTECTION_HOTENDS
// differ by at least 2x WATCH_TEMP_INCREASE #define THERMAL_PROTECTION_PERIOD 40 // Seconds
//#define WATCH_TEMP_PERIOD 40000 //40 seconds #define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to transpire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
*/
#define WATCH_TEMP_PERIOD 16 // Seconds
#define WATCH_TEMP_INCREASE 4 // Degrees Celsius
#endif
#ifdef THERMAL_PROTECTION_BED
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
#endif
/**
* Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by excuting M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
#ifdef PIDTEMP #ifdef PIDTEMP
// this adds an experimental additional term to the heating power, proportional to the extrusion speed. // this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated. // if Kc is chosen well, the additional required power due to increased melting should be compensated.
@ -377,6 +401,15 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define MAX_CMD_SIZE 96 #define MAX_CMD_SIZE 96
#define BUFSIZE 4 #define BUFSIZE 4
// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK
// @section fwretract // @section fwretract
// Firmware based and LCD controlled retract // Firmware based and LCD controlled retract

@ -286,44 +286,24 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances. #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//=========================================================================== //===========================================================================
//============================= Thermal Runaway Protection ================== //======================== Thermal Runaway Protection =======================
//=========================================================================== //===========================================================================
/*
This is a feature to protect your printer from burn up in flames if it has
a thermistor coming off place (this happened to a friend of mine recently and
motivated me writing this feature).
The issue: If a thermistor come off, it will read a lower temperature than actual.
The system will turn the heater on forever, burning up the filament and anything
else around.
After the temperature reaches the target for the first time, this feature will
start measuring for how long the current temperature stays below the target
minus _HYSTERESIS (set_temperature - THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).
If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to be on the
safe side, the system will he halt.
Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem if
your extruder heater takes 2 minutes to hit the target on heating.
*/
// If you want to enable this feature for all your extruder heaters,
// uncomment the 2 defines below:
// Parameters for all extruder heaters
//#define THERMAL_RUNAWAY_PROTECTION_PERIOD 40 //in seconds
//#define THERMAL_RUNAWAY_PROTECTION_HYSTERESIS 4 // in degree Celsius
// If you want to enable this feature for your bed heater, /**
// uncomment the 2 defines below: * Thermal Runaway Protection protects your printer from damage and fire if a
* thermistor falls out or temperature sensors fail in any way.
// Parameters for the bed heater *
//#define THERMAL_RUNAWAY_PROTECTION_BED_PERIOD 20 //in seconds * The issue: If a thermistor falls out or a temperature sensor fails,
//#define THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS 2 // in degree Celsius * Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
*
* The solution: Once the temperature reaches the target, start observing.
* If the temperature stays too far below the target (hysteresis) for too long,
* the firmware will halt as a safety precaution.
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//=========================================================================== //===========================================================================
//============================= Mechanical Settings ========================= //============================= Mechanical Settings =========================
@ -400,17 +380,20 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#define Z_MAX_POS MANUAL_Z_HOME_POS #define Z_MAX_POS MANUAL_Z_HOME_POS
//=========================================================================== //===========================================================================
//============================= Filament Runout Sensor ====================== //========================= Filament Runout Sensor ==========================
//=========================================================================== //===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament //#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made. // In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
// It is assumed that when logic high = filament available // It is assumed that when logic high = filament available
// when logic low = filament ran out // when logic low = filament ran out
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned #ifdef FILAMENT_RUNOUT_SENSOR
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined. const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//=========================================================================== //===========================================================================
//============================ Manual Bed Leveling ========================== //=========================== Manual Bed Leveling ===========================
//=========================================================================== //===========================================================================
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling // #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
@ -431,7 +414,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
//=========================================================================== //===========================================================================
//============================= Bed Auto Leveling =========================== //============================ Bed Auto Leveling ============================
//=========================================================================== //===========================================================================
#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line) #define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)

@ -14,14 +14,38 @@
#endif #endif
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control #define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
//// Heating sanity check: /**
// This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature * Thermal Protection parameters
// If the temperature has not increased at the end of that period, the target temperature is set to zero. */
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature #ifdef THERMAL_PROTECTION_HOTENDS
// differ by at least 2x WATCH_TEMP_INCREASE #define THERMAL_PROTECTION_PERIOD 40 // Seconds
//#define WATCH_TEMP_PERIOD 40000 //40 seconds #define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to transpire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
*/
#define WATCH_TEMP_PERIOD 16 // Seconds
#define WATCH_TEMP_INCREASE 4 // Degrees Celsius
#endif
#ifdef THERMAL_PROTECTION_BED
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
#endif
/**
* Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by excuting M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
#ifdef PIDTEMP #ifdef PIDTEMP
// this adds an experimental additional term to the heating power, proportional to the extrusion speed. // this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated. // if Kc is chosen well, the additional required power due to increased melting should be compensated.
@ -376,6 +400,15 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define MAX_CMD_SIZE 96 #define MAX_CMD_SIZE 96
#define BUFSIZE 4 #define BUFSIZE 4
// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK
// @section fwretract // @section fwretract
// Firmware based and LCD controlled retract // Firmware based and LCD controlled retract

@ -256,44 +256,24 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances. #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//=========================================================================== //===========================================================================
//============================= Thermal Runaway Protection ================== //======================== Thermal Runaway Protection =======================
//=========================================================================== //===========================================================================
/*
This is a feature to protect your printer from burn up in flames if it has
a thermistor coming off place (this happened to a friend of mine recently and
motivated me writing this feature).
The issue: If a thermistor come off, it will read a lower temperature than actual.
The system will turn the heater on forever, burning up the filament and anything
else around.
After the temperature reaches the target for the first time, this feature will
start measuring for how long the current temperature stays below the target
minus _HYSTERESIS (set_temperature - THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).
If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to be on the
safe side, the system will he halt.
Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem if
your extruder heater takes 2 minutes to hit the target on heating.
*/
// If you want to enable this feature for all your extruder heaters,
// uncomment the 2 defines below:
// Parameters for all extruder heaters
//#define THERMAL_RUNAWAY_PROTECTION_PERIOD 40 //in seconds
//#define THERMAL_RUNAWAY_PROTECTION_HYSTERESIS 4 // in degree Celsius
// If you want to enable this feature for your bed heater, /**
// uncomment the 2 defines below: * Thermal Runaway Protection protects your printer from damage and fire if a
* thermistor falls out or temperature sensors fail in any way.
// Parameters for the bed heater *
//#define THERMAL_RUNAWAY_PROTECTION_BED_PERIOD 20 //in seconds * The issue: If a thermistor falls out or a temperature sensor fails,
//#define THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS 2 // in degree Celsius * Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
*
* The solution: Once the temperature reaches the target, start observing.
* If the temperature stays too far below the target (hysteresis) for too long,
* the firmware will halt as a safety precaution.
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//=========================================================================== //===========================================================================
//============================= Mechanical Settings ========================= //============================= Mechanical Settings =========================
@ -347,6 +327,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#define INVERT_X_DIR false #define INVERT_X_DIR false
#define INVERT_Y_DIR false #define INVERT_Y_DIR false
#define INVERT_Z_DIR false #define INVERT_Z_DIR false
#define INVERT_E0_DIR true #define INVERT_E0_DIR true
#define INVERT_E1_DIR false #define INVERT_E1_DIR false
#define INVERT_E2_DIR false #define INVERT_E2_DIR false
@ -370,17 +351,19 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#define Z_MAX_POS 86 #define Z_MAX_POS 86
//=========================================================================== //===========================================================================
//============================= Filament Runout Sensor ====================== //========================= Filament Runout Sensor ==========================
//=========================================================================== //===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament //#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made. // In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
// It is assumed that when logic high = filament available // It is assumed that when logic high = filament available
// when logic low = filament ran out // when logic low = filament ran out
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned #ifdef FILAMENT_RUNOUT_SENSOR
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined. const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//=========================================================================== //===========================================================================
//============================ Manual Bed Leveling ========================== //=========================== Manual Bed Leveling ===========================
//=========================================================================== //===========================================================================
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling // #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
@ -401,7 +384,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
//=========================================================================== //===========================================================================
//============================= Bed Auto Leveling =========================== //============================ Bed Auto Leveling ============================
//=========================================================================== //===========================================================================
//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line) //#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)

@ -14,14 +14,38 @@
#endif #endif
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control #define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
//// Heating sanity check: /**
// This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature * Thermal Protection parameters
// If the temperature has not increased at the end of that period, the target temperature is set to zero. */
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature #ifdef THERMAL_PROTECTION_HOTENDS
// differ by at least 2x WATCH_TEMP_INCREASE #define THERMAL_PROTECTION_PERIOD 40 // Seconds
//#define WATCH_TEMP_PERIOD 40000 //40 seconds #define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to transpire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
*/
#define WATCH_TEMP_PERIOD 16 // Seconds
#define WATCH_TEMP_INCREASE 4 // Degrees Celsius
#endif
#ifdef THERMAL_PROTECTION_BED
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
#endif
/**
* Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by excuting M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
#ifdef PIDTEMP #ifdef PIDTEMP
// this adds an experimental additional term to the heating power, proportional to the extrusion speed. // this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated. // if Kc is chosen well, the additional required power due to increased melting should be compensated.
@ -376,6 +400,15 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define MAX_CMD_SIZE 96 #define MAX_CMD_SIZE 96
#define BUFSIZE 4 #define BUFSIZE 4
// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK
// @section fwretract // @section fwretract
// Firmware based and LCD controlled retract // Firmware based and LCD controlled retract

@ -258,44 +258,24 @@ Here are some standard links for getting your machine calibrated:
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances. #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//=========================================================================== //===========================================================================
//============================= Thermal Runaway Protection ================== //======================== Thermal Runaway Protection =======================
//=========================================================================== //===========================================================================
/*
This is a feature to protect your printer from burn up in flames if it has
a thermistor coming off place (this happened to a friend of mine recently and
motivated me writing this feature).
The issue: If a thermistor come off, it will read a lower temperature than actual.
The system will turn the heater on forever, burning up the filament and anything
else around.
After the temperature reaches the target for the first time, this feature will
start measuring for how long the current temperature stays below the target
minus _HYSTERESIS (set_temperature - THERMAL_RUNAWAY_PROTECTION_HYSTERESIS).
If it stays longer than _PERIOD, it means the thermistor temperature
cannot catch up with the target, so something *may be* wrong. Then, to be on the
safe side, the system will he halt.
Bear in mind the count down will just start AFTER the first time the
thermistor temperature is over the target, so you will have no problem if
your extruder heater takes 2 minutes to hit the target on heating.
*/
// If you want to enable this feature for all your extruder heaters,
// uncomment the 2 defines below:
// Parameters for all extruder heaters /**
//#define THERMAL_RUNAWAY_PROTECTION_PERIOD 40 //in seconds * Thermal Runaway Protection protects your printer from damage and fire if a
//#define THERMAL_RUNAWAY_PROTECTION_HYSTERESIS 4 // in degree Celsius * thermistor falls out or temperature sensors fail in any way.
*
// If you want to enable this feature for your bed heater, * The issue: If a thermistor falls out or a temperature sensor fails,
// uncomment the 2 defines below: * Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
// Parameters for the bed heater *
//#define THERMAL_RUNAWAY_PROTECTION_BED_PERIOD 20 //in seconds * The solution: Once the temperature reaches the target, start observing.
//#define THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS 2 // in degree Celsius * If the temperature stays too far below the target (hysteresis) for too long,
* the firmware will halt as a safety precaution.
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//=========================================================================== //===========================================================================
//============================= Mechanical Settings ========================= //============================= Mechanical Settings =========================
@ -372,17 +352,20 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
#define Z_MAX_POS 120 #define Z_MAX_POS 120
//=========================================================================== //===========================================================================
//============================= Filament Runout Sensor ====================== //========================= Filament Runout Sensor ==========================
//=========================================================================== //===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament //#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made. // In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
// It is assumed that when logic high = filament available // It is assumed that when logic high = filament available
// when logic low = filament ran out // when logic low = filament ran out
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned #ifdef FILAMENT_RUNOUT_SENSOR
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined. const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//=========================================================================== //===========================================================================
//============================ Manual Bed Leveling ========================== //=========================== Manual Bed Leveling ===========================
//=========================================================================== //===========================================================================
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling // #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
@ -403,7 +386,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the logic
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
//=========================================================================== //===========================================================================
//============================= Bed Auto Leveling =========================== //============================ Bed Auto Leveling ============================
//=========================================================================== //===========================================================================
//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line) //#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)

@ -14,14 +14,38 @@
#endif #endif
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control #define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
//// Heating sanity check: /**
// This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature * Thermal Protection parameters
// If the temperature has not increased at the end of that period, the target temperature is set to zero. */
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature #ifdef THERMAL_PROTECTION_HOTENDS
// differ by at least 2x WATCH_TEMP_INCREASE #define THERMAL_PROTECTION_PERIOD 40 // Seconds
//#define WATCH_TEMP_PERIOD 40000 //40 seconds #define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to transpire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
*/
#define WATCH_TEMP_PERIOD 16 // Seconds
#define WATCH_TEMP_INCREASE 4 // Degrees Celsius
#endif
#ifdef THERMAL_PROTECTION_BED
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
#endif
/**
* Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by excuting M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
#ifdef PIDTEMP #ifdef PIDTEMP
// this adds an experimental additional term to the heating power, proportional to the extrusion speed. // this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated. // if Kc is chosen well, the additional required power due to increased melting should be compensated.
@ -376,6 +400,15 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define MAX_CMD_SIZE 96 #define MAX_CMD_SIZE 96
#define BUFSIZE 4 #define BUFSIZE 4
// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK
// @section fwretract // @section fwretract
// Firmware based and LCD controlled retract // Firmware based and LCD controlled retract

@ -123,22 +123,24 @@
#define MSG_FREE_MEMORY " Free Memory: " #define MSG_FREE_MEMORY " Free Memory: "
#define MSG_PLANNER_BUFFER_BYTES " PlannerBufferBytes: " #define MSG_PLANNER_BUFFER_BYTES " PlannerBufferBytes: "
#define MSG_OK "ok" #define MSG_OK "ok"
#define MSG_WAIT "wait"
#define MSG_FILE_SAVED "Done saving file." #define MSG_FILE_SAVED "Done saving file."
#define MSG_ERR_LINE_NO1 "Line Number out of sequence. Expected: " #define MSG_ERR_LINE_NO "Line Number is not Last Line Number+1, Last Line: "
#define MSG_ERR_LINE_NO2 " Got: "
#define MSG_ERR_CHECKSUM_MISMATCH "checksum mismatch, Last Line: " #define MSG_ERR_CHECKSUM_MISMATCH "checksum mismatch, Last Line: "
#define MSG_ERR_NO_CHECKSUM "No Checksum with line number, Last Line: " #define MSG_ERR_NO_CHECKSUM "No Checksum with line number, Last Line: "
#define MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM "No Line Number with checksum, Last Line: " #define MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM "No Line Number with checksum, Last Line: "
#define MSG_FILE_PRINTED "Done printing file" #define MSG_FILE_PRINTED "Done printing file"
#define MSG_BEGIN_FILE_LIST "Begin file list" #define MSG_BEGIN_FILE_LIST "Begin file list"
#define MSG_END_FILE_LIST "End file list" #define MSG_END_FILE_LIST "End file list"
#define MSG_M104_INVALID_EXTRUDER "M104 Invalid extruder " #define MSG_INVALID_EXTRUDER "Invalid extruder"
#define MSG_M105_INVALID_EXTRUDER "M105 Invalid extruder " #define MSG_INVALID_SOLENOID "Invalid solenoid"
#define MSG_M200_INVALID_EXTRUDER "M200 Invalid extruder " #define MSG_M104_INVALID_EXTRUDER "M104 " MSG_INVALID_EXTRUDER " "
#define MSG_M218_INVALID_EXTRUDER "M218 Invalid extruder " #define MSG_M105_INVALID_EXTRUDER "M105 " MSG_INVALID_EXTRUDER " "
#define MSG_M221_INVALID_EXTRUDER "M221 Invalid extruder " #define MSG_M109_INVALID_EXTRUDER "M109 " MSG_INVALID_EXTRUDER " "
#define MSG_M200_INVALID_EXTRUDER "M200 " MSG_INVALID_EXTRUDER " "
#define MSG_M218_INVALID_EXTRUDER "M218 " MSG_INVALID_EXTRUDER " "
#define MSG_M221_INVALID_EXTRUDER "M221 " MSG_INVALID_EXTRUDER " "
#define MSG_ERR_NO_THERMISTORS "No thermistors - no temperature" #define MSG_ERR_NO_THERMISTORS "No thermistors - no temperature"
#define MSG_M109_INVALID_EXTRUDER "M109 Invalid extruder "
#define MSG_HEATING "Heating..." #define MSG_HEATING "Heating..."
#define MSG_HEATING_COMPLETE "Heating done." #define MSG_HEATING_COMPLETE "Heating done."
#define MSG_BED_HEATING "Bed Heating." #define MSG_BED_HEATING "Bed Heating."
@ -150,8 +152,6 @@
#define MSG_RESEND "Resend: " #define MSG_RESEND "Resend: "
#define MSG_UNKNOWN_COMMAND "Unknown command: \"" #define MSG_UNKNOWN_COMMAND "Unknown command: \""
#define MSG_ACTIVE_EXTRUDER "Active Extruder: " #define MSG_ACTIVE_EXTRUDER "Active Extruder: "
#define MSG_INVALID_EXTRUDER "Invalid extruder"
#define MSG_INVALID_SOLENOID "Invalid solenoid"
#define MSG_X_MIN "x_min: " #define MSG_X_MIN "x_min: "
#define MSG_X_MAX "x_max: " #define MSG_X_MAX "x_max: "
#define MSG_Y_MIN "y_min: " #define MSG_Y_MIN "y_min: "
@ -163,6 +163,7 @@
#define MSG_ERR_MATERIAL_INDEX "M145 S<index> out of range (0-1)" #define MSG_ERR_MATERIAL_INDEX "M145 S<index> out of range (0-1)"
#define MSG_ERR_M421_REQUIRES_XYZ "M421 requires XYZ parameters" #define MSG_ERR_M421_REQUIRES_XYZ "M421 requires XYZ parameters"
#define MSG_ERR_MESH_INDEX_OOB "Mesh XY index is out of bounds" #define MSG_ERR_MESH_INDEX_OOB "Mesh XY index is out of bounds"
#define MSG_ERR_M428_TOO_FAR "Too far from reference point"
#define MSG_M119_REPORT "Reporting endstop status" #define MSG_M119_REPORT "Reporting endstop status"
#define MSG_ENDSTOP_HIT "TRIGGERED" #define MSG_ENDSTOP_HIT "TRIGGERED"
#define MSG_ENDSTOP_OPEN "open" #define MSG_ENDSTOP_OPEN "open"

@ -39,16 +39,17 @@
#define MSG_EXTRUDE "Extrusion" #define MSG_EXTRUDE "Extrusion"
#define MSG_RETRACT "Retraction" #define MSG_RETRACT "Retraction"
#define MSG_MOVE_AXIS "Deplacer un axe" #define MSG_MOVE_AXIS "Deplacer un axe"
#define MSG_MOVE_X "Move X" #define MSG_MOVE_X "Depl. X"
#define MSG_MOVE_Y "Move Y" #define MSG_MOVE_Y "Depl. Y"
#define MSG_MOVE_Z "Move Z" #define MSG_MOVE_Z "Depl. Z"
#define MSG_MOVE_E "Extruder" #define MSG_MOVE_E "Extruder"
#define MSG_MOVE_01MM "Move 0.1mm" #define MSG_MOVE_01MM "Depl. 0.1mm"
#define MSG_MOVE_1MM "Move 1mm" #define MSG_MOVE_1MM "Depl. 1mm"
#define MSG_MOVE_10MM "Move 10mm" #define MSG_MOVE_10MM "Depl. 10mm"
#define MSG_SPEED " Vitesse" #define MSG_SPEED " Vitesse"
#define MSG_NOZZLE "Buse" #define MSG_NOZZLE "Buse"
#define MSG_BED "Plateau" #define MSG_BED "Plateau"
#define MSG_LEVEL_BED "Regl. Niv. Plateau"
#define MSG_FAN_SPEED "Vite. ventilateur" #define MSG_FAN_SPEED "Vite. ventilateur"
#define MSG_FLOW "Flux" #define MSG_FLOW "Flux"
#define MSG_CONTROL "Controler" #define MSG_CONTROL "Controler"
@ -102,7 +103,7 @@
#define MSG_DWELL "Repos..." #define MSG_DWELL "Repos..."
#define MSG_USERWAIT "Atten. de l'util." #define MSG_USERWAIT "Atten. de l'util."
#define MSG_RESUMING "Repri. de l'impr." #define MSG_RESUMING "Repri. de l'impr."
#define MSG_PRINT_ABORTED "Print aborted" #define MSG_PRINT_ABORTED "Impr. Annulee"
#define MSG_NO_MOVE "Aucun mouvement." #define MSG_NO_MOVE "Aucun mouvement."
#define MSG_KILLED "MORT." #define MSG_KILLED "MORT."
#define MSG_STOPPED "STOPPE." #define MSG_STOPPED "STOPPE."

@ -1,145 +0,0 @@
/*
motion_control.c - high level interface for issuing motion commands
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Marlin.h"
#include "stepper.h"
#include "planner.h"
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
// segment is configured in settings.mm_per_arc_segment.
void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1,
uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder)
{
// int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
// plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
float center_axis0 = position[axis_0] + offset[axis_0];
float center_axis1 = position[axis_1] + offset[axis_1];
float linear_travel = target[axis_linear] - position[axis_linear];
float extruder_travel = target[E_AXIS] - position[E_AXIS];
float r_axis0 = -offset[axis_0]; // Radius vector from center to current location
float r_axis1 = -offset[axis_1];
float rt_axis0 = target[axis_0] - center_axis0;
float rt_axis1 = target[axis_1] - center_axis1;
// CCW angle between position and target from circle center. Only one atan2() trig computation required.
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
if (angular_travel < 0) { angular_travel += 2*M_PI; }
if (isclockwise) { angular_travel -= 2*M_PI; }
//20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving
//to compensate when start pos = target pos && angle is zero -> angle = 2Pi
if (position[axis_0] == target[axis_0] && position[axis_1] == target[axis_1] && angular_travel == 0)
{
angular_travel += 2*M_PI;
}
//end fix G03
float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
if (millimeters_of_travel < 0.001) { return; }
uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT);
if(segments == 0) segments = 1;
/*
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of
// all segments.
if (invert_feed_rate) { feed_rate *= segments; }
*/
float theta_per_segment = angular_travel/segments;
float linear_per_segment = linear_travel/segments;
float extruder_per_segment = extruder_travel/segments;
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
r_T = [cos(phi) -sin(phi);
sin(phi) cos(phi] * r ;
For arc generation, the center of the circle is the axis of rotation and the radius vector is
defined from the circle center to the initial position. Each line segment is formed by successive
vector rotations. This requires only two cos() and sin() computations to form the rotation
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
all double numbers are single precision on the Arduino. (True double precision will not have
round off issues for CNC applications.) Single precision error can accumulate to be greater than
tool precision in some cases. Therefore, arc path correction is implemented.
Small angle approximation may be used to reduce computation overhead further. This approximation
holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
issue for CNC machines with the single precision Arduino calculations.
This approximation also allows mc_arc to immediately insert a line segment into the planner
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
This is important when there are successive arc motions.
*/
// Vector rotation matrix values
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
float sin_T = theta_per_segment;
float arc_target[4];
float sin_Ti;
float cos_Ti;
float r_axisi;
uint16_t i;
int8_t count = 0;
// Initialize the linear axis
arc_target[axis_linear] = position[axis_linear];
// Initialize the extruder axis
arc_target[E_AXIS] = position[E_AXIS];
for (i = 1; i<segments; i++) { // Increment (segments-1)
if (count < N_ARC_CORRECTION) {
// Apply vector rotation matrix
r_axisi = r_axis0*sin_T + r_axis1*cos_T;
r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
r_axis1 = r_axisi;
count++;
} else {
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
cos_Ti = cos(i*theta_per_segment);
sin_Ti = sin(i*theta_per_segment);
r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti;
r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti;
count = 0;
}
// Update arc_target location
arc_target[axis_0] = center_axis0 + r_axis0;
arc_target[axis_1] = center_axis1 + r_axis1;
arc_target[axis_linear] += linear_per_segment;
arc_target[E_AXIS] += extruder_per_segment;
clamp_to_software_endstops(arc_target);
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, extruder);
}
// Ensure last segment arrives at target location.
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder);
// plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled);
}

@ -1,32 +0,0 @@
/*
motion_control.h - high level interface for issuing motion commands
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef motion_control_h
#define motion_control_h
// Execute an arc in offset mode format. position == current xyz, target == target xyz,
// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
// for vector transformation direction.
void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1,
unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise, uint8_t extruder);
#endif

@ -34,7 +34,7 @@
#include "pins_SETHI.h" #include "pins_SETHI.h"
#elif MB(RAMPS_OLD) #elif MB(RAMPS_OLD)
#include "pins_RAMPS_OLD.h" #include "pins_RAMPS_OLD.h"
#elif MB(RAMPS_13_EFB) || MB(RAMPS_13_EEB) || MB(RAMPS_13_EFF) || MB(RAMPS_13_EEF) #elif MB(RAMPS_13_EFB) || MB(RAMPS_13_EEB) || MB(RAMPS_13_EFF) || MB(RAMPS_13_EEF) || MB(RAMPS_13_SF)
#include "pins_RAMPS_13.h" #include "pins_RAMPS_13.h"
#elif MB(DUEMILANOVE_328P) #elif MB(DUEMILANOVE_328P)
#include "pins_DUEMILANOVE_328P.h" #include "pins_DUEMILANOVE_328P.h"
@ -190,6 +190,7 @@
#endif #endif
#if defined(DISABLE_Z_PROBE_ENDSTOP) || !defined(Z_PROBE_ENDSTOP) // Allow code to compile regardless of Z_PROBE_ENDSTOP setting. #if defined(DISABLE_Z_PROBE_ENDSTOP) || !defined(Z_PROBE_ENDSTOP) // Allow code to compile regardless of Z_PROBE_ENDSTOP setting.
#undef Z_PROBE_PIN
#define Z_PROBE_PIN -1 #define Z_PROBE_PIN -1
#endif #endif

@ -8,6 +8,11 @@
#define LARGE_FLASH true #define LARGE_FLASH true
#ifdef Z_PROBE_SLED
#define SLED_PIN -1
#endif
// Servo support // Servo support
#ifdef NUM_SERVOS #ifdef NUM_SERVOS
#define SERVO0_PIN 46 //AUX3-6 #define SERVO0_PIN 46 //AUX3-6
@ -26,19 +31,19 @@
#define X_DIR_PIN 57 #define X_DIR_PIN 57
#define X_ENABLE_PIN 59 #define X_ENABLE_PIN 59
#define X_MIN_PIN 37 #define X_MIN_PIN 37
#define X_MAX_PIN 40 // 2 // Max endstops default to disabled "-1", set to commented value to enable. #define X_MAX_PIN 40 // put to -1 to disable
#define Y_STEP_PIN 5 // A6 #define Y_STEP_PIN 5
#define Y_DIR_PIN 17 // A0 #define Y_DIR_PIN 17
#define Y_ENABLE_PIN 4 #define Y_ENABLE_PIN 4
#define Y_MIN_PIN 41 #define Y_MIN_PIN 41
#define Y_MAX_PIN 38 // 15 #define Y_MAX_PIN 38 // put to -1 to disable
#define Z_STEP_PIN 16 // A2 #define Z_STEP_PIN 16
#define Z_DIR_PIN 11 // A6 #define Z_DIR_PIN 11
#define Z_ENABLE_PIN 3 // A1 #define Z_ENABLE_PIN 3
#define Z_MIN_PIN 18 #define Z_MIN_PIN 18
#define Z_MAX_PIN 19 #define Z_MAX_PIN 19 // put to -1 to disable
#define E0_STEP_PIN 28 #define E0_STEP_PIN 28
#define E0_DIR_PIN 27 #define E0_DIR_PIN 27

@ -0,0 +1,11 @@
/**
* MKS BASE 1.0 Arduino Mega2560 with RAMPS v1.4 pin assignments
*/
#include "pins_RAMPS_13.h"
#undef FAN_PIN
#define FAN_PIN 9 // (Sprinter config)
#undef HEATER_1_PIN
#define HEATER_1_PIN 7

@ -48,9 +48,9 @@
#define Z_ENABLE_PIN 10 #define Z_ENABLE_PIN 10
#define Z_STOP_PIN 2 #define Z_STOP_PIN 2
#define E0_STEP_PIN 24 #define E0_STEP_PIN 24
#define E0_DIR_PIN 21 #define E0_DIR_PIN 21
#define E0_ENABLE_PIN 10 #define E0_ENABLE_PIN 10
// future proofing // future proofing
#define __FS 20 #define __FS 20
@ -58,15 +58,15 @@
#define __GS 18 #define __GS 18
#define __GD 13 #define __GD 13
#define UNUSED_PWM 14 // PWM on LEFT connector #define UNUSED_PWM 14 // PWM on LEFT connector
#define E1_STEP_PIN -1 // 21 #define E1_STEP_PIN -1 // 21
#define E1_DIR_PIN -1 // 20 #define E1_DIR_PIN -1 // 20
#define E1_ENABLE_PIN -1 // 19 #define E1_ENABLE_PIN -1 // 19
#define E2_STEP_PIN -1 // 21 #define E2_STEP_PIN -1 // 21
#define E2_DIR_PIN -1 // 20 #define E2_DIR_PIN -1 // 20
#define E2_ENABLE_PIN -1 // 18 #define E2_ENABLE_PIN -1 // 18
#define SDPOWER -1 #define SDPOWER -1
#define SDSS 11 #define SDSS 11
@ -87,5 +87,6 @@
#define HEATER_BED_PIN 4 #define HEATER_BED_PIN 4
#define TEMP_BED_PIN 2 // 1,2 or I2C #define TEMP_BED_PIN 2 // 1,2 or I2C
#define I2C_SCL 16 #define I2C_SCL 16
#define I2C_SDA 17 #define I2C_SDA 17

@ -22,6 +22,10 @@
#endif #endif
#endif #endif
#ifdef Z_PROBE_SLED
#define SLED_PIN -1
#endif
#undef X_MS1_PIN #undef X_MS1_PIN
#undef X_MS2_PIN #undef X_MS2_PIN
#undef Y_MS1_PIN #undef Y_MS1_PIN

@ -7,6 +7,7 @@
* RAMPS_13_EEB (Extruder, Extruder, Bed) * RAMPS_13_EEB (Extruder, Extruder, Bed)
* RAMPS_13_EFF (Extruder, Fan, Fan) * RAMPS_13_EFF (Extruder, Fan, Fan)
* RAMPS_13_EEF (Extruder, Extruder, Fan) * RAMPS_13_EEF (Extruder, Extruder, Fan)
* RAMPS_13_SF (Spindle, Controller Fan)
* *
* Other pins_MYBOARD.h files may override these defaults * Other pins_MYBOARD.h files may override these defaults
*/ */
@ -81,7 +82,7 @@
#if MB(RAMPS_13_EFF) #if MB(RAMPS_13_EFF)
#define CONTROLLERFAN_PIN -1 // Pin used for the fan to cool controller #define CONTROLLERFAN_PIN -1 // Pin used for the fan to cool controller
#endif #endif
#elif MB(RAMPS_13_EEF) #elif MB(RAMPS_13_EEF) || MB(RAMPS_13_SF)
#define FAN_PIN 8 #define FAN_PIN 8
#else #else
#define FAN_PIN 4 // IO pin. Buffer needed #define FAN_PIN 4 // IO pin. Buffer needed
@ -101,7 +102,7 @@
#define HEATER_0_PIN 10 // EXTRUDER 1 #define HEATER_0_PIN 10 // EXTRUDER 1
#endif #endif
#if MB(RAMPS_13_EFB) #if MB(RAMPS_13_EFB) || MB(RAMPS_13_SF)
#define HEATER_1_PIN -1 #define HEATER_1_PIN -1
#else #else
#define HEATER_1_PIN 9 // EXTRUDER 2 (FAN On Sprinter) #define HEATER_1_PIN 9 // EXTRUDER 2 (FAN On Sprinter)
@ -113,7 +114,7 @@
#define TEMP_1_PIN 15 // ANALOG NUMBERING #define TEMP_1_PIN 15 // ANALOG NUMBERING
#define TEMP_2_PIN -1 // ANALOG NUMBERING #define TEMP_2_PIN -1 // ANALOG NUMBERING
#if MB(RAMPS_13_EFF) || MB(RAMPS_13_EEF) #if MB(RAMPS_13_EFF) || MB(RAMPS_13_EEF) || MB(RAMPS_13_SF)
#define HEATER_BED_PIN -1 // NO BED #define HEATER_BED_PIN -1 // NO BED
#else #else
#define HEATER_BED_PIN 8 // BED #define HEATER_BED_PIN 8 // BED
@ -134,6 +135,10 @@
#endif #endif
#endif #endif
#ifdef Z_PROBE_SLED
#define SLED_PIN -1
#endif
#ifdef ULTRA_LCD #ifdef ULTRA_LCD
#ifdef NEWPANEL #ifdef NEWPANEL

@ -44,6 +44,10 @@
#define FAN_PIN 4 #define FAN_PIN 4
#endif #endif
#ifdef Z_PROBE_SLED
#define SLED_PIN -1
#endif
#ifdef NUM_SERVOS #ifdef NUM_SERVOS
#define SERVO0_PIN -1 #define SERVO0_PIN -1

@ -429,11 +429,12 @@ void check_axes_activity() {
#ifdef FAN_KICKSTART_TIME #ifdef FAN_KICKSTART_TIME
static millis_t fan_kick_end; static millis_t fan_kick_end;
if (tail_fan_speed) { if (tail_fan_speed) {
millis_t ms = millis();
if (fan_kick_end == 0) { if (fan_kick_end == 0) {
// Just starting up fan - run at full power. // Just starting up fan - run at full power.
fan_kick_end = millis() + FAN_KICKSTART_TIME; fan_kick_end = ms + FAN_KICKSTART_TIME;
tail_fan_speed = 255; tail_fan_speed = 255;
} else if (fan_kick_end > millis()) } else if (fan_kick_end > ms)
// Fan still spinning up. // Fan still spinning up.
tail_fan_speed = 255; tail_fan_speed = 255;
} else { } else {
@ -959,7 +960,7 @@ float junction_deviation = 0.1;
vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS)); vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
//position.debug("in plan_get position"); //position.debug("in plan_get position");
//plan_bed_level_matrix.debug("in plan_get bed_level"); //plan_bed_level_matrix.debug("in plan_get_position");
matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix); matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
//inverse.debug("in plan_get inverse"); //inverse.debug("in plan_get inverse");
position.apply_rotation(inverse); position.apply_rotation(inverse);
@ -981,10 +982,10 @@ float junction_deviation = 0.1;
apply_rotation_xyz(plan_bed_level_matrix, x, y, z); apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
#endif #endif
float nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]); float nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]),
float ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]); ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
float nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]); nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
float ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
st_set_position(nx, ny, nz, ne); st_set_position(nx, ny, nz, ne);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.

@ -48,7 +48,7 @@
#include <avr/interrupt.h> #include <avr/interrupt.h>
#include <Arduino.h> #include <Arduino.h>
#include "Servo.h" #include "servo.h"
#define usToTicks(_us) (( clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8) // 12 Aug 2009 #define usToTicks(_us) (( clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8) // 12 Aug 2009
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds #define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds

@ -1,22 +1,23 @@
/* /**
stepper.c - stepper motor driver: executes motion plans using stepper motors * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
Part of Grbl * Marlin Firmware
*
Copyright (c) 2009-2011 Simen Svale Skogsrud * Derived from Grbl
* Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify *
it under the terms of the GNU General Public License as published by * Grbl is free software: you can redistribute it and/or modify
the Free Software Foundation, either version 3 of the License, or * it under the terms of the GNU General Public License as published by
(at your option) any later version. * the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
Grbl is distributed in the hope that it will be useful, *
but WITHOUT ANY WARRANTY; without even the implied warranty of * Grbl is distributed in the hope that it will be useful,
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * but WITHOUT ANY WARRANTY; without even the implied warranty of
GNU General Public License for more details. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
You should have received a copy of the GNU General Public License *
along with Grbl. If not, see <http://www.gnu.org/licenses/>. * You should have received a copy of the GNU General Public License
*/ * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. */ and Philipp Tiefenbacher. */
@ -45,7 +46,7 @@ block_t *current_block; // A pointer to the block currently being traced
//static makes it impossible to be called from outside of this file by extern.! //static makes it impossible to be called from outside of this file by extern.!
// Variables used by The Stepper Driver Interrupt // Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output static unsigned char out_bits = 0; // The next stepping-bits to be output
static unsigned int cleaning_buffer_counter; static unsigned int cleaning_buffer_counter;
#ifdef Z_DUAL_ENDSTOPS #ifdef Z_DUAL_ENDSTOPS
@ -73,10 +74,7 @@ static unsigned short step_loops_nominal;
volatile long endstops_trigsteps[3] = { 0 }; volatile long endstops_trigsteps[3] = { 0 };
volatile long endstops_stepsTotal, endstops_stepsDone; volatile long endstops_stepsTotal, endstops_stepsDone;
static volatile bool endstop_x_hit = false; static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value
static volatile bool endstop_y_hit = false;
static volatile bool endstop_z_hit = false;
static volatile bool endstop_z_probe_hit = false; // Leaving this in even if Z_PROBE_ENDSTOP isn't defined, keeps code below cleaner. #ifdef it and usage below to save space.
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
bool abort_on_endstop_hit = false; bool abort_on_endstop_hit = false;
@ -264,27 +262,27 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A) #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
void endstops_hit_on_purpose() { void endstops_hit_on_purpose() {
endstop_x_hit = endstop_y_hit = endstop_z_hit = endstop_z_probe_hit = false; // #ifdef endstop_z_probe_hit = to save space if needed. endstop_hit_bits = 0;
} }
void checkHitEndstops() { void checkHitEndstops() {
if (endstop_x_hit || endstop_y_hit || endstop_z_hit || endstop_z_probe_hit) { // #ifdef || endstop_z_probe_hit to save space if needed. if (endstop_hit_bits) { // #ifdef || endstop_z_probe_hit to save space if needed.
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT); SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
if (endstop_x_hit) { if (endstop_hit_bits & BIT(X_MIN)) {
SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]); SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X"); LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
} }
if (endstop_y_hit) { if (endstop_hit_bits & BIT(Y_MIN)) {
SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]); SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y"); LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
} }
if (endstop_z_hit) { if (endstop_hit_bits & BIT(Z_MIN)) {
SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]); SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z"); LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
} }
#ifdef Z_PROBE_ENDSTOP #ifdef Z_PROBE_ENDSTOP
if (endstop_z_probe_hit) { if (endstop_hit_bits & BIT(Z_PROBE)) {
SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]); SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP"); LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
} }
@ -366,9 +364,58 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
return timer; return timer;
} }
// set the stepper direction of each axis
void set_stepper_direction() {
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if (TEST(out_bits, X_AXIS)) {
X_APPLY_DIR(INVERT_X_DIR,0);
count_direction[X_AXIS] = -1;
}
else {
X_APPLY_DIR(!INVERT_X_DIR,0);
count_direction[X_AXIS] = 1;
}
if (TEST(out_bits, Y_AXIS)) {
Y_APPLY_DIR(INVERT_Y_DIR,0);
count_direction[Y_AXIS] = -1;
}
else {
Y_APPLY_DIR(!INVERT_Y_DIR,0);
count_direction[Y_AXIS] = 1;
}
if (TEST(out_bits, Z_AXIS)) {
Z_APPLY_DIR(INVERT_Z_DIR,0);
count_direction[Z_AXIS] = -1;
}
else {
Z_APPLY_DIR(!INVERT_Z_DIR,0);
count_direction[Z_AXIS] = 1;
}
#ifndef ADVANCE
if (TEST(out_bits, E_AXIS)) {
REV_E_DIR();
count_direction[E_AXIS] = -1;
}
else {
NORM_E_DIR();
count_direction[E_AXIS] = 1;
}
#endif //!ADVANCE
}
// Initializes the trapezoid generator from the current block. Called whenever a new // Initializes the trapezoid generator from the current block. Called whenever a new
// block begins. // block begins.
FORCE_INLINE void trapezoid_generator_reset() { FORCE_INLINE void trapezoid_generator_reset() {
if (current_block->direction_bits != out_bits) {
out_bits = current_block->direction_bits;
set_stepper_direction();
}
#ifdef ADVANCE #ifdef ADVANCE
advance = current_block->initial_advance; advance = current_block->initial_advance;
final_advance = current_block->final_advance; final_advance = current_block->final_advance;
@ -441,47 +488,27 @@ ISR(TIMER1_COMPA_vect) {
} }
if (current_block != NULL) { if (current_block != NULL) {
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
out_bits = current_block->direction_bits;
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if (TEST(out_bits, X_AXIS)) {
X_APPLY_DIR(INVERT_X_DIR,0);
count_direction[X_AXIS] = -1;
}
else {
X_APPLY_DIR(!INVERT_X_DIR,0);
count_direction[X_AXIS] = 1;
}
if (TEST(out_bits, Y_AXIS)) {
Y_APPLY_DIR(INVERT_Y_DIR,0);
count_direction[Y_AXIS] = -1;
}
else {
Y_APPLY_DIR(!INVERT_Y_DIR,0);
count_direction[Y_AXIS] = 1;
}
#define _ENDSTOP(axis, minmax) axis ##_## minmax ##_endstop
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
#define _OLD_ENDSTOP(axis, minmax) old_## axis ##_## minmax ##_endstop
#define _AXIS(AXIS) AXIS ##_AXIS
#define _ENDSTOP_HIT(axis) endstop_## axis ##_hit
#define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
bool _ENDSTOP(axis, minmax) = (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)); \
if (_ENDSTOP(axis, minmax) && _OLD_ENDSTOP(axis, minmax) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
_ENDSTOP_HIT(axis) = true; \
step_events_completed = current_block->step_event_count; \
} \
_OLD_ENDSTOP(axis, minmax) = _ENDSTOP(axis, minmax);
// Check X and Y endstops // Check endstops
if (check_endstops) { if (check_endstops) {
#define _ENDSTOP(axis, minmax) axis ##_## minmax ##_endstop
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
#define _OLD_ENDSTOP(axis, minmax) old_## axis ##_## minmax ##_endstop
#define _AXIS(AXIS) AXIS ##_AXIS
#define _HIT_BIT(AXIS) AXIS ##_MIN
#define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_HIT_BIT(AXIS))
#define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
bool _ENDSTOP(axis, minmax) = (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)); \
if (_ENDSTOP(axis, minmax) && _OLD_ENDSTOP(axis, minmax) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
_ENDSTOP_HIT(AXIS); \
step_events_completed = current_block->step_event_count; \
} \
_OLD_ENDSTOP(axis, minmax) = _ENDSTOP(axis, minmax);
#ifdef COREXY #ifdef COREXY
// Head direction in -X axis for CoreXY bots. // Head direction in -X axis for CoreXY bots.
// If DeltaX == -DeltaY, the movement is only in Y axis // If DeltaX == -DeltaY, the movement is only in Y axis
@ -534,15 +561,7 @@ ISR(TIMER1_COMPA_vect) {
#ifdef COREXY #ifdef COREXY
} }
#endif #endif
} if (TEST(out_bits, Z_AXIS)) { // z -direction
if (TEST(out_bits, Z_AXIS)) { // -direction
Z_APPLY_DIR(INVERT_Z_DIR,0);
count_direction[Z_AXIS] = -1;
if (check_endstops) {
#if HAS_Z_MIN #if HAS_Z_MIN
#ifdef Z_DUAL_ENDSTOPS #ifdef Z_DUAL_ENDSTOPS
@ -560,7 +579,7 @@ ISR(TIMER1_COMPA_vect) {
z2_min_both = z2_min_endstop && old_z2_min_endstop; z2_min_both = z2_min_endstop && old_z2_min_endstop;
if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) { if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit = true; endstop_hit_bits |= BIT(Z_MIN);
if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing... if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing...
step_events_completed = current_block->step_event_count; step_events_completed = current_block->step_event_count;
} }
@ -581,23 +600,13 @@ ISR(TIMER1_COMPA_vect) {
if(z_probe_endstop && old_z_probe_endstop) if(z_probe_endstop && old_z_probe_endstop)
{ {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_probe_hit=true; endstop_hit_bits |= BIT(Z_PROBE);
// if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
// if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
} }
old_z_probe_endstop = z_probe_endstop; old_z_probe_endstop = z_probe_endstop;
#endif #endif
}
} // check_endstops else { // z +direction
}
else { // +direction
Z_APPLY_DIR(!INVERT_Z_DIR,0);
count_direction[Z_AXIS] = 1;
if (check_endstops) {
#if HAS_Z_MAX #if HAS_Z_MAX
#ifdef Z_DUAL_ENDSTOPS #ifdef Z_DUAL_ENDSTOPS
@ -615,7 +624,7 @@ ISR(TIMER1_COMPA_vect) {
z2_max_both = z2_max_endstop && old_z2_max_endstop; z2_max_both = z2_max_endstop && old_z2_max_endstop;
if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) { if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit = true; endstop_hit_bits |= BIT(Z_MIN);
// if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true"); // if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true");
// if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true"); // if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true");
@ -633,33 +642,23 @@ ISR(TIMER1_COMPA_vect) {
#endif // !Z_DUAL_ENDSTOPS #endif // !Z_DUAL_ENDSTOPS
#endif // Z_MAX_PIN #endif // Z_MAX_PIN
#ifdef Z_PROBE_ENDSTOP #ifdef Z_PROBE_ENDSTOP
UPDATE_ENDSTOP(z, Z, probe, PROBE); UPDATE_ENDSTOP(z, Z, probe, PROBE);
z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING); z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
if(z_probe_endstop && old_z_probe_endstop) if(z_probe_endstop && old_z_probe_endstop)
{ {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_probe_hit=true; endstop_hit_bits |= BIT(Z_PROBE);
// if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true"); // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
} }
old_z_probe_endstop = z_probe_endstop; old_z_probe_endstop = z_probe_endstop;
#endif #endif
}
} // check_endstops }
} // +direction
#ifndef ADVANCE
if (TEST(out_bits, E_AXIS)) { // -direction
REV_E_DIR();
count_direction[E_AXIS] = -1;
}
else { // +direction
NORM_E_DIR();
count_direction[E_AXIS] = 1;
}
#endif //!ADVANCE
// Take multiple steps per interrupt (For high speed moves) // Take multiple steps per interrupt (For high speed moves)
for (int8_t i = 0; i < step_loops; i++) { for (int8_t i = 0; i < step_loops; i++) {
@ -676,60 +675,34 @@ ISR(TIMER1_COMPA_vect) {
#endif //ADVANCE #endif //ADVANCE
#define _COUNTER(axis) counter_## axis #define _COUNTER(axis) counter_## axis
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
#ifdef CONFIG_STEPPERS_TOSHIBA #define STEP_ADD(axis, AXIS) \
/** _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
* The Toshiba stepper controller require much longer pulses. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
* So we 'stage' decompose the pulses between high and low
* instead of doing each in turn. The extra tests add enough
* lag to allow it work with without needing NOPs
*/
#define STEP_ADD(axis, AXIS) \
_COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
if (_COUNTER(axis) > 0) { _WRITE_STEP(AXIS, HIGH); }
STEP_ADD(x,X);
STEP_ADD(y,Y);
STEP_ADD(z,Z);
#ifndef ADVANCE
STEP_ADD(e,E);
#endif
#define STEP_IF_COUNTER(axis, AXIS) \
if (_COUNTER(axis) > 0) { \
_COUNTER(axis) -= current_block->step_event_count; \
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
_WRITE_STEP(AXIS, LOW); \
}
STEP_IF_COUNTER(x, X);
STEP_IF_COUNTER(y, Y);
STEP_IF_COUNTER(z, Z);
#ifndef ADVANCE
STEP_IF_COUNTER(e, E);
#endif
#else // !CONFIG_STEPPERS_TOSHIBA STEP_ADD(x,X);
STEP_ADD(y,Y);
STEP_ADD(z,Z);
#ifndef ADVANCE
STEP_ADD(e,E);
#endif
#define APPLY_MOVEMENT(axis, AXIS) \ #define STEP_IF_COUNTER(axis, AXIS) \
_COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \ if (_COUNTER(axis) > 0) { \
if (_COUNTER(axis) > 0) { \ _COUNTER(axis) -= current_block->step_event_count; \
_APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); \ count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
_COUNTER(axis) -= current_block->step_event_count; \ _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \ }
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
}
APPLY_MOVEMENT(x, X); STEP_IF_COUNTER(x, X);
APPLY_MOVEMENT(y, Y); STEP_IF_COUNTER(y, Y);
APPLY_MOVEMENT(z, Z); STEP_IF_COUNTER(z, Z);
#ifndef ADVANCE #ifndef ADVANCE
APPLY_MOVEMENT(e, E); STEP_IF_COUNTER(e, E);
#endif #endif
#endif // CONFIG_STEPPERS_TOSHIBA
step_events_completed++; step_events_completed++;
if (step_events_completed >= current_block->step_event_count) break; if (step_events_completed >= current_block->step_event_count) break;
} }
@ -1016,14 +989,15 @@ void st_init() {
#endif #endif
#endif #endif
#if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used. #if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
SET_INPUT(Z_PROBE_PIN); SET_INPUT(Z_PROBE_PIN);
#ifdef ENDSTOPPULLUP_ZPROBE #ifdef ENDSTOPPULLUP_ZPROBE
WRITE(Z_PROBE_PIN,HIGH); WRITE(Z_PROBE_PIN,HIGH);
#endif
#endif #endif
#endif
#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
#define _DISABLE(axis) disable_## axis() #define _DISABLE(axis) disable_## axis()
#define AXIS_INIT(axis, AXIS, PIN) \ #define AXIS_INIT(axis, AXIS, PIN) \
@ -1099,6 +1073,8 @@ void st_init() {
enable_endstops(true); // Start with endstops active. After homing they can be disabled enable_endstops(true); // Start with endstops active. After homing they can be disabled
sei(); sei();
set_stepper_direction(); // Init directions to out_bits = 0
} }
@ -1136,9 +1112,8 @@ long st_get_position(uint8_t axis) {
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
float st_get_position_mm(uint8_t axis) { float st_get_position_mm(AxisEnum axis) {
float steper_position_in_steps = st_get_position(axis); return st_get_position(axis) / axis_steps_per_unit[axis];
return steper_position_in_steps / axis_steps_per_unit[axis];
} }
#endif // ENABLE_AUTO_BED_LEVELING #endif // ENABLE_AUTO_BED_LEVELING

@ -67,9 +67,9 @@ void st_set_e_position(const long &e);
long st_get_position(uint8_t axis); long st_get_position(uint8_t axis);
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
// Get current position in mm // Get current position in mm
float st_get_position_mm(uint8_t axis); float st_get_position_mm(AxisEnum axis);
#endif //ENABLE_AUTO_BED_LEVELING #endif
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this // The stepper subsystem goes to sleep when it runs out of things to execute. Call this
// to notify the subsystem that it is time to go to work. // to notify the subsystem that it is time to go to work.

@ -73,16 +73,14 @@ unsigned char soft_pwm_bed;
int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
#endif #endif
#define HAS_HEATER_THERMAL_PROTECTION (defined(THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0) #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
#define HAS_BED_THERMAL_PROTECTION (defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0 && TEMP_SENSOR_BED != 0)
#if HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION
enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway }; enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway };
void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc); void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
#if HAS_HEATER_THERMAL_PROTECTION #ifdef THERMAL_PROTECTION_HOTENDS
static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset }; static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset };
static millis_t thermal_runaway_timer[4]; // = {0,0,0,0}; static millis_t thermal_runaway_timer[4]; // = {0,0,0,0};
#endif #endif
#if HAS_BED_THERMAL_PROTECTION #ifdef THERMAL_PROTECTION_BED
static TRState thermal_runaway_bed_state_machine = TRReset; static TRState thermal_runaway_bed_state_machine = TRReset;
static millis_t thermal_runaway_bed_timer; static millis_t thermal_runaway_bed_timer;
#endif #endif
@ -170,10 +168,10 @@ static float analog2temp(int raw, uint8_t e);
static float analog2tempBed(int raw); static float analog2tempBed(int raw);
static void updateTemperaturesFromRawValues(); static void updateTemperaturesFromRawValues();
#ifdef WATCH_TEMP_PERIOD #ifdef THERMAL_PROTECTION_HOTENDS
int watch_start_temp[EXTRUDERS] = { 0 }; int watch_target_temp[EXTRUDERS] = { 0 };
millis_t watchmillis[EXTRUDERS] = { 0 }; millis_t watch_heater_next_ms[EXTRUDERS] = { 0 };
#endif //WATCH_TEMP_PERIOD #endif
#ifndef SOFT_PWM_SCALE #ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0 #define SOFT_PWM_SCALE 0
@ -247,8 +245,8 @@ void PID_autotune(float temp, int extruder, int ncycles)
} }
#endif #endif
if (heating == true && input > temp) { if (heating && input > temp) {
if (ms - t2 > 5000) { if (ms > t2 + 5000) {
heating = false; heating = false;
if (extruder < 0) if (extruder < 0)
soft_pwm_bed = (bias - d) >> 1; soft_pwm_bed = (bias - d) >> 1;
@ -259,8 +257,9 @@ void PID_autotune(float temp, int extruder, int ncycles)
max = temp; max = temp;
} }
} }
if (heating == false && input < temp) {
if (ms - t1 > 5000) { if (!heating && input < temp) {
if (ms > t1 + 5000) {
heating = true; heating = true;
t2 = ms; t2 = ms;
t_low = t2 - t1; t_low = t2 - t1;
@ -313,7 +312,8 @@ void PID_autotune(float temp, int extruder, int ncycles)
} }
} }
} }
if (input > temp + 20) { #define MAX_OVERSHOOT_PID_AUTOTUNE 20
if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH); SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
return; return;
} }
@ -447,14 +447,14 @@ void checkExtruderAutoFans()
// //
// Temperature Error Handlers // Temperature Error Handlers
// //
inline void _temp_error(int e, const char *msg1, const char *msg2) { inline void _temp_error(int e, const char *serial_msg, const char *lcd_msg) {
if (IsRunning()) { if (IsRunning()) {
SERIAL_ERROR_START; SERIAL_ERROR_START;
if (e >= 0) SERIAL_ERRORLN((int)e); if (e >= 0) SERIAL_ERRORLN((int)e);
serialprintPGM(msg1); serialprintPGM(serial_msg);
MYSERIAL.write('\n'); MYSERIAL.write('\n');
#ifdef ULTRA_LCD #ifdef ULTRA_LCD
lcd_setalertstatuspgm(msg2); lcd_setalertstatuspgm(lcd_msg);
#endif #endif
} }
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
@ -602,17 +602,17 @@ void manage_heater() {
float ct = current_temperature[0]; float ct = current_temperature[0];
if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0); if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0); if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
#endif //HEATER_0_USES_MAX6675 #endif
#if defined(WATCH_TEMP_PERIOD) || !defined(PIDTEMPBED) || HAS_AUTO_FAN #if defined(THERMAL_PROTECTION_HOTENDS) || !defined(PIDTEMPBED) || HAS_AUTO_FAN
millis_t ms = millis(); millis_t ms = millis();
#endif #endif
// Loop through all extruders // Loop through all extruders
for (int e = 0; e < EXTRUDERS; e++) { for (int e = 0; e < EXTRUDERS; e++) {
#if HAS_HEATER_THERMAL_PROTECTION #ifdef THERMAL_PROTECTION_HOTENDS
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS); thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
#endif #endif
float pid_output = get_pid_output(e); float pid_output = get_pid_output(e);
@ -620,26 +620,31 @@ void manage_heater() {
// Check if temperature is within the correct range // Check if temperature is within the correct range
soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0; soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
#ifdef WATCH_TEMP_PERIOD // Check if the temperature is failing to increase
if (watchmillis[e] && ms > watchmillis[e] + WATCH_TEMP_PERIOD) { #ifdef THERMAL_PROTECTION_HOTENDS
if (degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE) {
setTargetHotend(0, e); // Is it time to check this extruder's heater?
LCD_MESSAGEPGM(MSG_HEATING_FAILED_LCD); // translatable if (watch_heater_next_ms[e] && ms > watch_heater_next_ms[e]) {
SERIAL_ECHO_START; // Has it failed to increase enough?
SERIAL_ECHOLNPGM(MSG_HEATING_FAILED); if (degHotend(e) < watch_target_temp[e]) {
// Stop!
disable_all_heaters();
_temp_error(e, PSTR(MSG_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
} }
else { else {
watchmillis[e] = 0; // Start again if the target is still far off
start_watching_heater(e);
} }
} }
#endif //WATCH_TEMP_PERIOD
#endif // THERMAL_PROTECTION_HOTENDS
#ifdef TEMP_SENSOR_1_AS_REDUNDANT #ifdef TEMP_SENSOR_1_AS_REDUNDANT
if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) { if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
disable_all_heaters(); disable_all_heaters();
_temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP)); _temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP));
} }
#endif // TEMP_SENSOR_1_AS_REDUNDANT #endif
} // Extruders Loop } // Extruders Loop
@ -672,8 +677,8 @@ void manage_heater() {
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
#if HAS_BED_THERMAL_PROTECTION #ifdef THERMAL_PROTECTION_BED
thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS); thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
#endif #endif
#ifdef PIDTEMPBED #ifdef PIDTEMPBED
@ -784,7 +789,7 @@ static void updateTemperaturesFromRawValues() {
#ifdef HEATER_0_USES_MAX6675 #ifdef HEATER_0_USES_MAX6675
current_temperature_raw[0] = read_max6675(); current_temperature_raw[0] = read_max6675();
#endif #endif
for(uint8_t e = 0; e < EXTRUDERS; e++) { for (uint8_t e = 0; e < EXTRUDERS; e++) {
current_temperature[e] = analog2temp(current_temperature_raw[e], e); current_temperature[e] = analog2temp(current_temperature_raw[e], e);
} }
current_temperature_bed = analog2tempBed(current_temperature_bed_raw); current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
@ -996,19 +1001,24 @@ void tp_init() {
#endif //BED_MAXTEMP #endif //BED_MAXTEMP
} }
void setWatch() { #ifdef THERMAL_PROTECTION_HOTENDS
#ifdef WATCH_TEMP_PERIOD /**
millis_t ms = millis(); * Start Heating Sanity Check for hotends that are below
for (int e = 0; e < EXTRUDERS; e++) { * their target temperature by a configurable margin.
if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) { * This is called when the temperature is set. (M104, M109)
watch_start_temp[e] = degHotend(e); */
watchmillis[e] = ms; void start_watching_heater(int e) {
} millis_t ms = millis() + WATCH_TEMP_PERIOD * 1000;
if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
watch_target_temp[e] = degHotend(e) + WATCH_TEMP_INCREASE;
watch_heater_next_ms[e] = ms;
} }
#endif else
} watch_heater_next_ms[e] = 0;
}
#endif
#if HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) { void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
@ -1074,7 +1084,7 @@ void setWatch() {
} }
} }
#endif // HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
void disable_all_heaters() { void disable_all_heaters() {
for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i); for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);

@ -130,7 +130,6 @@ HOTEND_ROUTINES(0);
int getHeaterPower(int heater); int getHeaterPower(int heater);
void disable_all_heaters(); void disable_all_heaters();
void setWatch();
void updatePID(); void updatePID();
void PID_autotune(float temp, int extruder, int ncycles); void PID_autotune(float temp, int extruder, int ncycles);
@ -138,6 +137,10 @@ void PID_autotune(float temp, int extruder, int ncycles);
void setExtruderAutoFanState(int pin, bool state); void setExtruderAutoFanState(int pin, bool state);
void checkExtruderAutoFans(); void checkExtruderAutoFans();
#ifdef THERMAL_PROTECTION_HOTENDS
void start_watching_heater(int e=0);
#endif
FORCE_INLINE void autotempShutdown() { FORCE_INLINE void autotempShutdown() {
#ifdef AUTOTEMP #ifdef AUTOTEMP
if (autotemp_enabled) { if (autotemp_enabled) {

@ -7,12 +7,11 @@
#include "stepper.h" #include "stepper.h"
#include "configuration_store.h" #include "configuration_store.h"
int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */ int8_t encoderDiff; // updated from interrupt context and added to encoderPosition every LCD update
bool encoderRateMultiplierEnabled; bool encoderRateMultiplierEnabled;
int32_t lastEncoderMovementMillis; int32_t lastEncoderMovementMillis;
/* Configuration settings */
int plaPreheatHotendTemp; int plaPreheatHotendTemp;
int plaPreheatHPBTemp; int plaPreheatHPBTemp;
int plaPreheatFanSpeed; int plaPreheatFanSpeed;
@ -25,9 +24,7 @@ int absPreheatFanSpeed;
millis_t previous_lcd_status_ms = 0; millis_t previous_lcd_status_ms = 0;
#endif #endif
/* !Configuration settings */ // Function pointer to menu functions.
//Function pointer to menu functions.
typedef void (*menuFunc_t)(); typedef void (*menuFunc_t)();
uint8_t lcd_status_message_level; uint8_t lcd_status_message_level;
@ -212,11 +209,11 @@ static void lcd_status_screen();
} } while(0) } } while(0)
/** Used variables to keep track of the menu */ /** Used variables to keep track of the menu */
#ifndef REPRAPWORLD_KEYPAD volatile uint8_t buttons; //the last checked buttons in a bit array.
volatile uint8_t buttons; // Bits of the pressed buttons. #ifdef REPRAPWORLD_KEYPAD
#else volatile uint8_t buttons_reprapworld_keypad; // to store the keypad shift register values
volatile uint8_t buttons_reprapworld_keypad; // The reprapworld_keypad shift register values
#endif #endif
#ifdef LCD_HAS_SLOW_BUTTONS #ifdef LCD_HAS_SLOW_BUTTONS
volatile uint8_t slow_buttons; // Bits of the pressed buttons. volatile uint8_t slow_buttons; // Bits of the pressed buttons.
#endif #endif
@ -438,17 +435,12 @@ static void lcd_main_menu() {
} }
#endif #endif
/**
* Set the home offset based on the current_position
*/
void lcd_set_home_offsets() { void lcd_set_home_offsets() {
for (int8_t i=0; i < NUM_AXIS; i++) { // M428 Command
if (i != E_AXIS) { enqueuecommands_P(PSTR("M428"));
home_offset[i] -= current_position[i];
current_position[i] = 0.0;
}
}
plan_set_position(0.0, 0.0, 0.0, current_position[E_AXIS]);
// Audio feedback
enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
lcd_return_to_status(); lcd_return_to_status();
} }
@ -526,7 +518,9 @@ void _lcd_preheat(int endnum, const float temph, const float tempb, const int fa
setTargetBed(tempb); setTargetBed(tempb);
fanSpeed = fan; fanSpeed = fan;
lcd_return_to_status(); lcd_return_to_status();
setWatch(); // heater sanity check timer #ifdef WATCH_TEMP_PERIOD
if (endnum >= 0) start_watching_heater(endnum);
#endif
} }
void lcd_preheat_pla0() { _lcd_preheat(0, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); } void lcd_preheat_pla0() { _lcd_preheat(0, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs0() { _lcd_preheat(0, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); } void lcd_preheat_abs0() { _lcd_preheat(0, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
@ -878,10 +872,17 @@ static void lcd_control_menu() {
* "Control" > "Temperature" submenu * "Control" > "Temperature" submenu
* *
*/ */
static void lcd_control_temperature_menu() { static void lcd_control_temperature_menu() {
START_MENU(); START_MENU();
//
// ^ Control
//
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu); MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
//
// Nozzle, Nozzle 2, Nozzle 3, Nozzle 4
//
#if TEMP_SENSOR_0 != 0 #if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15);
#endif #endif
@ -900,16 +901,32 @@ static void lcd_control_temperature_menu() {
#endif // EXTRUDERS > 3 #endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2 #endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1 #endif // EXTRUDERS > 1
//
// Bed
//
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15);
#endif #endif
//
// Fan Speed
//
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
//
// Autotemp, Min, Max, Fact
//
#if defined(AUTOTEMP) && (TEMP_SENSOR_0 != 0) #if defined(AUTOTEMP) && (TEMP_SENSOR_0 != 0)
MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &autotemp_enabled); MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &autotemp_enabled);
MENU_ITEM_EDIT(float3, MSG_MIN, &autotemp_min, 0, HEATER_0_MAXTEMP - 15); MENU_ITEM_EDIT(float3, MSG_MIN, &autotemp_min, 0, HEATER_0_MAXTEMP - 15);
MENU_ITEM_EDIT(float3, MSG_MAX, &autotemp_max, 0, HEATER_0_MAXTEMP - 15); MENU_ITEM_EDIT(float3, MSG_MAX, &autotemp_max, 0, HEATER_0_MAXTEMP - 15);
MENU_ITEM_EDIT(float32, MSG_FACTOR, &autotemp_factor, 0.0, 1.0); MENU_ITEM_EDIT(float32, MSG_FACTOR, &autotemp_factor, 0.0, 1.0);
#endif #endif
//
// PID-P, PID-I, PID-D, PID-C
//
#ifdef PIDTEMP #ifdef PIDTEMP
// set up temp variables - undo the default scaling // set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(PID_PARAM(Ki,0)); raw_Ki = unscalePID_i(PID_PARAM(Ki,0));
@ -962,7 +979,15 @@ static void lcd_control_temperature_menu() {
#endif//EXTRUDERS > 1 #endif//EXTRUDERS > 1
#endif //PID_PARAMS_PER_EXTRUDER #endif //PID_PARAMS_PER_EXTRUDER
#endif//PIDTEMP #endif//PIDTEMP
//
// Preheat PLA conf
//
MENU_ITEM(submenu, MSG_PREHEAT_PLA_SETTINGS, lcd_control_temperature_preheat_pla_settings_menu); MENU_ITEM(submenu, MSG_PREHEAT_PLA_SETTINGS, lcd_control_temperature_preheat_pla_settings_menu);
//
// Preheat ABS conf
//
MENU_ITEM(submenu, MSG_PREHEAT_ABS_SETTINGS, lcd_control_temperature_preheat_abs_settings_menu); MENU_ITEM(submenu, MSG_PREHEAT_ABS_SETTINGS, lcd_control_temperature_preheat_abs_settings_menu);
END_MENU(); END_MENU();
} }
@ -972,7 +997,6 @@ static void lcd_control_temperature_menu() {
* "Temperature" > "Preheat PLA conf" submenu * "Temperature" > "Preheat PLA conf" submenu
* *
*/ */
static void lcd_control_temperature_preheat_pla_settings_menu() { static void lcd_control_temperature_preheat_pla_settings_menu() {
START_MENU(); START_MENU();
MENU_ITEM(back, MSG_TEMPERATURE, lcd_control_temperature_menu); MENU_ITEM(back, MSG_TEMPERATURE, lcd_control_temperature_menu);
@ -994,7 +1018,6 @@ static void lcd_control_temperature_preheat_pla_settings_menu() {
* "Temperature" > "Preheat ABS conf" submenu * "Temperature" > "Preheat ABS conf" submenu
* *
*/ */
static void lcd_control_temperature_preheat_abs_settings_menu() { static void lcd_control_temperature_preheat_abs_settings_menu() {
START_MENU(); START_MENU();
MENU_ITEM(back, MSG_TEMPERATURE, lcd_control_temperature_menu); MENU_ITEM(back, MSG_TEMPERATURE, lcd_control_temperature_menu);
@ -1016,7 +1039,6 @@ static void lcd_control_temperature_preheat_abs_settings_menu() {
* "Control" > "Motion" submenu * "Control" > "Motion" submenu
* *
*/ */
static void lcd_control_motion_menu() { static void lcd_control_motion_menu() {
START_MENU(); START_MENU();
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu); MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
@ -1058,7 +1080,6 @@ static void lcd_control_motion_menu() {
* "Control" > "Filament" submenu * "Control" > "Filament" submenu
* *
*/ */
static void lcd_control_volumetric_menu() { static void lcd_control_volumetric_menu() {
START_MENU(); START_MENU();
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu); MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
@ -1086,7 +1107,6 @@ static void lcd_control_volumetric_menu() {
* "Control" > "Contrast" submenu * "Control" > "Contrast" submenu
* *
*/ */
#ifdef HAS_LCD_CONTRAST #ifdef HAS_LCD_CONTRAST
static void lcd_set_contrast() { static void lcd_set_contrast() {
if (encoderPosition != 0) { if (encoderPosition != 0) {
@ -1106,7 +1126,6 @@ static void lcd_control_volumetric_menu() {
* "Control" > "Retract" submenu * "Control" > "Retract" submenu
* *
*/ */
#ifdef FWRETRACT #ifdef FWRETRACT
static void lcd_control_retract_menu() { static void lcd_control_retract_menu() {
START_MENU(); START_MENU();
@ -1144,7 +1163,6 @@ static void lcd_sd_updir() {
* "Print from SD" submenu * "Print from SD" submenu
* *
*/ */
void lcd_sdcard_menu() { void lcd_sdcard_menu() {
if (lcdDrawUpdate == 0 && LCD_CLICKED == 0) return; // nothing to do (so don't thrash the SD card) if (lcdDrawUpdate == 0 && LCD_CLICKED == 0) return; // nothing to do (so don't thrash the SD card)
uint16_t fileCnt = card.getnrfilenames(); uint16_t fileCnt = card.getnrfilenames();
@ -1290,7 +1308,7 @@ void lcd_quick_feedback() {
#define LCD_FEEDBACK_FREQUENCY_DURATION_MS (1000/6) #define LCD_FEEDBACK_FREQUENCY_DURATION_MS (1000/6)
#endif #endif
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ); lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#elif defined(BEEPER) && BEEPER > -1 #elif defined(BEEPER) && BEEPER >= 0
#ifndef LCD_FEEDBACK_FREQUENCY_HZ #ifndef LCD_FEEDBACK_FREQUENCY_HZ
#define LCD_FEEDBACK_FREQUENCY_HZ 5000 #define LCD_FEEDBACK_FREQUENCY_HZ 5000
#endif #endif
@ -1723,12 +1741,12 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
void lcd_buzz(long duration, uint16_t freq) { void lcd_buzz(long duration, uint16_t freq) {
if (freq > 0) { if (freq > 0) {
#if BEEPER > 0 #ifdef LCD_USE_I2C_BUZZER
lcd.buzz(duration, freq);
#elif defined(BEEPER) && BEEPER >= 0
SET_OUTPUT(BEEPER); SET_OUTPUT(BEEPER);
tone(BEEPER, freq, duration); tone(BEEPER, freq, duration);
delay(duration); delay(duration);
#elif defined(LCD_USE_I2C_BUZZER)
lcd.buzz(duration, freq);
#else #else
delay(duration); delay(duration);
#endif #endif

@ -106,7 +106,7 @@
FORCE_INLINE void lcd_setstatuspgm(const char* message, const uint8_t level=0) {} FORCE_INLINE void lcd_setstatuspgm(const char* message, const uint8_t level=0) {}
FORCE_INLINE void lcd_buttons_update() {} FORCE_INLINE void lcd_buttons_update() {}
FORCE_INLINE void lcd_reset_alert_level() {} FORCE_INLINE void lcd_reset_alert_level() {}
FORCE_INLINE void lcd_buzz(long duration,uint16_t freq) {} FORCE_INLINE void lcd_buzz(long duration, uint16_t freq) {}
FORCE_INLINE bool lcd_detected(void) { return true; } FORCE_INLINE bool lcd_detected(void) { return true; }
#define LCD_MESSAGEPGM(x) do{}while(0) #define LCD_MESSAGEPGM(x) do{}while(0)

@ -6,17 +6,17 @@
* When selecting the Russian language, a slightly different LCD implementation is used to handle UTF8 characters. * When selecting the Russian language, a slightly different LCD implementation is used to handle UTF8 characters.
**/ **/
#ifndef REPRAPWORLD_KEYPAD //#ifndef REPRAPWORLD_KEYPAD
extern volatile uint8_t buttons; //the last checked buttons in a bit array. // extern volatile uint8_t buttons; //the last checked buttons in a bit array.
#else //#else
extern volatile uint16_t buttons; //an extended version of the last checked buttons in a bit array. extern volatile uint8_t buttons; //an extended version of the last checked buttons in a bit array.
#endif //#endif
//////////////////////////////////// ////////////////////////////////////
// Setup button and encode mappings for each panel (into 'buttons' variable // Setup button and encode mappings for each panel (into 'buttons' variable
// //
// This is just to map common functions (across different panels) onto the same // This is just to map common functions (across different panels) onto the same
// macro name. The mapping is independent of whether the button is directly connected or // macro name. The mapping is independent of whether the button is directly connected or
// via a shift/i2c register. // via a shift/i2c register.
#ifdef ULTIPANEL #ifdef ULTIPANEL
@ -38,7 +38,7 @@
// //
#if defined(LCD_I2C_VIKI) #if defined(LCD_I2C_VIKI)
#define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C) #define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C)
// button and encoder bit positions within 'buttons' // button and encoder bit positions within 'buttons'
#define B_LE (BUTTON_LEFT<<B_I2C_BTN_OFFSET) // The remaining normalized buttons are all read via I2C #define B_LE (BUTTON_LEFT<<B_I2C_BTN_OFFSET) // The remaining normalized buttons are all read via I2C
#define B_UP (BUTTON_UP<<B_I2C_BTN_OFFSET) #define B_UP (BUTTON_UP<<B_I2C_BTN_OFFSET)
@ -46,22 +46,22 @@
#define B_DW (BUTTON_DOWN<<B_I2C_BTN_OFFSET) #define B_DW (BUTTON_DOWN<<B_I2C_BTN_OFFSET)
#define B_RI (BUTTON_RIGHT<<B_I2C_BTN_OFFSET) #define B_RI (BUTTON_RIGHT<<B_I2C_BTN_OFFSET)
#if defined(BTN_ENC) && BTN_ENC > -1 #if defined(BTN_ENC) && BTN_ENC > -1
// the pause/stop/restart button is connected to BTN_ENC when used // the pause/stop/restart button is connected to BTN_ENC when used
#define B_ST (EN_C) // Map the pause/stop/resume button into its normalized functional name #define B_ST (EN_C) // Map the pause/stop/resume button into its normalized functional name
#define LCD_CLICKED (buttons&(B_MI|B_RI|B_ST)) // pause/stop button also acts as click until we implement proper pause/stop. #define LCD_CLICKED (buttons&(B_MI|B_RI|B_ST)) // pause/stop button also acts as click until we implement proper pause/stop.
#else #else
#define LCD_CLICKED (buttons&(B_MI|B_RI)) #define LCD_CLICKED (buttons&(B_MI|B_RI))
#endif #endif
// I2C buttons take too long to read inside an interrupt context and so we read them during lcd_update // I2C buttons take too long to read inside an interrupt context and so we read them during lcd_update
#define LCD_HAS_SLOW_BUTTONS #define LCD_HAS_SLOW_BUTTONS
#elif defined(LCD_I2C_PANELOLU2) #elif defined(LCD_I2C_PANELOLU2)
// encoder click can be read through I2C if not directly connected // encoder click can be read through I2C if not directly connected
#if BTN_ENC <= 0 #if BTN_ENC <= 0
#define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C) #define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C)
#define B_MI (PANELOLU2_ENCODER_C<<B_I2C_BTN_OFFSET) // requires LiquidTWI2 library v1.2.3 or later #define B_MI (PANELOLU2_ENCODER_C<<B_I2C_BTN_OFFSET) // requires LiquidTWI2 library v1.2.3 or later
#define LCD_CLICKED (buttons&B_MI) #define LCD_CLICKED (buttons&B_MI)
@ -69,7 +69,7 @@
// I2C buttons take too long to read inside an interrupt context and so we read them during lcd_update // I2C buttons take too long to read inside an interrupt context and so we read them during lcd_update
#define LCD_HAS_SLOW_BUTTONS #define LCD_HAS_SLOW_BUTTONS
#else #else
#define LCD_CLICKED (buttons&EN_C) #define LCD_CLICKED (buttons&EN_C)
#endif #endif
#elif defined(REPRAPWORLD_KEYPAD) #elif defined(REPRAPWORLD_KEYPAD)
@ -77,13 +77,13 @@
#define BLEN_REPRAPWORLD_KEYPAD_F3 0 #define BLEN_REPRAPWORLD_KEYPAD_F3 0
#define BLEN_REPRAPWORLD_KEYPAD_F2 1 #define BLEN_REPRAPWORLD_KEYPAD_F2 1
#define BLEN_REPRAPWORLD_KEYPAD_F1 2 #define BLEN_REPRAPWORLD_KEYPAD_F1 2
#define BLEN_REPRAPWORLD_KEYPAD_UP 3 #define BLEN_REPRAPWORLD_KEYPAD_UP 6
#define BLEN_REPRAPWORLD_KEYPAD_RIGHT 4 #define BLEN_REPRAPWORLD_KEYPAD_RIGHT 4
#define BLEN_REPRAPWORLD_KEYPAD_MIDDLE 5 #define BLEN_REPRAPWORLD_KEYPAD_MIDDLE 5
#define BLEN_REPRAPWORLD_KEYPAD_DOWN 6 #define BLEN_REPRAPWORLD_KEYPAD_DOWN 3
#define BLEN_REPRAPWORLD_KEYPAD_LEFT 7 #define BLEN_REPRAPWORLD_KEYPAD_LEFT 7
#define REPRAPWORLD_BTN_OFFSET 3 // bit offset into buttons for shift register values #define REPRAPWORLD_BTN_OFFSET 0 // bit offset into buttons for shift register values
#define EN_REPRAPWORLD_KEYPAD_F3 BIT((BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_F3 BIT((BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_F2 BIT((BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_F2 BIT((BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET))
@ -94,14 +94,14 @@
#define EN_REPRAPWORLD_KEYPAD_DOWN BIT((BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_DOWN BIT((BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_LEFT BIT((BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_LEFT BIT((BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET))
#define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1)) //#define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1))
#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN) //#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN)
#define REPRAPWORLD_KEYPAD_MOVE_Y_UP (buttons&EN_REPRAPWORLD_KEYPAD_UP) //#define REPRAPWORLD_KEYPAD_MOVE_Y_UP (buttons&EN_REPRAPWORLD_KEYPAD_UP)
#define REPRAPWORLD_KEYPAD_MOVE_HOME (buttons&EN_REPRAPWORLD_KEYPAD_MIDDLE) //#define REPRAPWORLD_KEYPAD_MOVE_HOME (buttons&EN_REPRAPWORLD_KEYPAD_MIDDLE)
#elif defined(NEWPANEL) #elif defined(NEWPANEL)
#define LCD_CLICKED (buttons&EN_C) #define LCD_CLICKED (buttons&EN_C)
#else // old style ULTIPANEL #else // old style ULTIPANEL
//bits in the shift register that carry the buttons for: //bits in the shift register that carry the buttons for:
// left up center down right red(stop) // left up center down right red(stop)
@ -143,7 +143,7 @@
#include <LiquidCrystal_I2C.h> #include <LiquidCrystal_I2C.h>
#define LCD_CLASS LiquidCrystal_I2C #define LCD_CLASS LiquidCrystal_I2C
LCD_CLASS lcd(LCD_I2C_ADDRESS,LCD_I2C_PIN_EN,LCD_I2C_PIN_RW,LCD_I2C_PIN_RS,LCD_I2C_PIN_D4,LCD_I2C_PIN_D5,LCD_I2C_PIN_D6,LCD_I2C_PIN_D7); LCD_CLASS lcd(LCD_I2C_ADDRESS,LCD_I2C_PIN_EN,LCD_I2C_PIN_RW,LCD_I2C_PIN_RS,LCD_I2C_PIN_D4,LCD_I2C_PIN_D5,LCD_I2C_PIN_D6,LCD_I2C_PIN_D7);
#elif defined(LCD_I2C_TYPE_MCP23017) #elif defined(LCD_I2C_TYPE_MCP23017)
//for the LED indicators (which maybe mapped to different things in lcd_implementation_update_indicators()) //for the LED indicators (which maybe mapped to different things in lcd_implementation_update_indicators())
#define LED_A 0x04 //100 #define LED_A 0x04 //100
@ -156,28 +156,28 @@
#include <LiquidTWI2.h> #include <LiquidTWI2.h>
#define LCD_CLASS LiquidTWI2 #define LCD_CLASS LiquidTWI2
#if defined(DETECT_DEVICE) #if defined(DETECT_DEVICE)
LCD_CLASS lcd(LCD_I2C_ADDRESS, 1); LCD_CLASS lcd(LCD_I2C_ADDRESS, 1);
#else #else
LCD_CLASS lcd(LCD_I2C_ADDRESS); LCD_CLASS lcd(LCD_I2C_ADDRESS);
#endif #endif
#elif defined(LCD_I2C_TYPE_MCP23008) #elif defined(LCD_I2C_TYPE_MCP23008)
#include <Wire.h> #include <Wire.h>
#include <LiquidTWI2.h> #include <LiquidTWI2.h>
#define LCD_CLASS LiquidTWI2 #define LCD_CLASS LiquidTWI2
#if defined(DETECT_DEVICE) #if defined(DETECT_DEVICE)
LCD_CLASS lcd(LCD_I2C_ADDRESS, 1); LCD_CLASS lcd(LCD_I2C_ADDRESS, 1);
#else #else
LCD_CLASS lcd(LCD_I2C_ADDRESS); LCD_CLASS lcd(LCD_I2C_ADDRESS);
#endif #endif
#elif defined(LCD_I2C_TYPE_PCA8574) #elif defined(LCD_I2C_TYPE_PCA8574)
#include <LiquidCrystal_I2C.h> #include <LiquidCrystal_I2C.h>
#define LCD_CLASS LiquidCrystal_I2C #define LCD_CLASS LiquidCrystal_I2C
LCD_CLASS lcd(LCD_I2C_ADDRESS, LCD_WIDTH, LCD_HEIGHT); LCD_CLASS lcd(LCD_I2C_ADDRESS, LCD_WIDTH, LCD_HEIGHT);
// 2 wire Non-latching LCD SR from: // 2 wire Non-latching LCD SR from:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection // https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
#elif defined(SR_LCD_2W_NL) #elif defined(SR_LCD_2W_NL)
extern "C" void __cxa_pure_virtual() { while (1); } extern "C" void __cxa_pure_virtual() { while (1); }
#include <LCD.h> #include <LCD.h>
@ -353,159 +353,152 @@ static void lcd_implementation_init(
#endif #endif
) { ) {
#if defined(LCD_I2C_TYPE_PCF8575) #if defined(LCD_I2C_TYPE_PCF8575)
lcd.begin(LCD_WIDTH, LCD_HEIGHT); lcd.begin(LCD_WIDTH, LCD_HEIGHT);
#ifdef LCD_I2C_PIN_BL #ifdef LCD_I2C_PIN_BL
lcd.setBacklightPin(LCD_I2C_PIN_BL,POSITIVE); lcd.setBacklightPin(LCD_I2C_PIN_BL, POSITIVE);
lcd.setBacklight(HIGH); lcd.setBacklight(HIGH);
#endif #endif
#elif defined(LCD_I2C_TYPE_MCP23017) #elif defined(LCD_I2C_TYPE_MCP23017)
lcd.setMCPType(LTI_TYPE_MCP23017); lcd.setMCPType(LTI_TYPE_MCP23017);
lcd.begin(LCD_WIDTH, LCD_HEIGHT); lcd.begin(LCD_WIDTH, LCD_HEIGHT);
lcd.setBacklight(0); //set all the LEDs off to begin with lcd.setBacklight(0); //set all the LEDs off to begin with
#elif defined(LCD_I2C_TYPE_MCP23008) #elif defined(LCD_I2C_TYPE_MCP23008)
lcd.setMCPType(LTI_TYPE_MCP23008); lcd.setMCPType(LTI_TYPE_MCP23008);
lcd.begin(LCD_WIDTH, LCD_HEIGHT); lcd.begin(LCD_WIDTH, LCD_HEIGHT);
#elif defined(LCD_I2C_TYPE_PCA8574) #elif defined(LCD_I2C_TYPE_PCA8574)
lcd.init(); lcd.init();
lcd.backlight(); lcd.backlight();
#else #else
lcd.begin(LCD_WIDTH, LCD_HEIGHT); lcd.begin(LCD_WIDTH, LCD_HEIGHT);
#endif #endif
lcd_set_custom_characters( lcd_set_custom_characters(
#ifdef LCD_PROGRESS_BAR #ifdef LCD_PROGRESS_BAR
progress_bar_set progress_bar_set
#endif #endif
); );
lcd.clear(); lcd.clear();
}
static void lcd_implementation_clear()
{
lcd.clear();
} }
static void lcd_implementation_clear() { lcd.clear(); }
/* Arduino < 1.0.0 is missing a function to print PROGMEM strings, so we need to implement our own */ /* Arduino < 1.0.0 is missing a function to print PROGMEM strings, so we need to implement our own */
char lcd_printPGM(const char* str) { char lcd_printPGM(const char* str) {
char c; char c, n = 0;
char n = 0; while ((c = pgm_read_byte(str++))) n += charset_mapper(c);
while((c = pgm_read_byte(str++))) {
n += charset_mapper(c);
}
return n; return n;
} }
char lcd_print(char* str) { char lcd_print(char* str) {
char c, n = 0;; char c, n = 0;;
unsigned char i = 0; unsigned char i = 0;
while((c = str[i++])) { while ((c = str[i++])) n += charset_mapper(c);
n += charset_mapper(c);
}
return n; return n;
} }
unsigned lcd_print(char c) { unsigned lcd_print(char c) { return charset_mapper(c); }
return charset_mapper(c);
}
/* /*
Possible status screens: Possible status screens:
16x2 |0123456789012345| 16x2 |000/000 B000/000|
|000/000 B000/000| |0123456789012345|
|Status line.....|
16x4 |0123456789012345| 16x4 |000/000 B000/000|
|000/000 B000/000| |SD100% Z000.00 |
|SD100% Z000.0|
|F100% T--:--| |F100% T--:--|
|Status line.....| |0123456789012345|
20x2 |01234567890123456789| 20x2 |T000/000D B000/000D |
|T000/000D B000/000D | |01234567890123456789|
|Status line.........|
20x4 |01234567890123456789| 20x4 |T000/000D B000/000D |
|T000/000D B000/000D | |X000 Y000 Z000.00 |
|X000 Y000 Z000.00|
|F100% SD100% T--:--| |F100% SD100% T--:--|
|Status line.........| |01234567890123456789|
20x4 |01234567890123456789| 20x4 |T000/000D B000/000D |
|T000/000D B000/000D | |T000/000D Z000.00 |
|T000/000D Z000.0|
|F100% SD100% T--:--| |F100% SD100% T--:--|
|Status line.........| |01234567890123456789|
*/ */
static void lcd_implementation_status_screen() { static void lcd_implementation_status_screen() {
int tHotend = int(degHotend(0) + 0.5);
int tTarget = int(degTargetHotend(0) + 0.5); #define LCD_TEMP_ONLY(T1,T2) \
lcd.print(itostr3(T1 + 0.5)); \
lcd.print('/'); \
lcd.print(itostr3left(T2 + 0.5))
#define LCD_TEMP(T1,T2,PREFIX) \
lcd.print(PREFIX); \
LCD_TEMP_ONLY(T1,T2); \
lcd_printPGM(PSTR(LCD_STR_DEGREE " ")); \
if (T2 < 10) lcd.print(' ')
//
// Line 1
//
lcd.setCursor(0, 0);
#if LCD_WIDTH < 20 #if LCD_WIDTH < 20
lcd.setCursor(0, 0); //
lcd.print(itostr3(tHotend)); // Hotend 0 Temperature
lcd.print('/'); //
lcd.print(itostr3left(tTarget)); LCD_TEMP_ONLY(degHotend(0), degTargetHotend(0));
//
// Hotend 1 or Bed Temperature
//
#if EXTRUDERS > 1 || TEMP_SENSOR_BED != 0 #if EXTRUDERS > 1 || TEMP_SENSOR_BED != 0
// If we have an 2nd extruder or heated bed, show that in the top right corner
lcd.setCursor(8, 0); lcd.setCursor(8, 0);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
tHotend = int(degHotend(1) + 0.5);
tTarget = int(degTargetHotend(1) + 0.5);
lcd.print(LCD_STR_THERMOMETER[0]); lcd.print(LCD_STR_THERMOMETER[0]);
#else // Heated bed LCD_TEMP_ONLY(degHotend(1), degTargetHotend(1));
tHotend = int(degBed() + 0.5); #else
tTarget = int(degTargetBed() + 0.5);
lcd.print(LCD_STR_BEDTEMP[0]); lcd.print(LCD_STR_BEDTEMP[0]);
LCD_TEMP_ONLY(degBed(), degTargetBed());
#endif #endif
lcd.print(itostr3(tHotend));
lcd.print('/');
lcd.print(itostr3left(tTarget));
#endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0 #endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0
#else // LCD_WIDTH > 19 #else // LCD_WIDTH >= 20
lcd.setCursor(0, 0); //
lcd.print(LCD_STR_THERMOMETER[0]); // Hotend 0 Temperature
lcd.print(itostr3(tHotend)); //
lcd.print('/'); LCD_TEMP(degHotend(0), degTargetHotend(0), LCD_STR_THERMOMETER[0]);
lcd.print(itostr3left(tTarget));
lcd_printPGM(PSTR(LCD_STR_DEGREE " "));
if (tTarget < 10) lcd.print(' ');
//
// Hotend 1 or Bed Temperature
//
#if EXTRUDERS > 1 || TEMP_SENSOR_BED != 0 #if EXTRUDERS > 1 || TEMP_SENSOR_BED != 0
// If we have an 2nd extruder or heated bed, show that in the top right corner
lcd.setCursor(10, 0); lcd.setCursor(10, 0);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
tHotend = int(degHotend(1) + 0.5); LCD_TEMP(degHotend(1), degTargetHotend(1), LCD_STR_THERMOMETER[0]);
tTarget = int(degTargetHotend(1) + 0.5); #else
lcd.print(LCD_STR_THERMOMETER[0]); LCD_TEMP(degBed(), degTargetBed(), LCD_STR_BEDTEMP[0]);
#else // Heated bed
tHotend = int(degBed() + 0.5);
tTarget = int(degTargetBed() + 0.5);
lcd.print(LCD_STR_BEDTEMP[0]);
#endif #endif
lcd.print(itostr3(tHotend));
lcd.print('/');
lcd.print(itostr3left(tTarget));
lcd_printPGM(PSTR(LCD_STR_DEGREE " "));
if (tTarget < 10) lcd.print(' ');
#endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0 #endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0
#endif // LCD_WIDTH > 19 #endif // LCD_WIDTH >= 20
//
// Line 2
//
#if LCD_HEIGHT > 2 #if LCD_HEIGHT > 2
// Lines 2 for 4 line LCD
#if LCD_WIDTH < 20 #if LCD_WIDTH < 20
#ifdef SDSUPPORT #ifdef SDSUPPORT
lcd.setCursor(0, 2); lcd.setCursor(0, 2);
lcd_printPGM(PSTR("SD")); lcd_printPGM(PSTR("SD"));
@ -516,36 +509,48 @@ static void lcd_implementation_status_screen() {
lcd.print('%'); lcd.print('%');
#endif // SDSUPPORT #endif // SDSUPPORT
#else // LCD_WIDTH > 19 #else // LCD_WIDTH >= 20
lcd.setCursor(0, 1);
#if EXTRUDERS > 1 && TEMP_SENSOR_BED != 0 #if EXTRUDERS > 1 && TEMP_SENSOR_BED != 0
// If we both have a 2nd extruder and a heated bed, show the heated bed temp on the 2nd line on the left, as the first line is filled with extruder temps
tHotend = int(degBed() + 0.5);
tTarget = int(degTargetBed() + 0.5);
lcd.setCursor(0, 1); // If we both have a 2nd extruder and a heated bed,
lcd.print(LCD_STR_BEDTEMP[0]); // show the heated bed temp on the left,
lcd.print(itostr3(tHotend)); // since the first line is filled with extruder temps
lcd.print('/'); LCD_TEMP(degBed(), degTargetBed(), LCD_STR_BEDTEMP[0]);
lcd.print(itostr3left(tTarget));
lcd_printPGM(PSTR(LCD_STR_DEGREE " "));
if (tTarget < 10) lcd.print(' ');
#else #else
lcd.setCursor(0,1);
lcd.print('X'); lcd.print('X');
lcd.print(ftostr3(current_position[X_AXIS])); if (axis_known_position[X_AXIS])
lcd.print(ftostr3(current_position[X_AXIS]));
else
lcd_printPGM(PSTR("---"));
lcd_printPGM(PSTR(" Y")); lcd_printPGM(PSTR(" Y"));
lcd.print(ftostr3(current_position[Y_AXIS])); if (axis_known_position[Y_AXIS])
lcd.print(ftostr3(current_position[Y_AXIS]));
else
lcd_printPGM(PSTR("---"));
#endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0 #endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0
#endif // LCD_WIDTH > 19 #endif // LCD_WIDTH >= 20
lcd.setCursor(LCD_WIDTH - 8, 1); lcd.setCursor(LCD_WIDTH - 8, 1);
lcd.print('Z'); lcd.print('Z');
lcd.print(ftostr32sp(current_position[Z_AXIS] + 0.00001)); if (axis_known_position[Z_AXIS])
lcd.print(ftostr32sp(current_position[Z_AXIS] + 0.00001));
else
lcd_printPGM(PSTR("---.--"));
#endif // LCD_HEIGHT > 2 #endif // LCD_HEIGHT > 2
//
// Line 3
//
#if LCD_HEIGHT > 3 #if LCD_HEIGHT > 3
lcd.setCursor(0, 2); lcd.setCursor(0, 2);
@ -579,9 +584,10 @@ static void lcd_implementation_status_screen() {
#endif // LCD_HEIGHT > 3 #endif // LCD_HEIGHT > 3
/** //
* Display Progress Bar, Filament display, and/or Status Message on the last line // Last Line
*/ // Status Message (which may be a Progress Bar or Filament display)
//
lcd.setCursor(0, LCD_HEIGHT - 1); lcd.setCursor(0, LCD_HEIGHT - 1);
@ -728,13 +734,13 @@ static void lcd_implementation_drawmenu_sddirectory(bool sel, uint8_t row, const
static void lcd_implementation_update_indicators() { static void lcd_implementation_update_indicators() {
#if defined(LCD_I2C_PANELOLU2) || defined(LCD_I2C_VIKI) #if defined(LCD_I2C_PANELOLU2) || defined(LCD_I2C_VIKI)
//set the LEDS - referred to as backlights by the LiquidTWI2 library // Set the LEDS - referred to as backlights by the LiquidTWI2 library
static uint8_t ledsprev = 0; static uint8_t ledsprev = 0;
uint8_t leds = 0; uint8_t leds = 0;
if (target_temperature_bed > 0) leds |= LED_A; if (target_temperature_bed > 0) leds |= LED_A;
if (target_temperature[0] > 0) leds |= LED_B; if (target_temperature[0] > 0) leds |= LED_B;
if (fanSpeed) leds |= LED_C; if (fanSpeed) leds |= LED_C;
#if EXTRUDERS > 1 #if EXTRUDERS > 1
if (target_temperature[1] > 0) leds |= LED_C; if (target_temperature[1] > 0) leds |= LED_C;
#endif #endif
if (leds != ledsprev) { if (leds != ledsprev) {
@ -766,4 +772,4 @@ static void lcd_implementation_drawmenu_sddirectory(bool sel, uint8_t row, const
#endif // LCD_HAS_SLOW_BUTTONS #endif // LCD_HAS_SLOW_BUTTONS
#endif //__ULTRALCD_IMPLEMENTATION_HITACHI_HD44780_H #endif // ULTRALCD_IMPLEMENTATION_HITACHI_HD44780_H

@ -1,25 +1,7 @@
# Marlin 3D Printer Firmware # Marlin 3D Printer Firmware
<img align="right" src="Documentation/Logo/Marlin%20Logo%20GitHub.png" /> <img align="right" src="Documentation/Logo/Marlin%20Logo%20GitHub.png" />
* [Configuration & Compilation](/Documentation/Compilation.md) Documentation has moved to http://www.marlinfirmware.org
* Supported
* [Features](/Documentation/Features.md)
* [Hardware](/Documentation/Hardware.md)
* [GCodes](/Documentation/GCodes.md)
* Notes
* [Auto Bed Leveling](/Documentation/BedLeveling.md)
* [Filament Sensor](/Documentation/FilamentSensor.md)
* [Ramps Servo Power](/Documentation/RampsServoPower.md)
* [LCD Language - Font - System](Documentation/LCDLanguageFont.md)
* [Mesh Bed Leveling](/Documentation/MeshBedLeveling.md)
##### [RepRap.org Wiki Page](http://reprap.org/wiki/Marlin)
## Quick Information
This is a firmware for reprap single-processor electronics setups.
It also works on the Ultimaker PCB. It supports printing from SD card+Folders and look-ahead trajectory planning.
This firmware is a mashup between [Sprinter](https://github.com/kliment/Sprinter), [grbl](https://github.com/simen/grbl), and many original parts.
## Current Status: Bug Fixing ## Current Status: Bug Fixing
@ -28,20 +10,28 @@ The Marlin development is currently revived. There's a long list of reported iss
[![Coverity Scan Build Status](https://scan.coverity.com/projects/2224/badge.svg)](https://scan.coverity.com/projects/2224) [![Coverity Scan Build Status](https://scan.coverity.com/projects/2224/badge.svg)](https://scan.coverity.com/projects/2224)
[![Travis Build Status](https://travis-ci.org/MarlinFirmware/Marlin.svg)](https://travis-ci.org/MarlinFirmware/Marlin) [![Travis Build Status](https://travis-ci.org/MarlinFirmware/Marlin.svg)](https://travis-ci.org/MarlinFirmware/Marlin)
##### [RepRap.org Wiki Page](http://reprap.org/wiki/Marlin)
## Contact ## Contact
__Google Hangout:__ <a href="https://plus.google.com/hangouts/_/gxn3wrea5gdhoo223yimsiforia" target="_blank">Hangout</a> __Google Hangout:__ <a href="https://plus.google.com/hangouts/_/gxn3wrea5gdhoo223yimsiforia" target="_blank">. Hangout</a> We have a hangout every 2 weeks. Search the issue list for "Hangout" and you will see what time and date the next event is going on.
## Credits ## Credits
The current Marlin dev team consists of: The current Marlin dev team consists of:
- Scott Lahteine [@thinkyhead] - Scott Lahteine [@thinkyhead]
- - Andreas Hardtung [@AnHardt]
- [@Wurstnase]
## Donation - [@fmalpartida]
- [@CONSULitAS]
If you find our work usefull please consider donating. Donations will be used to pay for our website http://www.marlinfirmware.org/ and to pay some food or rent money for the very active Collaborators - [@maverikou]
- Chris Palmer [@nophead]
- [@paclema]
- [@epatel]
- Erik van der Zalm [@ErikZalm]
- David Braam [@daid]
- Bernhard Kubicek [@bkubicek]
More features have been added by: More features have been added by:
- Lampmaker, - Lampmaker,

Loading…
Cancel
Save