Merge remote-tracking branch 'upstream/Marlin_v1' into Marlin_v1

2.0.x
Robert F-C 12 years ago
commit dfa549f268

@ -90,7 +90,7 @@
#define TEMP_SENSOR_BED 0
// Actual temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 10 // (seconds)
#define TEMP_RESIDENCY_TIME 10 // (seconds)
#define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW 1 // (degC) Window around target to start the recidency timer x degC early.
@ -282,7 +282,7 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// default settings
#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200*8/3,760*1.1} // default steps per unit for ultimaker
#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200.0*8/3,760*1.1} // default steps per unit for ultimaker
#define DEFAULT_MAX_FEEDRATE {500, 500, 5, 25} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
@ -318,15 +318,15 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// Preheat Constants
#define PLA_PREHEAT_HOTEND_TEMP 180
#define PLA_PREHEAT_HPB_TEMP 70
#define PLA_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
#define PLA_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
#define ABS_PREHEAT_HOTEND_TEMP 240
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
//LCD and SD support
//#define ULTRA_LCD //general lcd support, also 16x2
//#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
//#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
@ -347,6 +347,11 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER
// The RepRapWorld REPRAPWORLD_KEYPAD v1.1
// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626
//#define REPRAPWORLD_KEYPAD
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // how much should be moved when a key is pressed, eg 10.0 means 10mm per click
//automatic expansion
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD
@ -359,6 +364,11 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
#define NEWPANEL
#endif
#if defined(REPRAPWORLD_KEYPAD)
#define NEWPANEL
#define ULTIPANEL
#endif
//I2C PANELS
//#define LCD_I2C_SAINSMART_YWROBOT
@ -404,22 +414,22 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// #define NEWPANEL //enable this if you have a click-encoder panel
#define SDSUPPORT
#define ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define LCD_WIDTH 20
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 20
#define LCD_HEIGHT 4
#endif
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define LCD_WIDTH 20
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 20
#define LCD_HEIGHT 4
#endif
#else //no panel but just lcd
#ifdef ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 20
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 16
#define LCD_HEIGHT 2
#endif
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 20
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 16
#define LCD_HEIGHT 2
#endif
#endif
#endif
@ -433,6 +443,26 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// SF send wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX
// Support for the BariCUDA Paste Extruder.
//#define BARICUDA
/*********************************************************************\
*
* R/C SERVO support
*
* Sponsored by TrinityLabs, Reworked by codexmas
*
**********************************************************************/
// Number of servos
//
// If you select a configuration below, this will receive a default value and does not need to be set manually
// set it manually if you have more servos than extruders and wish to manually control some
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//
// #define NUM_SERVOS 3
#include "Configuration_adv.h"
#include "thermistortables.h"

@ -213,7 +213,7 @@ CXXSRC = WMath.cpp WString.cpp Print.cpp Marlin_main.cpp \
SdFile.cpp SdVolume.cpp motion_control.cpp planner.cpp \
stepper.cpp temperature.cpp cardreader.cpp ConfigurationStore.cpp \
watchdog.cpp
CXXSRC += LiquidCrystal.cpp ultralcd.cpp SPI.cpp
CXXSRC += LiquidCrystal.cpp ultralcd.cpp SPI.cpp Servo.cpp
#Check for Arduino 1.0.0 or higher and use the correct sourcefiles for that version
ifeq ($(shell [ $(ARDUINO_VERSION) -ge 100 ] && echo true), true)

@ -186,6 +186,10 @@ extern float add_homeing[3];
extern float min_pos[3];
extern float max_pos[3];
extern int fanSpeed;
#ifdef BARICUDA
extern int ValvePressure;
extern int EtoPPressure;
#endif
#ifdef FWRETRACT
extern bool autoretract_enabled;

@ -40,7 +40,11 @@
#include "language.h"
#include "pins_arduino.h"
#if DIGIPOTSS_PIN > -1
#if NUM_SERVOS > 0
#include "Servo.h"
#endif
#if DIGIPOTSS_PIN > 0
#include <SPI.h>
#endif
@ -98,9 +102,13 @@
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M114 - Output current position to serial port
// M115 - Capabilities string
// M115 - Capabilities string
// M117 - display message
// M119 - Output Endstop status to serial port
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp.
// M200 - Set filament diameter
@ -117,6 +125,7 @@
// M220 S<factor in percent>- set speed factor override percentage
// M221 S<factor in percent>- set extrude factor override percentage
// M240 - Trigger a camera to take a photograph
// M280 - set servo position absolute. P: servo index, S: angle or microseconds
// M300 - Play beepsound S<frequency Hz> P<duration ms>
// M301 - Set PID parameters P I and D
// M302 - Allow cold extrudes
@ -168,6 +177,10 @@ float extruder_offset[2][EXTRUDERS] = {
#endif
uint8_t active_extruder = 0;
int fanSpeed=0;
#ifdef BARICUDA
int ValvePressure=0;
int EtoPPressure=0;
#endif
#ifdef FWRETRACT
bool autoretract_enabled=true;
@ -217,6 +230,10 @@ static uint8_t tmp_extruder;
bool Stopped=false;
#if NUM_SERVOS > 0
Servo servos[NUM_SERVOS];
#endif
//===========================================================================
//=============================ROUTINES=============================
//===========================================================================
@ -292,7 +309,7 @@ void setup_killpin()
void setup_photpin()
{
#ifdef PHOTOGRAPH_PIN
#if (PHOTOGRAPH_PIN > -1)
#if (PHOTOGRAPH_PIN > 0)
SET_OUTPUT(PHOTOGRAPH_PIN);
WRITE(PHOTOGRAPH_PIN, LOW);
#endif
@ -307,7 +324,7 @@ void setup_powerhold()
WRITE(SUICIDE_PIN, HIGH);
#endif
#endif
#if (PS_ON_PIN > -1)
#if (PS_ON_PIN > 0)
SET_OUTPUT(PS_ON_PIN);
WRITE(PS_ON_PIN, PS_ON_AWAKE);
#endif
@ -316,13 +333,32 @@ void setup_powerhold()
void suicide()
{
#ifdef SUICIDE_PIN
#if (SUICIDE_PIN> -1)
#if (SUICIDE_PIN > 0)
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, LOW);
#endif
#endif
}
void servo_init()
{
#if (NUM_SERVOS >= 1) && (SERVO0_PIN > 0)
servos[0].attach(SERVO0_PIN);
#endif
#if (NUM_SERVOS >= 2) && (SERVO1_PIN > 0)
servos[1].attach(SERVO1_PIN);
#endif
#if (NUM_SERVOS >= 3) && (SERVO2_PIN > 0)
servos[2].attach(SERVO2_PIN);
#endif
#if (NUM_SERVOS >= 4) && (SERVO3_PIN > 0)
servos[3].attach(SERVO3_PIN);
#endif
#if (NUM_SERVOS >= 5)
#error "TODO: enter initalisation code for more servos"
#endif
}
void setup()
{
setup_killpin();
@ -371,6 +407,7 @@ void setup()
watchdog_init();
st_init(); // Initialize stepper, this enables interrupts!
setup_photpin();
servo_init();
lcd_init();
@ -396,9 +433,9 @@ void loop()
#ifdef SDSUPPORT
if(card.saving)
{
if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
{
card.write_command(cmdbuffer[bufindr]);
if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
{
card.write_command(cmdbuffer[bufindr]);
if(card.logging)
{
process_commands();
@ -407,16 +444,16 @@ void loop()
{
SERIAL_PROTOCOLLNPGM(MSG_OK);
}
}
else
{
card.closefile();
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
}
}
else
{
card.closefile();
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
}
}
else
{
process_commands();
process_commands();
}
#else
process_commands();
@ -511,10 +548,10 @@ void get_command()
case 2:
case 3:
if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
#ifdef SDSUPPORT
#ifdef SDSUPPORT
if(card.saving)
break;
#endif //SDSUPPORT
#endif //SDSUPPORT
SERIAL_PROTOCOLLNPGM(MSG_OK);
}
else {
@ -608,17 +645,17 @@ bool code_seen(char code)
return (strchr_pointer != NULL); //Return True if a character was found
}
#define DEFINE_PGM_READ_ANY(type, reader) \
static inline type pgm_read_any(const type *p) \
{ return pgm_read_##reader##_near(p); }
#define DEFINE_PGM_READ_ANY(type, reader) \
static inline type pgm_read_any(const type *p) \
{ return pgm_read_##reader##_near(p); }
DEFINE_PGM_READ_ANY(float, float);
DEFINE_PGM_READ_ANY(signed char, byte);
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array##_P[3] = \
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
static inline type array(int axis) \
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array##_P[3] = \
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
static inline type array(int axis) \
{ return pgm_read_any(&array##_P[axis]); }
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
@ -636,7 +673,7 @@ static void axis_is_at_home(int axis) {
static void homeaxis(int axis) {
#define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
((LETTER##_MIN_PIN > 0 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > 0 && LETTER##_HOME_DIR==1))
if (axis==X_AXIS ? HOMEAXIS_DO(X) :
axis==Y_AXIS ? HOMEAXIS_DO(Y) :
@ -950,17 +987,17 @@ void process_commands()
//card,saving = false;
break;
case 30: //M30 <filename> Delete File
if (card.cardOK){
card.closefile();
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos-1) = '\0';
}
card.removeFile(strchr_pointer + 4);
}
break;
if (card.cardOK){
card.closefile();
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos-1) = '\0';
}
card.removeFile(strchr_pointer + 4);
}
break;
case 928: //M928 - Start SD write
starpos = (strchr(strchr_pointer + 5,'*'));
if(starpos != NULL){
@ -1025,12 +1062,12 @@ void process_commands()
if(setTargetedHotend(105)){
break;
}
#if (TEMP_0_PIN > -1)
#if (TEMP_0_PIN > 0)
SERIAL_PROTOCOLPGM("ok T:");
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
#if TEMP_BED_PIN > -1
#if TEMP_BED_PIN > 0
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLPGM(" /");
@ -1128,7 +1165,7 @@ void process_commands()
}
break;
case 190: // M190 - Wait for bed heater to reach target.
#if TEMP_BED_PIN > -1
#if TEMP_BED_PIN > 0
LCD_MESSAGEPGM(MSG_BED_HEATING);
if (code_seen('S')) setTargetBed(code_value());
codenum = millis();
@ -1155,7 +1192,7 @@ void process_commands()
#endif
break;
#if FAN_PIN > -1
#if FAN_PIN > 0
case 106: //M106 Fan On
if (code_seen('S')){
fanSpeed=constrain(code_value(),0,255);
@ -1168,8 +1205,39 @@ void process_commands()
fanSpeed = 0;
break;
#endif //FAN_PIN
#ifdef BARICUDA
// PWM for HEATER_1_PIN
#if HEATER_1_PIN > 0
case 126: //M126 valve open
if (code_seen('S')){
ValvePressure=constrain(code_value(),0,255);
}
else {
ValvePressure=255;
}
break;
case 127: //M127 valve closed
ValvePressure = 0;
break;
#endif //HEATER_1_PIN
// PWM for HEATER_2_PIN
#if HEATER_2_PIN > 0
case 128: //M128 valve open
if (code_seen('S')){
EtoPPressure=constrain(code_value(),0,255);
}
else {
EtoPPressure=255;
}
break;
case 129: //M129 valve closed
EtoPPressure = 0;
break;
#endif //HEATER_2_PIN
#endif
#if (PS_ON_PIN > -1)
#if (PS_ON_PIN > 0)
case 80: // M80 - ATX Power On
SET_OUTPUT(PS_ON_PIN); //GND
WRITE(PS_ON_PIN, PS_ON_AWAKE);
@ -1178,14 +1246,14 @@ void process_commands()
case 81: // M81 - ATX Power Off
#if defined SUICIDE_PIN && SUICIDE_PIN > -1
#if defined SUICIDE_PIN && SUICIDE_PIN > 0
st_synchronize();
suicide();
#elif (PS_ON_PIN > -1)
#elif (PS_ON_PIN > 0)
SET_OUTPUT(PS_ON_PIN);
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#endif
break;
break;
case 82:
axis_relative_modes[3] = false;
@ -1286,27 +1354,27 @@ void process_commands()
break;
case 119: // M119
SERIAL_PROTOCOLLN(MSG_M119_REPORT);
#if (X_MIN_PIN > -1)
#if (X_MIN_PIN > 0)
SERIAL_PROTOCOLPGM(MSG_X_MIN);
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if (X_MAX_PIN > -1)
#if (X_MAX_PIN > 0)
SERIAL_PROTOCOLPGM(MSG_X_MAX);
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if (Y_MIN_PIN > -1)
#if (Y_MIN_PIN > 0)
SERIAL_PROTOCOLPGM(MSG_Y_MIN);
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if (Y_MAX_PIN > -1)
#if (Y_MAX_PIN > 0)
SERIAL_PROTOCOLPGM(MSG_Y_MAX);
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if (Z_MIN_PIN > -1)
#if (Z_MIN_PIN > 0)
SERIAL_PROTOCOLPGM(MSG_Z_MIN);
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if (Z_MAX_PIN > -1)
#if (Z_MAX_PIN > 0)
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
@ -1321,7 +1389,7 @@ void process_commands()
}
}
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
reset_acceleration_rates();
reset_acceleration_rates();
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
@ -1446,14 +1514,45 @@ void process_commands()
}
break;
#if defined(LARGE_FLASH) && LARGE_FLASH == true
#if NUM_SERVOS > 0
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
{
int servo_index = -1;
int servo_position = 0;
if (code_seen('P'))
servo_index = code_value();
if (code_seen('S')) {
servo_position = code_value();
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
servos[servo_index].write(servo_position);
}
else {
SERIAL_ECHO_START;
SERIAL_ECHO("Servo ");
SERIAL_ECHO(servo_index);
SERIAL_ECHOLN(" out of range");
}
}
else if (servo_index >= 0) {
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" Servo ");
SERIAL_PROTOCOL(servo_index);
SERIAL_PROTOCOL(": ");
SERIAL_PROTOCOL(servos[servo_index].read());
SERIAL_PROTOCOLLN("");
}
}
break;
#endif // NUM_SERVOS > 0
#if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
case 300: // M300
{
int beepS = 400;
int beepP = 1000;
if(code_seen('S')) beepS = code_value();
if(code_seen('P')) beepP = code_value();
#if defined(BEEPER) && BEEPER > -1
#if BEEPER > 0
tone(BEEPER, beepS);
delay(beepP);
noTone(BEEPER);
@ -1477,7 +1576,7 @@ void process_commands()
updatePID();
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(Kp);
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(Ki));
@ -1501,7 +1600,7 @@ void process_commands()
updatePID();
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(bedKp);
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(bedKi));
@ -1514,7 +1613,7 @@ void process_commands()
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
{
#ifdef PHOTOGRAPH_PIN
#if (PHOTOGRAPH_PIN > -1)
#if (PHOTOGRAPH_PIN > 0)
const uint8_t NUM_PULSES=16;
const float PULSE_LENGTH=0.01524;
for(int i=0; i < NUM_PULSES; i++) {
@ -1546,8 +1645,8 @@ void process_commands()
int e=0;
int c=5;
if (code_seen('E')) e=code_value();
if (e<0)
temp=70;
if (e<0)
temp=70;
if (code_seen('S')) temp=code_value();
if (code_seen('C')) c=code_value();
PID_autotune(temp, e, c);
@ -1675,10 +1774,9 @@ void process_commands()
manage_heater();
manage_inactivity();
lcd_update();
if(cnt==0)
{
#if defined(BEEPER) && BEEPER > -1
#if BEEPER > 0
SET_OUTPUT(BEEPER);
WRITE(BEEPER,HIGH);
@ -1713,15 +1811,16 @@ void process_commands()
#endif //FILAMENTCHANGEENABLE
case 907: // M907 Set digital trimpot motor current using axis codes.
{
#if DIGIPOTSS_PIN > -1
for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
#if DIGIPOTSS_PIN > 0
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
if(code_seen('B')) digipot_current(4,code_value());
if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
#endif
}
break;
case 908: // M908 Control digital trimpot directly.
{
#if DIGIPOTSS_PIN > -1
#if DIGIPOTSS_PIN > 0
uint8_t channel,current;
if(code_seen('P')) channel=code_value();
if(code_seen('S')) current=code_value();
@ -1731,9 +1830,9 @@ void process_commands()
break;
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
{
#if X_MS1_PIN > -1
#if X_MS1_PIN > 0
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
if(code_seen('B')) microstep_mode(4,code_value());
microstep_readings();
#endif
@ -1741,15 +1840,15 @@ void process_commands()
break;
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
{
#if X_MS1_PIN > -1
#if X_MS1_PIN > 0
if(code_seen('S')) switch((int)code_value())
{
case 1:
for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
if(code_seen('B')) microstep_ms(4,code_value(),-1);
break;
case 2:
for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
if(code_seen('B')) microstep_ms(4,-1,code_value());
break;
}
@ -1980,7 +2079,7 @@ void controllerFan()
|| !READ(E2_ENABLE_PIN)
#endif
#if EXTRUDER > 1
|| !READ(E2_ENABLE_PIN)
|| !READ(E1_ENABLE_PIN)
#endif
|| !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
{
@ -2079,7 +2178,7 @@ void kill()
disable_e1();
disable_e2();
if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
if(PS_ON_PIN > 0) pinMode(PS_ON_PIN,INPUT);
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
LCD_ALERTMESSAGEPGM(MSG_KILLED);

@ -0,0 +1,337 @@
/*
Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
Copyright (c) 2009 Michael Margolis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
The servos are pulsed in the background using the value most recently written using the write() method
Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
The methods are:
Servo - Class for manipulating servo motors connected to Arduino pins.
attach(pin ) - Attaches a servo motor to an i/o pin.
attach(pin, min, max ) - Attaches to a pin setting min and max values in microseconds
default min is 544, max is 2400
write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)
writeMicroseconds() - Sets the servo pulse width in microseconds
read() - Gets the last written servo pulse width as an angle between 0 and 180.
readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
attached() - Returns true if there is a servo attached.
detach() - Stops an attached servos from pulsing its i/o pin.
*/
#include <avr/interrupt.h>
#include <Arduino.h>
#include "Servo.h"
#define usToTicks(_us) (( clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8) // 12 Aug 2009
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009
//#define NBR_TIMERS (MAX_SERVOS / SERVOS_PER_TIMER)
static servo_t servos[MAX_SERVOS]; // static array of servo structures
static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
uint8_t ServoCount = 0; // the total number of attached servos
// convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
/************ static functions common to all instances ***********************/
static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA)
{
if( Channel[timer] < 0 )
*TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
else{
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true )
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated
}
Channel[timer]++; // increment to the next channel
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
*OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks;
if(SERVO(timer,Channel[timer]).Pin.isActive == true) // check if activated
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
}
else {
// finished all channels so wait for the refresh period to expire before starting over
if( ((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL) ) // allow a few ticks to ensure the next OCR1A not missed
*OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
else
*OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
}
}
#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
// Interrupt handlers for Arduino
#if defined(_useTimer1)
SIGNAL (TIMER1_COMPA_vect)
{
handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif
#if defined(_useTimer3)
SIGNAL (TIMER3_COMPA_vect)
{
handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif
#if defined(_useTimer4)
SIGNAL (TIMER4_COMPA_vect)
{
handle_interrupts(_timer4, &TCNT4, &OCR4A);
}
#endif
#if defined(_useTimer5)
SIGNAL (TIMER5_COMPA_vect)
{
handle_interrupts(_timer5, &TCNT5, &OCR5A);
}
#endif
#elif defined WIRING
// Interrupt handlers for Wiring
#if defined(_useTimer1)
void Timer1Service()
{
handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif
#if defined(_useTimer3)
void Timer3Service()
{
handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif
#endif
static void initISR(timer16_Sequence_t timer)
{
#if defined (_useTimer1)
if(timer == _timer1) {
TCCR1A = 0; // normal counting mode
TCCR1B = _BV(CS11); // set prescaler of 8
TCNT1 = 0; // clear the timer count
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
TIFR |= _BV(OCF1A); // clear any pending interrupts;
TIMSK |= _BV(OCIE1A) ; // enable the output compare interrupt
#else
// here if not ATmega8 or ATmega128
TIFR1 |= _BV(OCF1A); // clear any pending interrupts;
TIMSK1 |= _BV(OCIE1A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)
timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
#endif
}
#endif
#if defined (_useTimer3)
if(timer == _timer3) {
TCCR3A = 0; // normal counting mode
TCCR3B = _BV(CS31); // set prescaler of 8
TCNT3 = 0; // clear the timer count
#if defined(__AVR_ATmega128__)
TIFR |= _BV(OCF3A); // clear any pending interrupts;
ETIMSK |= _BV(OCIE3A); // enable the output compare interrupt
#else
TIFR3 = _BV(OCF3A); // clear any pending interrupts;
TIMSK3 = _BV(OCIE3A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)
timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
#endif
}
#endif
#if defined (_useTimer4)
if(timer == _timer4) {
TCCR4A = 0; // normal counting mode
TCCR4B = _BV(CS41); // set prescaler of 8
TCNT4 = 0; // clear the timer count
TIFR4 = _BV(OCF4A); // clear any pending interrupts;
TIMSK4 = _BV(OCIE4A) ; // enable the output compare interrupt
}
#endif
#if defined (_useTimer5)
if(timer == _timer5) {
TCCR5A = 0; // normal counting mode
TCCR5B = _BV(CS51); // set prescaler of 8
TCNT5 = 0; // clear the timer count
TIFR5 = _BV(OCF5A); // clear any pending interrupts;
TIMSK5 = _BV(OCIE5A) ; // enable the output compare interrupt
}
#endif
}
static void finISR(timer16_Sequence_t timer)
{
//disable use of the given timer
#if defined WIRING // Wiring
if(timer == _timer1) {
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
TIMSK1 &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
#else
TIMSK &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
#endif
timerDetach(TIMER1OUTCOMPAREA_INT);
}
else if(timer == _timer3) {
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
TIMSK3 &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
#else
ETIMSK &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
#endif
timerDetach(TIMER3OUTCOMPAREA_INT);
}
#else
//For arduino - in future: call here to a currently undefined function to reset the timer
#endif
}
static boolean isTimerActive(timer16_Sequence_t timer)
{
// returns true if any servo is active on this timer
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
if(SERVO(timer,channel).Pin.isActive == true)
return true;
}
return false;
}
/****************** end of static functions ******************************/
Servo::Servo()
{
if( ServoCount < MAX_SERVOS) {
this->servoIndex = ServoCount++; // assign a servo index to this instance
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
}
else
this->servoIndex = INVALID_SERVO ; // too many servos
}
uint8_t Servo::attach(int pin)
{
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
uint8_t Servo::attach(int pin, int min, int max)
{
if(this->servoIndex < MAX_SERVOS ) {
pinMode( pin, OUTPUT) ; // set servo pin to output
servos[this->servoIndex].Pin.nbr = pin;
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
this->max = (MAX_PULSE_WIDTH - max)/4;
// initialize the timer if it has not already been initialized
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if(isTimerActive(timer) == false)
initISR(timer);
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
}
return this->servoIndex ;
}
void Servo::detach()
{
servos[this->servoIndex].Pin.isActive = false;
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if(isTimerActive(timer) == false) {
finISR(timer);
}
}
void Servo::write(int value)
{
if(value < MIN_PULSE_WIDTH)
{ // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if(value < 0) value = 0;
if(value > 180) value = 180;
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
}
this->writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value)
{
// calculate and store the values for the given channel
byte channel = this->servoIndex;
if( (channel < MAX_SERVOS) ) // ensure channel is valid
{
if( value < SERVO_MIN() ) // ensure pulse width is valid
value = SERVO_MIN();
else if( value > SERVO_MAX() )
value = SERVO_MAX();
value = value - TRIM_DURATION;
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009
uint8_t oldSREG = SREG;
cli();
servos[channel].ticks = value;
SREG = oldSREG;
}
}
int Servo::read() // return the value as degrees
{
return map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
}
int Servo::readMicroseconds()
{
unsigned int pulsewidth;
if( this->servoIndex != INVALID_SERVO )
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION ; // 12 aug 2009
else
pulsewidth = 0;
return pulsewidth;
}
bool Servo::attached()
{
return servos[this->servoIndex].Pin.isActive ;
}

@ -0,0 +1,132 @@
/*
Servo.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
Copyright (c) 2009 Michael Margolis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
The servos are pulsed in the background using the value most recently written using the write() method
Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
The sequence used to sieze timers is defined in timers.h
The methods are:
Servo - Class for manipulating servo motors connected to Arduino pins.
attach(pin ) - Attaches a servo motor to an i/o pin.
attach(pin, min, max ) - Attaches to a pin setting min and max values in microseconds
default min is 544, max is 2400
write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)
writeMicroseconds() - Sets the servo pulse width in microseconds
read() - Gets the last written servo pulse width as an angle between 0 and 180.
readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
attached() - Returns true if there is a servo attached.
detach() - Stops an attached servos from pulsing its i/o pin.
*/
#ifndef Servo_h
#define Servo_h
#include <inttypes.h>
/*
* Defines for 16 bit timers used with Servo library
*
* If _useTimerX is defined then TimerX is a 16 bit timer on the curent board
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
* _Nbr_16timers indicates how many 16 bit timers are available.
*
*/
// Say which 16 bit timers can be used and in what order
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define _useTimer5
//#define _useTimer1
#define _useTimer3
#define _useTimer4
//typedef enum { _timer5, _timer1, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer5, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t ;
#elif defined(__AVR_ATmega32U4__)
//#define _useTimer1
#define _useTimer3
//typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ;
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#define _useTimer3
//#define _useTimer1
//typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ;
#elif defined(__AVR_ATmega128__) ||defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
#define _useTimer3
//#define _useTimer1
//typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ;
#else // everything else
//#define _useTimer1
//typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _Nbr_16timers } timer16_Sequence_t ;
#endif
#define Servo_VERSION 2 // software version of this library
#define MIN_PULSE_WIDTH 544 // the shortest pulse sent to a servo
#define MAX_PULSE_WIDTH 2400 // the longest pulse sent to a servo
#define DEFAULT_PULSE_WIDTH 1500 // default pulse width when servo is attached
#define REFRESH_INTERVAL 20000 // minumim time to refresh servos in microseconds
#define SERVOS_PER_TIMER 12 // the maximum number of servos controlled by one timer
#define MAX_SERVOS (_Nbr_16timers * SERVOS_PER_TIMER)
#define INVALID_SERVO 255 // flag indicating an invalid servo index
typedef struct {
uint8_t nbr :6 ; // a pin number from 0 to 63
uint8_t isActive :1 ; // true if this channel is enabled, pin not pulsed if false
} ServoPin_t ;
typedef struct {
ServoPin_t Pin;
unsigned int ticks;
} servo_t;
class Servo
{
public:
Servo();
uint8_t attach(int pin); // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if failure
uint8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes.
void detach();
void write(int value); // if value is < 200 its treated as an angle, otherwise as pulse width in microseconds
void writeMicroseconds(int value); // Write pulse width in microseconds
int read(); // returns current pulse width as an angle between 0 and 180 degrees
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
bool attached(); // return true if this servo is attached, otherwise false
private:
uint8_t servoIndex; // index into the channel data for this servo
int8_t min; // minimum is this value times 4 added to MIN_PULSE_WIDTH
int8_t max; // maximum is this value times 4 added to MAX_PULSE_WIDTH
};
#endif

@ -274,11 +274,11 @@
//#define RX_ENABLE_PIN 13
#define BEEPER -1
#define SDCARDDETECT -1
#define SUICIDE_PIN -1 //has to be defined; otherwise Power_off doesn't work
#define SDCARDDETECT -1
#define SUICIDE_PIN -1 //has to be defined; otherwise Power_off doesn't work
#define KILL_PIN -1
//Pins for 4bit LCD Support
//Pins for 4bit LCD Support
#define LCD_PINS_RS 18
#define LCD_PINS_ENABLE 17
#define LCD_PINS_D4 16
@ -290,6 +290,7 @@
#define BTN_EN1 11
#define BTN_EN2 10
#define BTN_ENC 12 //the click
#endif
/****************************************************************************************
@ -374,6 +375,11 @@
#define HEATER_BED_PIN 8 // BED
#define TEMP_BED_PIN 14 // ANALOG NUMBERING
#define SERVO0_PIN 11
#define SERVO1_PIN 6
#define SERVO2_PIN 5
#define SERVO3_PIN 4
#ifdef ULTRA_LCD
#ifdef NEWPANEL
@ -397,9 +403,18 @@
#define BEEPER 33 // Beeper on AUX-4
//buttons are directly attached using AUX-2
#define BTN_EN1 37
#define BTN_EN2 35
#define BTN_ENC 31 //the click
#ifdef REPRAPWORLD_KEYPAD
#define BTN_EN1 64 // encoder
#define BTN_EN2 59 // encoder
#define BTN_ENC 63 // enter button
#define SHIFT_OUT 40 // shift register
#define SHIFT_CLK 44 // shift register
#define SHIFT_LD 42 // shift register
#else
#define BTN_EN1 37
#define BTN_EN2 35
#define BTN_ENC 31 //the click
#endif
#ifdef G3D_PANEL
#define SDCARDDETECT 49
@ -952,17 +967,56 @@
#define PS_ON_PIN 45
#define KILL_PIN 46
#define HEATER_0_PIN 2 // EXTRUDER 1
#define HEATER_1_PIN 3 // EXTRUDER 2
#define HEATER_2_PIN 6 // EXTRUDER 3
#if (TEMP_SENSOR_0==0)
#define TEMP_0_PIN -1
#define HEATER_0_PIN -1
#else
#define HEATER_0_PIN 2 // EXTRUDER 1
#if (TEMP_SENSOR_0==-1)
#define TEMP_0_PIN 6 // ANALOG NUMBERING - connector *K1* on RUMBA thermocouple ADD ON is used
#else
#define TEMP_0_PIN 15 // ANALOG NUMBERING - default connector for thermistor *T0* on rumba board is used
#endif
#endif
#if (TEMP_SENSOR_1==0)
#define TEMP_1_PIN -1
#define HEATER_1_PIN -1
#else
#define HEATER_1_PIN 3 // EXTRUDER 2
#if (TEMP_SENSOR_1==-1)
#define TEMP_1_PIN 5 // ANALOG NUMBERING - connector *K2* on RUMBA thermocouple ADD ON is used
#else
#define TEMP_1_PIN 14 // ANALOG NUMBERING - default connector for thermistor *T1* on rumba board is used
#endif
#endif
#if (TEMP_SENSOR_2==0)
#define TEMP_2_PIN -1
#define HEATER_2_PIN -1
#else
#define HEATER_2_PIN 6 // EXTRUDER 3
#if (TEMP_SENSOR_2==-1)
#define TEMP_2_PIN 7 // ANALOG NUMBERING - connector *K3* on RUMBA thermocouple ADD ON is used <-- this can not be used when TEMP_SENSOR_BED is defined as thermocouple
#else
#define TEMP_2_PIN 13 // ANALOG NUMBERING - default connector for thermistor *T2* on rumba board is used
#endif
#endif
//optional for extruder 4 or chamber: #define TEMP_X_PIN 12 // ANALOG NUMBERING - default connector for thermistor *T3* on rumba board is used
//optional FAN1 can be used as 4th heater output: #define HEATER_3_PIN 8 // EXTRUDER 4
#define HEATER_BED_PIN 9 // BED
#define TEMP_0_PIN 15 // ANALOG NUMBERING
#define TEMP_1_PIN 14 // ANALOG NUMBERING
#define TEMP_2_PIN 13 // ANALOG NUMBERING
//optional for extruder 4 or chamber: #define TEMP_2_PIN 12 // ANALOG NUMBERING
#define TEMP_BED_PIN 11 // ANALOG NUMBERING
#if (TEMP_SENSOR_BED==0)
#define TEMP_BED_PIN -1
#define HEATER_BED_PIN -1
#else
#define HEATER_BED_PIN 9 // BED
#if (TEMP_SENSOR_BED==-1)
#define TEMP_BED_PIN 7 // ANALOG NUMBERING - connector *K3* on RUMBA thermocouple ADD ON is used <-- this can not be used when TEMP_SENSOR_2 is defined as thermocouple
#else
#define TEMP_BED_PIN 11 // ANALOG NUMBERING - default connector for thermistor *THB* on rumba board is used
#endif
#endif
#define SDPOWER -1
#define SDSS 53
@ -1365,7 +1419,11 @@
#define HEATER_1_PIN 7
#define TEMP_1_PIN 1
#ifdef BARICUDA
#define HEATER_2_PIN 6
#else
#define HEATER_2_PIN -1
#endif
#define TEMP_2_PIN -1
#define E0_STEP_PIN 34

@ -439,12 +439,20 @@ void check_axes_activity()
unsigned char z_active = 0;
unsigned char e_active = 0;
unsigned char tail_fan_speed = fanSpeed;
#ifdef BARICUDA
unsigned char tail_valve_pressure = ValvePressure;
unsigned char tail_e_to_p_pressure = EtoPPressure;
#endif
block_t *block;
if(block_buffer_tail != block_buffer_head)
{
uint8_t block_index = block_buffer_tail;
tail_fan_speed = block_buffer[block_index].fan_speed;
#ifdef BARICUDA
tail_valve_pressure = block_buffer[block_index].valve_pressure;
tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure;
#endif
while(block_index != block_buffer_head)
{
block = &block_buffer[block_index];
@ -486,6 +494,16 @@ void check_axes_activity()
#ifdef AUTOTEMP
getHighESpeed();
#endif
#ifdef BARICUDA
#if HEATER_1_PIN > -1
analogWrite(HEATER_1_PIN,tail_valve_pressure);
#endif
#if HEATER_2_PIN > -1
analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
#endif
#endif
}
@ -559,6 +577,10 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
}
block->fan_speed = fanSpeed;
#ifdef BARICUDA
block->valve_pressure = ValvePressure;
block->e_to_p_pressure = EtoPPressure;
#endif
// Compute direction bits for this block
block->direction_bits = 0;
@ -582,8 +604,16 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
block->active_extruder = extruder;
//enable active axes
#ifdef COREXY
if((block->steps_x != 0) || (block->steps_y != 0))
{
enable_x();
enable_y();
}
#else
if(block->steps_x != 0) enable_x();
if(block->steps_y != 0) enable_y();
#endif
#ifndef Z_LATE_ENABLE
if(block->steps_z != 0) enable_z();
#endif

@ -60,6 +60,10 @@ typedef struct {
unsigned long final_rate; // The minimal rate at exit
unsigned long acceleration_st; // acceleration steps/sec^2
unsigned long fan_speed;
#ifdef BARICUDA
unsigned long valve_pressure;
unsigned long e_to_p_pressure;
#endif
volatile char busy;
} block_t;

@ -571,6 +571,12 @@ static void updateTemperaturesFromRawValues()
void tp_init()
{
#if (MOTHERBOARD == 80) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR=(1<<JTD);
MCUCR=(1<<JTD);
#endif
// Finish init of mult extruder arrays
for(int e = 0; e < EXTRUDERS; e++) {
// populate with the first value
@ -647,7 +653,7 @@ void tp_init()
#if TEMP_2_PIN < 8
DIDR0 |= 1 << TEMP_2_PIN;
#else
DIDR2 = 1<<(TEMP_2_PIN - 8);
DIDR2 |= 1<<(TEMP_2_PIN - 8);
#endif
#endif
#if (TEMP_BED_PIN > -1)
@ -689,7 +695,7 @@ void tp_init()
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
minttemp[1] = HEATER_1_MINTEMP;
while(analog2temp(minttemp_raw[1], 1) > HEATER_1_MINTEMP) {
while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
minttemp_raw[1] += OVERSAMPLENR;
#else
@ -710,7 +716,7 @@ void tp_init()
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
minttemp[2] = HEATER_2_MINTEMP;
while(analog2temp(minttemp_raw[2], 2) > HEATER_2_MINTEMP) {
while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
minttemp_raw[2] += OVERSAMPLENR;
#else

@ -116,14 +116,18 @@ static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned l
} } while(0)
/** Used variables to keep track of the menu */
#ifndef REPRAPWORLD_KEYPAD
volatile uint8_t buttons;//Contains the bits of the currently pressed buttons.
#else
volatile uint16_t buttons;//Contains the bits of the currently pressed buttons (extended).
#endif
uint8_t currentMenuViewOffset; /* scroll offset in the current menu */
uint32_t blocking_enc;
uint8_t lastEncoderBits;
int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */
uint32_t encoderPosition;
#if (SDCARDDETECT > -1)
#if (SDCARDDETECT > 0)
bool lcd_oldcardstatus;
#endif
#endif//ULTIPANEL
@ -225,13 +229,13 @@ static void lcd_main_menu()
}else{
MENU_ITEM(submenu, MSG_CARD_MENU, lcd_sdcard_menu);
#if SDCARDDETECT < 1
MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21")); // SD-card changed by user
MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21")); // SD-card changed by user
#endif
}
}else{
MENU_ITEM(submenu, MSG_NO_CARD, lcd_sdcard_menu);
#if SDCARDDETECT < 1
MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface
MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface
#endif
}
#endif
@ -255,6 +259,7 @@ void lcd_preheat_pla()
setTargetBed(plaPreheatHPBTemp);
fanSpeed = plaPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_abs()
@ -265,6 +270,16 @@ void lcd_preheat_abs()
setTargetBed(absPreheatHPBTemp);
fanSpeed = absPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
static void lcd_cooldown()
{
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
setTargetBed(0);
lcd_return_to_status();
}
static void lcd_tune_menu()
@ -302,7 +317,7 @@ static void lcd_prepare_menu()
//MENU_ITEM(gcode, MSG_SET_ORIGIN, PSTR("G92 X0 Y0 Z0"));
MENU_ITEM(function, MSG_PREHEAT_PLA, lcd_preheat_pla);
MENU_ITEM(function, MSG_PREHEAT_ABS, lcd_preheat_abs);
MENU_ITEM(gcode, MSG_COOLDOWN, PSTR("M104 S0\nM140 S0"));
MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown);
MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu);
END_MENU();
}
@ -463,9 +478,9 @@ static void lcd_control_menu()
static void lcd_control_temperature_menu()
{
// set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(Ki);
raw_Kd = unscalePID_d(Kd);
// set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(Ki);
raw_Kd = unscalePID_d(Kd);
START_MENU();
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
@ -488,7 +503,7 @@ static void lcd_control_temperature_menu()
#endif
#ifdef PIDTEMP
MENU_ITEM_EDIT(float52, MSG_PID_P, &Kp, 1, 9990);
// i is typically a small value so allows values below 1
// i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I, &raw_Ki, 0.01, 9990, copy_and_scalePID_i);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D, &raw_Kd, 1, 9990, copy_and_scalePID_d);
# ifdef PID_ADD_EXTRUSION_RATE
@ -691,6 +706,24 @@ menu_edit_type(float, float51, ftostr51, 10)
menu_edit_type(float, float52, ftostr52, 100)
menu_edit_type(unsigned long, long5, ftostr5, 0.01)
#ifdef REPRAPWORLD_KEYPAD
static void reprapworld_keypad_move_y_down() {
encoderPosition = 1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_y();
}
static void reprapworld_keypad_move_y_up() {
encoderPosition = -1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_y();
}
static void reprapworld_keypad_move_home() {
//enquecommand_P((PSTR("G28"))); // move all axis home
// TODO gregor: move all axis home, i have currently only one axis on my prusa i3
enquecommand_P((PSTR("G28 Y")));
}
#endif
/** End of menus **/
static void lcd_quick_feedback()
@ -752,10 +785,17 @@ void lcd_init()
pinMode(SDCARDDETECT,INPUT);
WRITE(BTN_EN1,HIGH);
WRITE(BTN_EN2,HIGH);
#if defined(BTN_ENC) && BTN_ENC > -1
#if BTN_ENC > 0
pinMode(BTN_ENC,INPUT);
WRITE(BTN_ENC,HIGH);
#endif
#ifdef REPRAPWORLD_KEYPAD
pinMode(SHIFT_CLK,OUTPUT);
pinMode(SHIFT_LD,OUTPUT);
pinMode(SHIFT_OUT,INPUT);
WRITE(SHIFT_OUT,HIGH);
WRITE(SHIFT_LD,HIGH);
#endif
#else
pinMode(SHIFT_CLK,OUTPUT);
pinMode(SHIFT_LD,OUTPUT);
@ -765,10 +805,10 @@ void lcd_init()
WRITE(SHIFT_LD,HIGH);
WRITE(SHIFT_EN,LOW);
#endif//!NEWPANEL
#if (SDCARDDETECT > -1)
#if (SDCARDDETECT > 0)
WRITE(SDCARDDETECT, HIGH);
lcd_oldcardstatus = IS_SD_INSERTED;
#endif//(SDCARDDETECT > -1)
#endif//(SDCARDDETECT > 0)
lcd_buttons_update();
#ifdef ULTIPANEL
encoderDiff = 0;
@ -785,7 +825,7 @@ void lcd_update()
buttons |= lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
#endif
#if (SDCARDDETECT > -1)
#if (SDCARDDETECT > 0)
if((IS_SD_INSERTED != lcd_oldcardstatus))
{
lcdDrawUpdate = 2;
@ -808,6 +848,17 @@ void lcd_update()
if (lcd_next_update_millis < millis())
{
#ifdef ULTIPANEL
#ifdef REPRAPWORLD_KEYPAD
if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) {
reprapworld_keypad_move_y_down();
}
if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) {
reprapworld_keypad_move_y_up();
}
if (REPRAPWORLD_KEYPAD_MOVE_HOME) {
reprapworld_keypad_move_home();
}
#endif
if (encoderDiff)
{
lcdDrawUpdate = 1;
@ -890,9 +941,23 @@ void lcd_buttons_update()
uint8_t newbutton=0;
if(READ(BTN_EN1)==0) newbutton|=EN_A;
if(READ(BTN_EN2)==0) newbutton|=EN_B;
#if defined(BTN_ENC) && BTN_ENC > -1
#if BTN_ENC > 0
if((blocking_enc<millis()) && (READ(BTN_ENC)==0))
newbutton |= EN_C;
#endif
#ifdef REPRAPWORLD_KEYPAD
// for the reprapworld_keypad
uint8_t newbutton_reprapworld_keypad=0;
WRITE(SHIFT_LD,LOW);
WRITE(SHIFT_LD,HIGH);
for(int8_t i=0;i<8;i++) {
newbutton_reprapworld_keypad = newbutton_reprapworld_keypad>>1;
if(READ(SHIFT_OUT))
newbutton_reprapworld_keypad|=(1<<7);
WRITE(SHIFT_CLK,HIGH);
WRITE(SHIFT_CLK,LOW);
}
newbutton |= ((~newbutton_reprapworld_keypad) << REPRAPWORLD_BTN_OFFSET); //invert it, because a pressed switch produces a logical 0
#endif
buttons = newbutton;
#else //read it from the shift register

@ -35,7 +35,6 @@
extern int absPreheatFanSpeed;
void lcd_buzz(long duration,uint16_t freq);
bool lcd_clicked();
#else //no lcd

@ -6,7 +6,11 @@
* When selecting the rusian language, a slightly different LCD implementation is used to handle UTF8 characters.
**/
#ifndef REPRAPWORLD_KEYPAD
extern volatile uint8_t buttons; //the last checked buttons in a bit array.
#else
extern volatile uint16_t buttons; //an extended version of the last checked buttons in a bit array.
#endif
////////////////////////////////////
// Setup button and encode mappings for each panel (into 'buttons' variable)
@ -55,7 +59,7 @@ extern volatile uint8_t buttons; //the last checked buttons in a bit array.
#elif defined(LCD_I2C_PANELOLU2)
// encoder click can be read through I2C if not directly connected
#if !defined(BTN_ENC) || BTN_ENC == -1
#if BTN_ENC <= 0
#define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C)
#define B_MI (PANELOLU2_ENCODER_C<<B_I2C_BTN_OFFSET) // requires LiquidTWI2 library v1.2.3 or later
@ -68,6 +72,33 @@ extern volatile uint8_t buttons; //the last checked buttons in a bit array.
#define LCD_CLICKED (buttons&EN_C)
#endif
#elif defined(REPRAPWORLD_KEYPAD)
// define register bit values, don't change it
#define BLEN_REPRAPWORLD_KEYPAD_F3 0
#define BLEN_REPRAPWORLD_KEYPAD_F2 1
#define BLEN_REPRAPWORLD_KEYPAD_F1 2
#define BLEN_REPRAPWORLD_KEYPAD_UP 3
#define BLEN_REPRAPWORLD_KEYPAD_RIGHT 4
#define BLEN_REPRAPWORLD_KEYPAD_MIDDLE 5
#define BLEN_REPRAPWORLD_KEYPAD_DOWN 6
#define BLEN_REPRAPWORLD_KEYPAD_LEFT 7
#define REPRAPWORLD_BTN_OFFSET 3 // bit offset into buttons for shift register values
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<(BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<(BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<(BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_UP (1<<(BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<(BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<(BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<(BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<(BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET))
#define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1))
#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN)
#define REPRAPWORLD_KEYPAD_MOVE_Y_UP (buttons&EN_REPRAPWORLD_KEYPAD_UP)
#define REPRAPWORLD_KEYPAD_MOVE_HOME (buttons&EN_REPRAPWORLD_KEYPAD_MIDDLE)
#elif defined(NEWPANEL)
#define LCD_CLICKED (buttons&EN_C)
@ -90,7 +121,7 @@ extern volatile uint8_t buttons; //the last checked buttons in a bit array.
#define B_ST (1<<BL_ST)
#define LCD_CLICKED (buttons&(B_MI|B_ST))
#endif//else NEWPANEL
#endif
////////////////////////
// Setup Rotary Encoder Bit Values (for two pin encoders to indicate movement)

Loading…
Cancel
Save