Merge pull request #6152 from thinkyhead/rc_cleanup_6150_etc

UBL cleanup, optimization
2.0.x
Scott Lahteine 8 years ago committed by GitHub
commit de9d2cddc3

@ -35,7 +35,6 @@
#include "temperature.h" #include "temperature.h"
#include "UBL.h" #include "UBL.h"
#include "ultralcd.h" #include "ultralcd.h"
//#include <avr/pgmspace.h>
#define EXTRUSION_MULTIPLIER 1.0 // This is too much clutter for the main Configuration.h file But #define EXTRUSION_MULTIPLIER 1.0 // This is too much clutter for the main Configuration.h file But
#define RETRACTION_MULTIPLIER 1.0 // some user have expressed an interest in being able to customize #define RETRACTION_MULTIPLIER 1.0 // some user have expressed an interest in being able to customize
@ -250,16 +249,17 @@
if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), (uint8_t) 99); lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the
idle(); // Encoder Wheel if that is why we are leaving idle(); // Encoder Wheel if that is why we are leaving
lcd_setstatuspgm(PSTR(" "), (uint8_t) 99); lcd_reset_alert_level();
lcd_setstatuspgm(PSTR(""));
} }
while (ubl_lcd_clicked()) { // Wait until the user is done pressing the while (ubl_lcd_clicked()) { // Wait until the user is done pressing the
idle(); // Encoder Wheel if that is why we are leaving idle(); // Encoder Wheel if that is why we are leaving
lcd_setstatuspgm(PSTR("Unpress Wheel "), (uint8_t) 99); lcd_setstatuspgm(PSTR("Unpress Wheel"), 99);
} }
goto LEAVE; goto LEAVE;
} }
@ -276,13 +276,16 @@
// Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem // Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
#ifdef DELTA #ifdef DELTA
if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) { if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
SERIAL_PROTOCOLLNPGM("?Error: Attempt to print outside of DELTA_PRINTABLE_RADIUS."); SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
goto LEAVE; goto LEAVE;
} }
#endif #endif
if (circle_x < X_MIN_POS || circle_x > X_MAX_POS || circle_y < Y_MIN_POS || circle_y > Y_MAX_POS) { // TODO: Change this to use `position_is_reachable`
SERIAL_PROTOCOLLNPGM("?Error: Attempt to print off the bed."); if (circle_x < (X_MIN_POS) || circle_x > (X_MAX_POS) || circle_y < (Y_MIN_POS) || circle_y > (Y_MAX_POS)) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Attempt to print off the bed.");
goto LEAVE; goto LEAVE;
} }
@ -290,11 +293,10 @@
yi = location.y_index; yi = location.y_index;
if (g26_debug_flag) { if (g26_debug_flag) {
SERIAL_ECHOPGM(" Doing circle at: (xi="); SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
SERIAL_ECHO(xi); SERIAL_ECHOPAIR(", yi=", yi);
SERIAL_ECHOPGM(", yi="); SERIAL_CHAR(')');
SERIAL_ECHO(yi); SERIAL_EOL;
SERIAL_ECHOLNPGM(")");
} }
start_angle = 0.0; // assume it is going to be a full circle start_angle = 0.0; // assume it is going to be a full circle
@ -365,24 +367,21 @@
// ubl_has_control_of_lcd_panel = true; // Make sure UBL still is controlling the LCD Panel // ubl_has_control_of_lcd_panel = true; // Make sure UBL still is controlling the LCD Panel
//} //}
// If the end point of the line is closer to the nozzle, we are going to
//debug_current_and_destination((char*)"Looking for lines to connect."); //debug_current_and_destination((char*)"Looking for lines to connect.");
look_for_lines_to_connect(); look_for_lines_to_connect();
//debug_current_and_destination((char*)"Done with line connect."); //debug_current_and_destination((char*)"Done with line connect.");
} }
//debug_current_and_destination((char*)"Done with current circle."); //debug_current_and_destination((char*)"Done with current circle.");
// If the end point of the line is closer to the nozzle, we are going to
} }
while (location.x_index >= 0 && location.y_index >= 0); while (location.x_index >= 0 && location.y_index >= 0);
LEAVE: LEAVE:
lcd_setstatuspgm(PSTR("Leaving G26 "), (uint8_t) 99); lcd_reset_alert_level();
lcd_setstatuspgm(PSTR("Leaving G26"));
retract_filament(); retract_filament();
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Raise the nozzle destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
//debug_current_and_destination((char*)"ready to do Z-Raise."); //debug_current_and_destination((char*)"ready to do Z-Raise.");
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
@ -390,7 +389,7 @@
destination[X_AXIS] = x_pos; // Move back to the starting position destination[X_AXIS] = x_pos; // Move back to the starting position
destination[Y_AXIS] = y_pos; destination[Y_AXIS] = y_pos;
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
//debug_current_and_destination((char*)"done doing X/Y move."); //debug_current_and_destination((char*)"done doing X/Y move.");
@ -481,15 +480,12 @@
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (g26_debug_flag) { if (g26_debug_flag) {
SERIAL_ECHOPGM(" Connecting with horizontal line (sx="); SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
SERIAL_ECHO(sx); SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPGM(", sy="); SERIAL_ECHOPAIR(") -> (ex=", ex);
SERIAL_ECHO(sy); SERIAL_ECHOPAIR(", ey=", ey);
SERIAL_ECHOPGM(") -> (ex="); SERIAL_CHAR(')');
SERIAL_ECHO(ex); SERIAL_EOL;
SERIAL_ECHOPGM(", ey=");
SERIAL_ECHO(ey);
SERIAL_ECHOLNPGM(")");
//debug_current_and_destination((char*)"Connecting horizontal line."); //debug_current_and_destination((char*)"Connecting horizontal line.");
} }
@ -521,15 +517,12 @@
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (g26_debug_flag) { if (g26_debug_flag) {
SERIAL_ECHOPGM(" Connecting with vertical line (sx="); SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
SERIAL_ECHO(sx); SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPGM(", sy="); SERIAL_ECHOPAIR(") -> (ex=", ex);
SERIAL_ECHO(sy); SERIAL_ECHOPAIR(", ey=", ey);
SERIAL_ECHOPGM(") -> (ex="); SERIAL_CHAR(')');
SERIAL_ECHO(ex); SERIAL_EOL;
SERIAL_ECHOPGM(", ey=");
SERIAL_ECHO(ey);
SERIAL_ECHOLNPGM(")");
debug_current_and_destination((char*)"Connecting vertical line."); debug_current_and_destination((char*)"Connecting vertical line.");
} }
print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height); print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
@ -548,16 +541,10 @@
bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement. bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
// if (g26_debug_flag) { //if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component);
// SERIAL_ECHOPAIR("in move_to() has_xy_component:", (int)has_xy_component);
// SERIAL_EOL;
// }
if (z != last_z) { if (z != last_z) {
// if (g26_debug_flag) { //if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z);
// SERIAL_ECHOPAIR("in move_to() changing Z to ", (int)z);
// SERIAL_EOL;
// }
last_z = z; last_z = z;
feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
@ -572,30 +559,24 @@
stepper.synchronize(); stepper.synchronize();
set_destination_to_current(); set_destination_to_current();
// if (g26_debug_flag) //if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() done with Z move");
// debug_current_and_destination((char*)" in move_to() done with Z move");
} }
// Check if X or Y is involved in the movement. // Check if X or Y is involved in the movement.
// Yes: a 'normal' movement. No: a retract() or un_retract() // Yes: a 'normal' movement. No: a retract() or un_retract()
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5; feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
if (g26_debug_flag) { if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
SERIAL_ECHOPAIR("in move_to() feed_value for XY:", feed_value);
SERIAL_EOL;
}
destination[X_AXIS] = x; destination[X_AXIS] = x;
destination[Y_AXIS] = y; destination[Y_AXIS] = y;
destination[E_AXIS] += e_delta; destination[E_AXIS] += e_delta;
// if (g26_debug_flag) //if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move");
// debug_current_and_destination((char*)" in move_to() doing last move");
ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0); ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
// if (g26_debug_flag) //if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move");
// debug_current_and_destination((char*)" in move_to() after last move");
stepper.synchronize(); stepper.synchronize();
set_destination_to_current(); set_destination_to_current();
@ -635,27 +616,24 @@
* cases where the optimization comes into play. * cases where the optimization comes into play.
*/ */
void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) { void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) {
float dx, dy, dx_s, dy_s, dx_e, dy_e, dist_start, dist_end, Line_Length; const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
dy_s = current_position[Y_AXIS] - sy,
dx_s = current_position[X_AXIS] - sx; // find our distance from the start of the actual line segment dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
dy_s = current_position[Y_AXIS] - sy;
dist_start = HYPOT2(dx_s, dy_s); // We don't need to do a sqrt(), we can compare the distance^2
// to save computation time // to save computation time
dx_e = current_position[X_AXIS] - ex; // find our distance from the end of the actual line segment dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
dy_e = current_position[Y_AXIS] - ey; dy_e = current_position[Y_AXIS] - ey,
dist_end = HYPOT2(dx_e, dy_e); dist_end = HYPOT2(dx_e, dy_e),
dx = ex - sx; dx = ex - sx,
dy = ey - sy; dy = ey - sy,
Line_Length = HYPOT(dx, dy); line_length = HYPOT(dx, dy);
// If the end point of the line is closer to the nozzle, we are going to // If the end point of the line is closer to the nozzle, we are going to
// flip the direction of this line. We will print it from the end to the start. // flip the direction of this line. We will print it from the end to the start.
// On very small lines we don't do the optimization because it just isn't worth it. // On very small lines we don't do the optimization because it just isn't worth it.
// //
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(Line_Length)) { if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
// if (g26_debug_flag) //if (g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
// SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
return; return;
} }
@ -664,26 +642,19 @@
if (dist_start > 2.0) { if (dist_start > 2.0) {
retract_filament(); retract_filament();
// if (g26_debug_flag) //if (g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted.");
// SERIAL_ECHOLNPGM(" filament retracted.");
} }
// If the end point of the line is closer to the nozzle, we are going to
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
// If the end point of the line is closer to the nozzle, we are going to const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
float e_pos_delta = Line_Length * g26_e_axis_feedrate * extrusion_multiplier;
un_retract_filament(); un_retract_filament();
// If the end point of the line is closer to the nozzle, we are going to
//if (g26_debug_flag) { //if (g26_debug_flag) {
// SERIAL_ECHOLNPGM(" doing printing move."); // SERIAL_ECHOLNPGM(" doing printing move.");
// debug_current_and_destination((char*)"doing final move_to() inside print_line_from_here_to_there()"); // debug_current_and_destination((char*)"doing final move_to() inside print_line_from_here_to_there()");
//} //}
move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
// If the end point of the line is closer to the nozzle, we are going to
} }
/** /**
@ -820,6 +791,14 @@
return UBL_OK; return UBL_OK;
} }
bool exit_from_g26() {
//strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
lcd_reset_alert_level();
lcd_setstatuspgm(PSTR("Leaving G26"));
while (ubl_lcd_clicked()) idle();
return UBL_ERR;
}
/** /**
* Turn on the bed and nozzle heat and * Turn on the bed and nozzle heat and
* wait for them to get up to temperature. * wait for them to get up to temperature.
@ -828,24 +807,18 @@
#if HAS_TEMP_BED #if HAS_TEMP_BED
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
if (bed_temp > 25) { if (bed_temp > 25) {
lcd_setstatuspgm(PSTR("G26 Heating Bed."), (uint8_t) 99); lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
ubl_has_control_of_lcd_panel = true; ubl_has_control_of_lcd_panel = true;
thermalManager.setTargetBed(bed_temp); thermalManager.setTargetBed(bed_temp);
while (abs(thermalManager.degBed() - bed_temp) > 3) { while (abs(thermalManager.degBed() - bed_temp) > 3) {
if (ubl_lcd_clicked()) { if (ubl_lcd_clicked()) return exit_from_g26();
strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
lcd_setstatuspgm(PSTR("Leaving G26"), (uint8_t) 99); // Now we do it right.
while (ubl_lcd_clicked()) // Debounce Encoder Wheel
idle();
return UBL_ERR;
}
idle(); idle();
} }
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
} }
lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), (uint8_t) 99); lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), 99);
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
#endif #endif
@ -853,18 +826,13 @@
// Start heating the nozzle and wait for it to reach temperature. // Start heating the nozzle and wait for it to reach temperature.
thermalManager.setTargetHotend(hotend_temp, 0); thermalManager.setTargetHotend(hotend_temp, 0);
while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) { while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
if (ubl_lcd_clicked()) { if (ubl_lcd_clicked()) return exit_from_g26();
strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatuspgm() without having it continue;
lcd_setstatuspgm(PSTR("Leaving G26"), (uint8_t) 99); // Now we do it right.
while (ubl_lcd_clicked()) // Debounce Encoder Wheel
idle();
return UBL_ERR;
}
idle(); idle();
} }
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
lcd_setstatuspgm(PSTR(""), (uint8_t) 99); lcd_reset_alert_level();
lcd_setstatuspgm(PSTR(""));
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
return UBL_OK; return UBL_OK;
@ -877,7 +845,7 @@
float Total_Prime = 0.0; float Total_Prime = 0.0;
if (prime_flag == -1) { // The user wants to control how much filament gets purged if (prime_flag == -1) { // The user wants to control how much filament gets purged
lcd_setstatuspgm(PSTR("User-Controlled Prime"), (uint8_t) 99); lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
chirp_at_user(); chirp_at_user();
set_destination_to_current(); set_destination_to_current();
@ -894,7 +862,6 @@
#endif #endif
ubl_line_to_destination( ubl_line_to_destination(
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
//planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0 planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
); );
@ -906,26 +873,24 @@
idle(); idle();
} }
strcpy(lcd_status_message, "Done Priming"); // We can't do lcd_setstatuspgm() without having it continue; while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel
// So... We cheat to get a message up.
while (ubl_lcd_clicked()) // Debounce Encoder Wheel
idle();
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
lcd_setstatuspgm(PSTR("Done Priming"), (uint8_t) 99); strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatuspgm() without having it continue;
// So... We cheat to get a message up.
lcd_setstatuspgm(PSTR("Done Priming"), 99);
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
} }
else { else {
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
lcd_setstatuspgm(PSTR("Fixed Length Prime."), (uint8_t) 99); lcd_setstatuspgm(PSTR("Fixed Length Prime."), 99);
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
set_destination_to_current(); set_destination_to_current();
destination[E_AXIS] += prime_length; destination[E_AXIS] += prime_length;
ubl_line_to_destination( ubl_line_to_destination(
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
//planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0 planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
); );
stepper.synchronize(); stepper.synchronize();

@ -76,32 +76,25 @@ void gcode_M100() {
// We want to start and end the dump on a nice 16 byte boundry even though // We want to start and end the dump on a nice 16 byte boundry even though
// the values we are using are not 16 byte aligned. // the values we are using are not 16 byte aligned.
// //
SERIAL_ECHOPGM("\nbss_end : "); SERIAL_ECHOPAIR("\nbss_end : ", hex_word((uint16_t)ptr));
prt_hex_word((unsigned int) ptr); ptr = (char*)((uint32_t)ptr & 0xfff0);
ptr = (char*)((unsigned long) ptr & 0xfff0);
sp = top_of_stack(); sp = top_of_stack();
SERIAL_ECHOPGM("\nStack Pointer : "); SERIAL_ECHOLNPAIR("\nStack Pointer : ", hex_word((uint16_t)sp));
prt_hex_word((unsigned int) sp); sp = (char*)((uint32_t)sp | 0x000f);
SERIAL_EOL;
sp = (char*)((unsigned long) sp | 0x000f);
n = sp - ptr; n = sp - ptr;
// //
// This is the main loop of the Dump command. // This is the main loop of the Dump command.
// //
while (ptr < sp) { while (ptr < sp) {
prt_hex_word((unsigned int) ptr); // Print the address print_hex_word((uint16_t)ptr); // Print the address
SERIAL_CHAR(':'); SERIAL_CHAR(':');
for (i = 0; i < 16; i++) { // and 16 data bytes for (i = 0; i < 16; i++) { // and 16 data bytes
prt_hex_byte(*(ptr + i)); print_hex_byte(*(ptr + i));
SERIAL_CHAR(' '); SERIAL_CHAR(' ');
} }
SERIAL_CHAR('|'); // now show where non 0xE5's are SERIAL_CHAR('|'); // now show where non 0xE5's are
for (i = 0; i < 16; i++) { for (i = 0; i < 16; i++)
if (*(ptr + i) == (char)0xe5) SERIAL_CHAR((*(ptr + i) == (char)0xe5) ? ' ' : '?');
SERIAL_CHAR(' ');
else
SERIAL_CHAR('?');
}
SERIAL_EOL; SERIAL_EOL;
ptr += 16; ptr += 16;
} }
@ -127,9 +120,7 @@ void gcode_M100() {
j = how_many_E5s_are_here(ptr + i); j = how_many_E5s_are_here(ptr + i);
if (j > 8) { if (j > 8) {
SERIAL_ECHOPAIR("Found ", j); SERIAL_ECHOPAIR("Found ", j);
SERIAL_ECHOPGM(" bytes free at 0x"); SERIAL_ECHOLNPAIR(" bytes free at 0x", hex_word((uint16_t)(ptr + i)));
prt_hex_word((int) ptr + i);
SERIAL_EOL;
i += j; i += j;
block_cnt++; block_cnt++;
} }
@ -164,8 +155,7 @@ void gcode_M100() {
j = n / (x + 1); j = n / (x + 1);
for (i = 1; i <= x; i++) { for (i = 1; i <= x; i++) {
*(ptr + (i * j)) = i; *(ptr + (i * j)) = i;
SERIAL_ECHOPGM("\nCorrupting address: 0x"); SERIAL_ECHOPAIR("\nCorrupting address: 0x", hex_word((uint16_t)(ptr + i * j)));
prt_hex_word((unsigned int)(ptr + (i * j)));
} }
SERIAL_ECHOLNPGM("\n"); SERIAL_ECHOLNPGM("\n");
return; return;

@ -363,7 +363,10 @@ float code_value_temp_diff();
#endif #endif
#if ENABLED(HOST_KEEPALIVE_FEATURE) #if ENABLED(HOST_KEEPALIVE_FEATURE)
extern uint8_t host_keepalive_interval; extern MarlinBusyState busy_state;
#define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
#else
#define KEEPALIVE_STATE(n) NOOP
#endif #endif
#if FAN_COUNT > 0 #if FAN_COUNT > 0

@ -655,11 +655,9 @@ static bool send_ok[BUFSIZE];
static MarlinBusyState busy_state = NOT_BUSY; static MarlinBusyState busy_state = NOT_BUSY;
static millis_t next_busy_signal_ms = 0; static millis_t next_busy_signal_ms = 0;
uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL; uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
#define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
#else #else
#define host_keepalive() ; #define host_keepalive() NOOP
#define KEEPALIVE_STATE(n) ; #endif
#endif // HOST_KEEPALIVE_FEATURE
static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); } static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); } static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
@ -1021,7 +1019,7 @@ inline void get_serial_commands() {
// send "wait" to indicate Marlin is still waiting. // send "wait" to indicate Marlin is still waiting.
#if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0 #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
static millis_t last_command_time = 0; static millis_t last_command_time = 0;
millis_t ms = millis(); const millis_t ms = millis();
if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) { if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
SERIAL_ECHOLNPGM(MSG_WAIT); SERIAL_ECHOLNPGM(MSG_WAIT);
last_command_time = ms; last_command_time = ms;
@ -4700,8 +4698,8 @@ inline void gcode_G92() {
#endif #endif
wait_for_user = true;
KEEPALIVE_STATE(PAUSED_FOR_USER); KEEPALIVE_STATE(PAUSED_FOR_USER);
wait_for_user = true;
stepper.synchronize(); stepper.synchronize();
refresh_cmd_timeout(); refresh_cmd_timeout();
@ -5040,7 +5038,7 @@ inline void gcode_M42() {
if (first_pin > NUM_DIGITAL_PINS - 1) return; if (first_pin > NUM_DIGITAL_PINS - 1) return;
} }
bool ignore_protection = code_seen('I') ? code_value_bool() : false; const bool ignore_protection = code_seen('I') ? code_value_bool() : false;
// Watch until click, M108, or reset // Watch until click, M108, or reset
if (code_seen('W') && code_value_bool()) { // watch digital pins if (code_seen('W') && code_value_bool()) { // watch digital pins
@ -6314,8 +6312,8 @@ inline void gcode_M121() { endstops.enable_globally(false); }
#if DISABLED(SDSUPPORT) #if DISABLED(SDSUPPORT)
// Wait for lcd click or M108 // Wait for lcd click or M108
wait_for_user = true;
KEEPALIVE_STATE(PAUSED_FOR_USER); KEEPALIVE_STATE(PAUSED_FOR_USER);
wait_for_user = true;
while (wait_for_user) idle(); while (wait_for_user) idle();
KEEPALIVE_STATE(IN_HANDLER); KEEPALIVE_STATE(IN_HANDLER);
@ -7581,7 +7579,7 @@ inline void gcode_M503() {
disable_e_steppers(); disable_e_steppers();
safe_delay(100); safe_delay(100);
millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000L; const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
bool nozzle_timed_out = false; bool nozzle_timed_out = false;
float temps[4]; float temps[4];
@ -7596,9 +7594,10 @@ inline void gcode_M503() {
HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
KEEPALIVE_STATE(PAUSED_FOR_USER);
wait_for_user = true; // LCD click or M108 will clear this wait_for_user = true; // LCD click or M108 will clear this
while (wait_for_user) { while (wait_for_user) {
millis_t current_ms = millis();
if (nozzle_timed_out) if (nozzle_timed_out)
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE); lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
@ -7606,15 +7605,14 @@ inline void gcode_M503() {
filament_change_beep(); filament_change_beep();
#endif #endif
if (current_ms >= nozzle_timeout) { if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
if (!nozzle_timed_out) {
nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE); lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
} }
}
idle(true); idle(true);
} }
KEEPALIVE_STATE(IN_HANDLER);
if (nozzle_timed_out) // Turn nozzles back on if they were turned off if (nozzle_timed_out) // Turn nozzles back on if they were turned off
HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e); HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
@ -7642,6 +7640,7 @@ inline void gcode_M503() {
filament_change_beep(true); filament_change_beep(true);
#endif #endif
KEEPALIVE_STATE(PAUSED_FOR_USER);
wait_for_user = true; // LCD click or M108 will clear this wait_for_user = true; // LCD click or M108 will clear this
while (wait_for_user && nozzle_timed_out) { while (wait_for_user && nozzle_timed_out) {
#if HAS_BUZZER #if HAS_BUZZER
@ -7649,6 +7648,7 @@ inline void gcode_M503() {
#endif #endif
idle(true); idle(true);
} }
KEEPALIVE_STATE(IN_HANDLER);
// Show "load" message // Show "load" message
lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD); lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
@ -10160,9 +10160,9 @@ void prepare_move_to_destination() {
#if HAS_CONTROLLERFAN #if HAS_CONTROLLERFAN
void controllerFan() { void controllerFan() {
static millis_t lastMotorOn = 0; // Last time a motor was turned on static millis_t lastMotorOn = 0, // Last time a motor was turned on
static millis_t nextMotorCheck = 0; // Last time the state was checked nextMotorCheck = 0; // Last time the state was checked
millis_t ms = millis(); const millis_t ms = millis();
if (ELAPSED(ms, nextMotorCheck)) { if (ELAPSED(ms, nextMotorCheck)) {
nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0 if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
@ -10495,7 +10495,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
if (commands_in_queue < BUFSIZE) get_available_commands(); if (commands_in_queue < BUFSIZE) get_available_commands();
millis_t ms = millis(); const millis_t ms = millis();
if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) { if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
SERIAL_ERROR_START; SERIAL_ERROR_START;

@ -38,6 +38,25 @@
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { SBI(bits[y], x); } void bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { SBI(bits[y], x); }
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { return TEST(bits[y], x); } bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { return TEST(bits[y], x); }
static void serial_echo_xy(const uint16_t x, const uint16_t y) {
SERIAL_CHAR('(');
SERIAL_ECHO(x);
SERIAL_CHAR(',');
SERIAL_ECHO(y);
SERIAL_CHAR(')');
safe_delay(10);
}
static void serial_echo_10x_spaces() {
for (uint8_t i = UBL_MESH_NUM_X_POINTS - 1; --i;) {
SERIAL_ECHOPGM(" ");
#if TX_BUFFER_SIZE > 0
MYSERIAL.flushTX();
#endif
safe_delay(10);
}
}
/** /**
* These variables used to be declared inside the unified_bed_leveling class. We are going to * These variables used to be declared inside the unified_bed_leveling class. We are going to
* still declare them within the .cpp file for bed leveling. But there is only one instance of * still declare them within the .cpp file for bed leveling. But there is only one instance of
@ -107,11 +126,8 @@
j = UBL_LAST_EEPROM_INDEX - (m + 1) * sizeof(z_values); j = UBL_LAST_EEPROM_INDEX - (m + 1) * sizeof(z_values);
eeprom_read_block((void *)&z_values, (void *)j, sizeof(z_values)); eeprom_read_block((void *)&z_values, (void *)j, sizeof(z_values));
SERIAL_PROTOCOLPGM("Mesh loaded from slot "); SERIAL_PROTOCOLPAIR("Mesh loaded from slot ", m);
SERIAL_PROTOCOL(m); SERIAL_PROTOCOLLNPAIR(" at offset 0x", hex_word(j));
SERIAL_PROTOCOLPGM(" at offset 0x");
prt_hex_word(j);
SERIAL_EOL;
} }
void unified_bed_leveling::store_mesh(const int16_t m) { void unified_bed_leveling::store_mesh(const int16_t m) {
@ -132,11 +148,8 @@
j = UBL_LAST_EEPROM_INDEX - (m + 1) * sizeof(z_values); j = UBL_LAST_EEPROM_INDEX - (m + 1) * sizeof(z_values);
eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values)); eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values));
SERIAL_PROTOCOLPGM("Mesh saved in slot "); SERIAL_PROTOCOLPAIR("Mesh saved in slot ", m);
SERIAL_PROTOCOL(m); SERIAL_PROTOCOLLNPAIR(" at offset 0x", hex_word(j));
SERIAL_PROTOCOLPGM(" at offset 0x");
prt_hex_word(j);
SERIAL_EOL;
} }
void unified_bed_leveling::reset() { void unified_bed_leveling::reset() {
@ -151,7 +164,7 @@
} }
void unified_bed_leveling::invalidate() { void unified_bed_leveling::invalidate() {
prt_hex_word((unsigned int)this); print_hex_word((uint16_t)this);
SERIAL_EOL; SERIAL_EOL;
state.active = false; state.active = false;
@ -162,125 +175,76 @@
} }
void unified_bed_leveling::display_map(const int map_type) { void unified_bed_leveling::display_map(const int map_type) {
float f, current_xi, current_yi;
int8_t i, j;
UNUSED(map_type);
if (map_type==0) { const bool map0 = map_type == 0;
SERIAL_PROTOCOLLNPGM("\nBed Topography Report:\n");
SERIAL_ECHOPAIR("(", 0);
SERIAL_ECHOPAIR(", ", UBL_MESH_NUM_Y_POINTS - 1);
SERIAL_ECHOPGM(") ");
}
current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0); if (map0) {
current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0); SERIAL_PROTOCOLLNPGM("\nBed Topography Report:\n");
serial_echo_xy(0, UBL_MESH_NUM_Y_POINTS - 1);
if (map_type==0) {
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++) {
SERIAL_ECHOPGM(" "); SERIAL_ECHOPGM(" ");
#if TX_BUFFER_SIZE>0
MYSERIAL.flushTX();
#endif
safe_delay(15);
} }
SERIAL_ECHOPAIR("(", UBL_MESH_NUM_X_POINTS - 1); if (map0) {
SERIAL_ECHOPAIR(",", UBL_MESH_NUM_Y_POINTS - 1); serial_echo_10x_spaces();
SERIAL_ECHOLNPGM(")"); serial_echo_xy(UBL_MESH_NUM_X_POINTS - 1, UBL_MESH_NUM_Y_POINTS - 1);
SERIAL_EOL;
SERIAL_ECHOPAIR("(", UBL_MESH_MIN_X); serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MIN_Y);
SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y); serial_echo_10x_spaces();
SERIAL_CHAR(')'); serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MAX_Y);
safe_delay(15); SERIAL_EOL;
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++) {
SERIAL_ECHOPGM(" ");
#if TX_BUFFER_SIZE>0
MYSERIAL.flushTX();
#endif
safe_delay(15);
} }
SERIAL_ECHOPAIR("(", UBL_MESH_MAX_X); const float current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y); current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
SERIAL_ECHOLNPGM(")");
safe_delay(15);
}
for (j = UBL_MESH_NUM_Y_POINTS - 1; j >= 0; j--) { for (uint8_t j = UBL_MESH_NUM_Y_POINTS - 1; j >= 0; j--) {
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
f = z_values[i][j]; const bool is_current = i == current_xi && j == current_yi;
// is the nozzle here? if so, mark the number // is the nozzle here? if so, mark the number
if (map_type==0) if (map0)
SERIAL_CHAR(i == current_xi && j == current_yi ? '[' : ' '); SERIAL_CHAR(is_current ? '[' : ' ');
if (isnan(f)) const float f = z_values[i][j];
if (map_type==0) { if (isnan(f)) {
SERIAL_PROTOCOLPGM(" . "); serialprintPGM(map0 ? PSTR(" . ") : PSTR("NAN"));
} else }
SERIAL_PROTOCOLPGM("NAN");
else { else {
// if we don't do this, the columns won't line up nicely // if we don't do this, the columns won't line up nicely
if (f>=0.0 && map_type==0) SERIAL_CHAR(' '); if (f >= 0.0 && map0) SERIAL_CHAR(' ');
SERIAL_PROTOCOL_F(f, 3); SERIAL_PROTOCOL_F(f, 3);
idle(); idle();
} }
if (map_type!=0 && i<UBL_MESH_NUM_X_POINTS-1) if (!map0 && i < UBL_MESH_NUM_X_POINTS - 1)
SERIAL_PROTOCOLPGM(","); SERIAL_CHAR(',');
#if TX_BUFFER_SIZE > 0 #if TX_BUFFER_SIZE > 0
MYSERIAL.flushTX(); MYSERIAL.flushTX();
#endif #endif
safe_delay(15); safe_delay(15);
if (map_type==0) { if (map0) {
if (i == current_xi && j == current_yi) // is the nozzle here? if so, finish marking the number SERIAL_CHAR(is_current ? ']' : ' ');
SERIAL_CHAR(']');
else
SERIAL_PROTOCOL(" ");
SERIAL_CHAR(' '); SERIAL_CHAR(' ');
} }
} }
SERIAL_EOL; SERIAL_EOL;
if (j && map_type==0) { // we want the (0,0) up tight against the block of numbers if (j && map0) { // we want the (0,0) up tight against the block of numbers
SERIAL_CHAR(' '); SERIAL_CHAR(' ');
SERIAL_EOL; SERIAL_EOL;
} }
} }
if (map_type==0) { if (map0) {
SERIAL_ECHOPAIR("(", int(UBL_MESH_MIN_X)); serial_echo_xy(UBL_MESH_MIN_X, UBL_MESH_MIN_Y);
SERIAL_ECHOPAIR(",", int(UBL_MESH_MIN_Y));
SERIAL_ECHOPGM(") ");
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++) {
SERIAL_ECHOPGM(" "); SERIAL_ECHOPGM(" ");
#if TX_BUFFER_SIZE>0 serial_echo_10x_spaces();
MYSERIAL.flushTX(); serial_echo_xy(UBL_MESH_MAX_X, UBL_MESH_MIN_Y);
#endif
safe_delay(15);
}
SERIAL_ECHOPAIR("(", int(UBL_MESH_MAX_X));
SERIAL_ECHOPAIR(",", int(UBL_MESH_MIN_Y));
SERIAL_CHAR(')');
SERIAL_EOL; SERIAL_EOL;
serial_echo_xy(0, 0);
SERIAL_ECHOPAIR("(", 0);
SERIAL_ECHOPAIR(",", 0);
SERIAL_ECHOPGM(") ");
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++) {
SERIAL_ECHOPGM(" "); SERIAL_ECHOPGM(" ");
#if TX_BUFFER_SIZE>0 serial_echo_10x_spaces();
MYSERIAL.flushTX(); serial_echo_xy(UBL_MESH_NUM_X_POINTS - 1, 0);
#endif SERIAL_EOL;
safe_delay(15);
}
SERIAL_ECHOPAIR("(", UBL_MESH_NUM_X_POINTS-1);
SERIAL_ECHOPAIR(",", 0);
SERIAL_ECHOLNPGM(")");
} }
} }

@ -158,7 +158,7 @@
* only done between probe points. You will need to press and hold the switch until the * only done between probe points. You will need to press and hold the switch until the
* Phase 1 command can detect it.) * Phase 1 command can detect it.)
* *
* P2 Phase 2 Probe areas of the Mesh that can not be automatically handled. Phase 2 respects an H * P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
* parameter to control the height between Mesh points. The default height for movement * parameter to control the height between Mesh points. The default height for movement
* between Mesh points is 5mm. A smaller number can be used to make this part of the * between Mesh points is 5mm. A smaller number can be used to make this part of the
* calibration less time consuming. You will be running the nozzle down until it just barely * calibration less time consuming. You will be running the nozzle down until it just barely
@ -303,25 +303,17 @@
volatile int8_t ubl_encoderDiff = 0; // Volatile because it's changed by Temperature ISR button update volatile int8_t ubl_encoderDiff = 0; // Volatile because it's changed by Temperature ISR button update
// The simple parameter flags and values are 'static' so parameter parsing can be in a support routine. // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
static int g29_verbose_level = 0, phase_value = -1, repetition_cnt = 1, static int g29_verbose_level, phase_value = -1, repetition_cnt,
storage_slot = 0, map_type = 0, test_pattern = 0, unlevel_value = -1; storage_slot = 0, map_type; //unlevel_value = -1;
static bool repeat_flag = UBL_OK, c_flag = false, x_flag = UBL_OK, y_flag = UBL_OK, statistics_flag = UBL_OK, business_card_mode = false; static bool repeat_flag, c_flag, x_flag, y_flag;
static float x_pos = 0.0, y_pos = 0.0, height_value = 5.0, measured_z, card_thickness = 0.0, constant = 0.0; static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
void lcd_setstatus(const char* message, bool persist); void lcd_setstatus(const char* message, bool persist);
#endif #endif
void gcode_G29() { void gcode_G29() {
float Z1, Z2, Z3;
g29_verbose_level = 0; // These may change, but let's get some reasonable values into them.
repeat_flag = UBL_OK;
repetition_cnt = 1;
c_flag = false;
SERIAL_PROTOCOLLNPAIR("ubl_eeprom_start=", ubl_eeprom_start); SERIAL_PROTOCOLLNPAIR("ubl_eeprom_start=", ubl_eeprom_start);
if (ubl_eeprom_start < 0) { if (ubl_eeprom_start < 0) {
SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it"); SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n"); SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
@ -350,40 +342,33 @@
if (code_seen('Q')) { if (code_seen('Q')) {
if (code_has_value()) test_pattern = code_value_int(); const int test_pattern = code_has_value() ? code_value_int() : -1;
if (test_pattern < 0 || test_pattern > 2) {
if (test_pattern < 0 || test_pattern > 4) { SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-4)\n");
return; return;
} }
SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n"); SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
switch (test_pattern) { switch (test_pattern) {
case 0: case 0:
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a bowl shape. This is for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a bowl shape - similar to
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // similar to what a user would see with for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // a poorly calibrated Delta.
Z1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x; // a poorly calibrated Delta. const float p1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x,
Z2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y; p2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y;
z_values[x][y] += 2.0 * HYPOT(Z1, Z2); z_values[x][y] += 2.0 * HYPOT(p1, p2);
} }
} }
break; break;
case 1: case 1:
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh cells thick that is raised
z_values[x][x] += 9.999; // cells thick that is raised z_values[x][x] += 9.999;
if (x < UBL_MESH_NUM_Y_POINTS - 1) z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
z_values[x][x + 1] += 9.999; // We want the altered line several mesh points thick
if (x > 0)
z_values[x][x - 1] += 9.999; // We want the altered line several mesh points thick
} }
break; break;
case 2: case 2:
// Allow the user to specify the height because 10mm is // Allow the user to specify the height because 10mm is a little extreme in some cases.
// a little bit extreme in some cases.
for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++) // Create a rectangular raised area in for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++) // Create a rectangular raised area in
for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed
z_values[x][y] += code_seen('C') ? constant : 9.99; z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
break;
case 3:
break; break;
} }
} }
@ -396,7 +381,7 @@
// return; // return;
//} //}
} }
*/ //*/
if (code_seen('P')) { if (code_seen('P')) {
phase_value = code_value_int(); phase_value = code_value_int();
@ -430,9 +415,9 @@
code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U')); code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U'));
break; break;
// //
// Manually Probe Mesh in areas that can not be reached by the probe // Manually Probe Mesh in areas that can't be reached by the probe
// //
case 2: case 2: {
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n"); SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
if (!x_flag && !y_flag) { // use a good default location for the path if (!x_flag && !y_flag) { // use a good default location for the path
@ -451,32 +436,34 @@
y_pos = current_position[Y_AXIS]; y_pos = current_position[Y_AXIS];
} }
height_value = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES; const float height = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
if ((business_card_mode = code_seen('B'))) { if (code_seen('B')) {
card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height_value); card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
if (fabs(card_thickness) > 1.5) { if (fabs(card_thickness) > 1.5) {
SERIAL_PROTOCOLLNPGM("?Error in Business Card measurment.\n"); SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n");
return; return;
} }
} }
manually_probe_remaining_mesh(x_pos, y_pos, height_value, card_thickness, code_seen('O') || code_seen('M')); manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M'));
break;
} break;
// //
// Populate invalid Mesh areas with a constant // Populate invalid Mesh areas with a constant
// //
case 3: case 3: {
height_value = 0.0; // Assume 0.0 until proven otherwise const float height = code_seen('C') ? ubl_constant : 0.0;
if (code_seen('C')) height_value = constant;
// If no repetition is specified, do the whole Mesh // If no repetition is specified, do the whole Mesh
if (!repeat_flag) repetition_cnt = 9999; if (!repeat_flag) repetition_cnt = 9999;
while (repetition_cnt--) { while (repetition_cnt--) {
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
if (location.x_index < 0) break; // No more invalid Mesh Points to populate if (location.x_index < 0) break; // No more invalid Mesh Points to populate
z_values[location.x_index][location.y_index] = height_value; z_values[location.x_index][location.y_index] = height;
} }
break; } break;
// //
// Fine Tune (Or Edit) the Mesh // Fine Tune (Or Edit) the Mesh
// //
@ -491,36 +478,56 @@
break; break;
case 10: case 10:
// Debug code... Pay no attention to this stuff // [DEBUG] Pay no attention to this stuff. It can be removed soon.
// it can be removed soon.
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:"); SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
wait_for_user = true; KEEPALIVE_STATE(PAUSED_FOR_USER);
ubl_has_control_of_lcd_panel++;
while (!ubl_lcd_clicked()) { while (!ubl_lcd_clicked()) {
safe_delay(250); safe_delay(250);
SERIAL_ECHO((int)ubl_encoderDiff); if (ubl_encoderDiff) {
SERIAL_ECHOLN((int)ubl_encoderDiff);
ubl_encoderDiff = 0; ubl_encoderDiff = 0;
SERIAL_EOL; }
} }
SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel."); SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
ubl_has_control_of_lcd_panel = false;
KEEPALIVE_STATE(IN_HANDLER);
break;
case 11:
// [DEBUG] wait_for_user code. Pay no attention to this stuff. It can be removed soon.
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
KEEPALIVE_STATE(PAUSED_FOR_USER);
wait_for_user = true;
while (wait_for_user) {
safe_delay(250);
if (ubl_encoderDiff) {
SERIAL_ECHOLN((int)ubl_encoderDiff);
ubl_encoderDiff = 0;
}
}
SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
KEEPALIVE_STATE(IN_HANDLER);
break; break;
} }
} }
if (code_seen('T')) { if (code_seen('T')) {
Z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset; float z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset,
Z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset; z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset,
Z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset; z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
// We need to adjust Z1, Z2, Z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean // We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
// the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is) // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
Z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y); z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y);
Z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y); z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y);
Z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y); z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y);
do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0); do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
tilt_mesh_based_on_3pts(Z1, Z2, Z3); tilt_mesh_based_on_3pts(z1, z2, z3);
} }
// //
@ -610,13 +617,16 @@
save_ubl_active_state_and_disable(); save_ubl_active_state_and_disable();
//measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level); //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
ubl_has_control_of_lcd_panel = true;// Grab the LCD Hardware ubl_has_control_of_lcd_panel++; // Grab the LCD Hardware
measured_z = 1.5; measured_z = 1.5;
do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
// The user is not going to be locking in a new Z-Offset very often so // The user is not going to be locking in a new Z-Offset very often so
// it won't be that painful to spin the Encoder Wheel for 1.5mm // it won't be that painful to spin the Encoder Wheel for 1.5mm
lcd_implementation_clear(); lcd_implementation_clear();
lcd_z_offset_edit_setup(measured_z); lcd_z_offset_edit_setup(measured_z);
KEEPALIVE_STATE(PAUSED_FOR_USER);
do { do {
measured_z = lcd_z_offset_edit(); measured_z = lcd_z_offset_edit();
idle(); idle();
@ -628,6 +638,8 @@
// or here. So, until we are done looking for a long Encoder Wheel Press, // or here. So, until we are done looking for a long Encoder Wheel Press,
// we need to take control of the panel // we need to take control of the panel
KEEPALIVE_STATE(IN_HANDLER);
lcd_return_to_status(); lcd_return_to_status();
const millis_t nxt = millis() + 1500UL; const millis_t nxt = millis() + 1500UL;
@ -637,7 +649,6 @@
SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped."); SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
lcd_setstatus("Z-Offset Stopped", true); lcd_setstatus("Z-Offset Stopped", true);
ubl_has_control_of_lcd_panel = false;
restore_ubl_active_state_and_leave(); restore_ubl_active_state_and_leave();
goto LEAVE; goto LEAVE;
} }
@ -702,14 +713,14 @@
for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
if (!isnan(z_values[x][y])) if (!isnan(z_values[x][y]))
z_values[x][y] -= mean + constant; z_values[x][y] -= mean + ubl_constant;
} }
void shift_mesh_height() { void shift_mesh_height() {
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
if (!isnan(z_values[x][y])) if (!isnan(z_values[x][y]))
z_values[x][y] += constant; z_values[x][y] += ubl_constant;
} }
/** /**
@ -728,9 +739,7 @@
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n"); SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
lcd_quick_feedback(); lcd_quick_feedback();
STOW_PROBE(); STOW_PROBE();
while (ubl_lcd_clicked() ) { while (ubl_lcd_clicked()) idle();
idle();
}
ubl_has_control_of_lcd_panel = false; ubl_has_control_of_lcd_panel = false;
restore_ubl_active_state_and_leave(); restore_ubl_active_state_and_leave();
safe_delay(50); // Debounce the Encoder wheel safe_delay(50); // Debounce the Encoder wheel
@ -739,14 +748,18 @@
location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe
if (location.x_index >= 0 && location.y_index >= 0) { if (location.x_index >= 0 && location.y_index >= 0) {
const float xProbe = ubl.map_x_index_to_bed_location(location.x_index),
yProbe = ubl.map_y_index_to_bed_location(location.y_index); const float rawx = ubl.map_x_index_to_bed_location(location.x_index),
if (xProbe < MIN_PROBE_X || xProbe > MAX_PROBE_X || yProbe < MIN_PROBE_Y || yProbe > MAX_PROBE_Y) { rawy = ubl.map_y_index_to_bed_location(location.y_index);
SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
ubl_has_control_of_lcd_panel = false; ubl_has_control_of_lcd_panel = false;
goto LEAVE; goto LEAVE;
} }
const float measured_z = probe_pt(xProbe, yProbe, stow_probe, g29_verbose_level); const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset; z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset;
} }
@ -831,6 +844,7 @@
} }
float use_encoder_wheel_to_measure_point() { float use_encoder_wheel_to_measure_point() {
KEEPALIVE_STATE(PAUSED_FOR_USER);
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle(); idle();
if (ubl_encoderDiff) { if (ubl_encoderDiff) {
@ -838,34 +852,35 @@
ubl_encoderDiff = 0; ubl_encoderDiff = 0;
} }
} }
KEEPALIVE_STATE(IN_HANDLER);
return current_position[Z_AXIS]; return current_position[Z_AXIS];
} }
float measure_business_card_thickness(const float &height_value) { float measure_business_card_thickness(const float &in_height) {
ubl_has_control_of_lcd_panel++; ubl_has_control_of_lcd_panel++;
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement."); SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
do_blocking_move_to_z(height_value); do_blocking_move_to_z(in_height);
do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0); do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
//, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0); //, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
const float Z1 = use_encoder_wheel_to_measure_point(); const float z1 = use_encoder_wheel_to_measure_point();
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
ubl_has_control_of_lcd_panel = false; ubl_has_control_of_lcd_panel = false;
SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height."); SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
const float Z2 = use_encoder_wheel_to_measure_point(); const float z2 = use_encoder_wheel_to_measure_point();
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
if (g29_verbose_level > 1) { if (g29_verbose_level > 1) {
SERIAL_PROTOCOLPGM("Business Card is: "); SERIAL_PROTOCOLPGM("Business Card is: ");
SERIAL_PROTOCOL_F(abs(Z1 - Z2), 6); SERIAL_PROTOCOL_F(abs(z1 - z2), 6);
SERIAL_PROTOCOLLNPGM("mm thick."); SERIAL_PROTOCOLLNPGM("mm thick.");
} }
restore_ubl_active_state_and_leave(); restore_ubl_active_state_and_leave();
return abs(Z1 - Z2); return abs(z1 - z2);
} }
void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) { void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
@ -881,21 +896,23 @@
if (do_ubl_mesh_map) ubl.display_map(map_type); if (do_ubl_mesh_map) ubl.display_map(map_type);
location = find_closest_mesh_point_of_type(INVALID, lx, ly, 0, NULL, false); // The '0' says we want to use the nozzle's position location = find_closest_mesh_point_of_type(INVALID, lx, ly, 0, NULL, false); // The '0' says we want to use the nozzle's position
// It doesn't matter if the probe can not reach the // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
// NAN location. This is a manual probe.
if (location.x_index < 0 && location.y_index < 0) continue; if (location.x_index < 0 && location.y_index < 0) continue;
const float xProbe = ubl.map_x_index_to_bed_location(location.x_index), const float rawx = ubl.map_x_index_to_bed_location(location.x_index),
yProbe = ubl.map_y_index_to_bed_location(location.y_index); rawy = ubl.map_y_index_to_bed_location(location.y_index);
// Modify to use if (position_is_reachable(pos[XYZ])) // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
if (xProbe < (X_MIN_POS) || xProbe > (X_MAX_POS) || yProbe < (Y_MIN_POS) || yProbe > (Y_MAX_POS)) { if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed."); SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
ubl_has_control_of_lcd_panel = false; ubl_has_control_of_lcd_panel = false;
goto LEAVE; goto LEAVE;
} }
const float dx = xProbe - last_x, const float xProbe = LOGICAL_X_POSITION(rawx),
yProbe = LOGICAL_Y_POSITION(rawy),
dx = xProbe - last_x,
dy = yProbe - last_y; dy = yProbe - last_y;
if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED) if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
@ -908,8 +925,10 @@
last_x = xProbe; last_x = xProbe;
last_y = yProbe; last_y = yProbe;
KEEPALIVE_STATE(PAUSED_FOR_USER);
ubl_has_control_of_lcd_panel = true; ubl_has_control_of_lcd_panel = true;
while (!ubl_lcd_clicked) { // we need the loop to move the nozzle based on the encoder wheel here!
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle(); idle();
if (ubl_encoderDiff) { if (ubl_encoderDiff) {
do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl_encoderDiff) / 100.0); do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl_encoderDiff) / 100.0);
@ -926,6 +945,7 @@
lcd_quick_feedback(); lcd_quick_feedback();
while (ubl_lcd_clicked()) idle(); while (ubl_lcd_clicked()) idle();
ubl_has_control_of_lcd_panel = false; ubl_has_control_of_lcd_panel = false;
KEEPALIVE_STATE(IN_HANDLER);
restore_ubl_active_state_and_leave(); restore_ubl_active_state_and_leave();
return; return;
} }
@ -933,7 +953,7 @@
z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness; z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
if (g29_verbose_level > 2) { if (g29_verbose_level > 2) {
SERIAL_PROTOCOL("Mesh Point Measured at: "); SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6); SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
SERIAL_EOL; SERIAL_EOL;
} }
@ -943,62 +963,50 @@
LEAVE: LEAVE:
restore_ubl_active_state_and_leave(); restore_ubl_active_state_and_leave();
KEEPALIVE_STATE(IN_HANDLER);
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
do_blocking_move_to_xy(lx, ly); do_blocking_move_to_xy(lx, ly);
} }
bool g29_parameter_parsing() { bool g29_parameter_parsing() {
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
lcd_setstatus("Doing G29 UBL !", true); lcd_setstatus("Doing G29 UBL !", true);
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
x_pos = current_position[X_AXIS]; g29_verbose_level = code_seen('V') ? code_value_int() : 0;
y_pos = current_position[Y_AXIS]; if (g29_verbose_level < 0 || g29_verbose_level > 4) {
x_flag = y_flag = repeat_flag = false; SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
map_type = 0;
constant = 0.0;
repetition_cnt = 1;
if ((x_flag = code_seen('X'))) {
x_pos = code_value_float();
if (x_pos < X_MIN_POS || x_pos > X_MAX_POS) {
SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
return UBL_ERR; return UBL_ERR;
} }
x_flag = code_seen('X') && code_has_value();
x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
if (x_pos < LOGICAL_X_POSITION(X_MIN_POS) || x_pos > LOGICAL_X_POSITION(X_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
return UBL_ERR;
} }
if ((y_flag = code_seen('Y'))) { y_flag = code_seen('Y') && code_has_value();
y_pos = code_value_float(); y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
if (y_pos < Y_MIN_POS || y_pos > Y_MAX_POS) { if (y_pos < LOGICAL_Y_POSITION(Y_MIN_POS) || y_pos > LOGICAL_Y_POSITION(Y_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n"); SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
return UBL_ERR; return UBL_ERR;
} }
}
if (x_flag != y_flag) { if (x_flag != y_flag) {
SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n"); SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
return UBL_ERR; return UBL_ERR;
} }
g29_verbose_level = 0;
if (code_seen('V')) {
g29_verbose_level = code_value_int();
if (g29_verbose_level < 0 || g29_verbose_level > 4) {
SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
return UBL_ERR;
}
}
if (code_seen('A')) { // Activate the Unified Bed Leveling System if (code_seen('A')) { // Activate the Unified Bed Leveling System
ubl.state.active = 1; ubl.state.active = 1;
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n"); SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
ubl.store_state(); ubl.store_state();
} }
if ((c_flag = code_seen('C') && code_has_value())) c_flag = code_seen('C') && code_has_value();
constant = code_value_float(); ubl_constant = c_flag ? code_value_float() : 0.0;
if (code_seen('D')) { // Disable the Unified Bed Leveling System if (code_seen('D')) { // Disable the Unified Bed Leveling System
ubl.state.active = 0; ubl.state.active = 0;
@ -1018,29 +1026,28 @@
} }
#endif #endif
if ((repeat_flag = code_seen('R'))) { repeat_flag = code_seen('R');
repetition_cnt = code_has_value() ? code_value_int() : 9999; repetition_cnt = repeat_flag ? (code_has_value() ? code_value_int() : 9999) : 1;
if (repetition_cnt < 1) { if (repetition_cnt < 1) {
SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n"); SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
return UBL_ERR; return UBL_ERR;
} }
}
if (code_seen('O')) { // Check if a map type was specified map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
map_type = code_value_int() ? code_has_value() : 0;
if (map_type < 0 || map_type > 1) { if (map_type < 0 || map_type > 1) {
SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
return UBL_ERR; return UBL_ERR;
} }
}
/*
if (code_seen('M')) { // Check if a map type was specified if (code_seen('M')) { // Check if a map type was specified
map_type = code_value_int() ? code_has_value() : 0; map_type = code_has_value() ? code_value_int() : 0;
if (map_type < 0 || map_type > 1) { if (map_type < 0 || map_type > 1) {
SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
return UBL_ERR; return UBL_ERR;
} }
} }
//*/
return UBL_OK; return UBL_OK;
} }
@ -1054,20 +1061,15 @@
SERIAL_PROTOCOL(str); SERIAL_PROTOCOL(str);
SERIAL_PROTOCOL_F(f, 8); SERIAL_PROTOCOL_F(f, 8);
SERIAL_PROTOCOL(" "); SERIAL_PROTOCOLPGM(" ");
ptr = (char*)&f; ptr = (char*)&f;
for (uint8_t i = 0; i < 4; i++) { for (uint8_t i = 0; i < 4; i++)
SERIAL_PROTOCOL(" "); SERIAL_PROTOCOLPAIR(" ", hex_byte(*ptr++));
prt_hex_byte(*ptr++); SERIAL_PROTOCOLPAIR(" isnan()=", isnan(f));
} SERIAL_PROTOCOLPAIR(" isinf()=", isinf(f));
SERIAL_PROTOCOL(" isnan()=");
SERIAL_PROTOCOL(isnan(f));
SERIAL_PROTOCOL(" isinf()=");
SERIAL_PROTOCOL(isinf(f));
constexpr float g = INFINITY; if (f == -INFINITY)
if (f == -g) SERIAL_PROTOCOLPGM(" Minus Infinity detected.");
SERIAL_PROTOCOL(" Minus Infinity detected.");
SERIAL_EOL; SERIAL_EOL;
} }
@ -1104,7 +1106,6 @@
*/ */
void g29_what_command() { void g29_what_command() {
const uint16_t k = E2END - ubl_eeprom_start; const uint16_t k = E2END - ubl_eeprom_start;
statistics_flag++;
SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 "); SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 ");
if (ubl.state.active) if (ubl.state.active)
@ -1117,8 +1118,7 @@
if (ubl.state.eeprom_storage_slot == -1) if (ubl.state.eeprom_storage_slot == -1)
SERIAL_PROTOCOLPGM("No Mesh Loaded."); SERIAL_PROTOCOLPGM("No Mesh Loaded.");
else { else {
SERIAL_PROTOCOLPGM("Mesh: "); SERIAL_PROTOCOLPAIR("Mesh ", ubl.state.eeprom_storage_slot);
prt_hex_word(ubl.state.eeprom_storage_slot);
SERIAL_PROTOCOLPGM(" Loaded."); SERIAL_PROTOCOLPGM(" Loaded.");
} }
SERIAL_EOL; SERIAL_EOL;
@ -1136,7 +1136,7 @@
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: "); SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
SERIAL_PROTOCOL_F( ubl.map_x_index_to_bed_location(i), 1); SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), 1);
SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOLPGM(" ");
safe_delay(50); safe_delay(50);
} }
@ -1144,7 +1144,7 @@
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: "); SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) { for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
SERIAL_PROTOCOL_F( ubl.map_y_index_to_bed_location(i), 1); SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(i)), 1);
SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOLPGM(" ");
safe_delay(50); safe_delay(50);
} }
@ -1162,13 +1162,9 @@
SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk); SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
SERIAL_EOL; SERIAL_EOL;
safe_delay(50); safe_delay(50);
SERIAL_PROTOCOLPGM("Free EEPROM space starts at: 0x"); SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl_eeprom_start));
prt_hex_word(ubl_eeprom_start);
SERIAL_EOL;
SERIAL_PROTOCOLPGM("end of EEPROM : "); SERIAL_PROTOCOLLNPAIR("end of EEPROM : ", hex_word(E2END));
prt_hex_word(E2END);
SERIAL_EOL;
safe_delay(50); safe_delay(50);
SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl)); SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
@ -1177,18 +1173,14 @@
SERIAL_EOL; SERIAL_EOL;
safe_delay(50); safe_delay(50);
SERIAL_PROTOCOLPGM("EEPROM free for UBL: 0x"); SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: 0x", hex_word(k));
prt_hex_word(k);
SERIAL_EOL;
safe_delay(50); safe_delay(50);
SERIAL_PROTOCOLPGM("EEPROM can hold 0x"); SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(z_values));
prt_hex_word(k / sizeof(z_values));
SERIAL_PROTOCOLLNPGM(" meshes.\n"); SERIAL_PROTOCOLLNPGM(" meshes.\n");
safe_delay(50); safe_delay(50);
SERIAL_PROTOCOLPGM("sizeof(ubl.state) :"); SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(ubl.state));
prt_hex_word(sizeof(ubl.state));
SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS); SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS);
SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS); SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS);
@ -1222,12 +1214,12 @@
SERIAL_ECHOLNPGM("EEPROM Dump:"); SERIAL_ECHOLNPGM("EEPROM Dump:");
for (uint16_t i = 0; i < E2END + 1; i += 16) { for (uint16_t i = 0; i < E2END + 1; i += 16) {
if (!(i & 0x3)) idle(); if (!(i & 0x3)) idle();
prt_hex_word(i); print_hex_word(i);
SERIAL_ECHOPGM(": "); SERIAL_ECHOPGM(": ");
for (uint16_t j = 0; j < 16; j++) { for (uint16_t j = 0; j < 16; j++) {
kkkk = i + j; kkkk = i + j;
eeprom_read_block(&cccc, (void *)kkkk, 1); eeprom_read_block(&cccc, (void *)kkkk, 1);
prt_hex_byte(cccc); print_hex_byte(cccc);
SERIAL_ECHO(' '); SERIAL_ECHO(' ');
} }
SERIAL_EOL; SERIAL_EOL;
@ -1259,9 +1251,8 @@
eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values)); eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot); SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
SERIAL_PROTOCOLPGM(" loaded from EEPROM address "); // Soon, we can remove the extra clutter of printing SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_word(j)); // Soon, we can remove the extra clutter of printing
prt_hex_word(j); // the address in the EEPROM where the Mesh is stored. // the address in the EEPROM where the Mesh is stored.
SERIAL_EOL;
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
@ -1269,7 +1260,6 @@
} }
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) { mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) {
int i, j, k, l;
float distance, closest = far_flag ? -99999.99 : 99999.99; float distance, closest = far_flag ? -99999.99 : 99999.99;
mesh_index_pair return_val; mesh_index_pair return_val;
@ -1282,8 +1272,8 @@
const float px = lx - (probe_as_reference ? X_PROBE_OFFSET_FROM_EXTRUDER : 0), const float px = lx - (probe_as_reference ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
py = ly - (probe_as_reference ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0); py = ly - (probe_as_reference ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
|| (type == REAL && !isnan(z_values[i][j])) || (type == REAL && !isnan(z_values[i][j]))
@ -1292,42 +1282,45 @@
// We only get here if we found a Mesh Point of the specified type // We only get here if we found a Mesh Point of the specified type
const float mx = LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), // Check if we can probe this mesh location const float rawx = ubl.map_x_index_to_bed_location(i), // Check if we can probe this mesh location
my = LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(j)); rawy = ubl.map_y_index_to_bed_location(j);
// If we are using the probe as the reference there are some locations we can't get to. // If using the probe as the reference there are some unreachable locations.
// We prune these out of the list and ignore them until the next Phase where we do the // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
// manual nozzle probing.
if (probe_as_reference && if (probe_as_reference &&
(mx < (MIN_PROBE_X) || mx > (MAX_PROBE_X) || my < (MIN_PROBE_Y) || my > (MAX_PROBE_Y)) (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y))
) continue; ) continue;
// We can get to it. Let's see if it is the closest location to the nozzle. // Unreachable. Check if it's the closest location to the nozzle.
// Add in a weighting factor that considers the current location of the nozzle. // Add in a weighting factor that considers the current location of the nozzle.
const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
my = LOGICAL_Y_POSITION(rawy);
distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1; distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
if (far_flag) { // If doing the far_flag action, we want to be as far as possible if (far_flag) { // If doing the far_flag action, we want to be as far as possible
for (k = 0; k < UBL_MESH_NUM_X_POINTS; k++) { // from the starting point and from any other probed points. We for (uint8_t k = 0; k < UBL_MESH_NUM_X_POINTS; k++) { // from the starting point and from any other probed points. We
for (l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces for (uint8_t l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces
if (!isnan(z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed if (!isnan(z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed
distance += (i-k)*(i-k)*MESH_X_DIST*.05; // point we can find. distance += sq(i - k) * (MESH_X_DIST) * .05 // point we can find.
distance += (j-l)*(j-l)*MESH_Y_DIST*.05; + sq(j - l) * (MESH_Y_DIST) * .05;
} }
} }
} }
} }
if ( (!far_flag&&(distance < closest)) || (far_flag&&(distance > closest)) ) { // if far_flag, look for furthest away point if (far_flag == (distance > closest) && distance != closest) { // if far_flag, look for farthest point
closest = distance; // We found a closer location with closest = distance; // We found a closer/farther location with
return_val.x_index = i; // the specified type of mesh value. return_val.x_index = i; // the specified type of mesh value.
return_val.y_index = j; return_val.y_index = j;
return_val.distance = closest; return_val.distance = closest;
} }
} }
} } // for j
} } // for i
return return_val; return return_val;
} }
@ -1356,27 +1349,30 @@
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
// different location the next time through the loop // different location the next time through the loop
const float xProbe = ubl.map_x_index_to_bed_location(location.x_index), const float rawx = ubl.map_x_index_to_bed_location(location.x_index),
yProbe = ubl.map_y_index_to_bed_location(location.y_index); rawy = ubl.map_y_index_to_bed_location(location.y_index);
if (xProbe < X_MIN_POS || xProbe > X_MAX_POS || yProbe < Y_MIN_POS || yProbe > Y_MAX_POS) { // In theory, we don't need this check.
SERIAL_PROTOCOLLNPGM("?Error: Attempt to edit off the bed."); // This really can't happen, but for now, // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
ubl_has_control_of_lcd_panel = false; // Let's do the check. if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check.
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
ubl_has_control_of_lcd_panel = false;
goto FINE_TUNE_EXIT; goto FINE_TUNE_EXIT;
} }
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
do_blocking_move_to_xy(xProbe, yProbe); do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
float new_z = z_values[location.x_index][location.y_index]; float new_z = z_values[location.x_index][location.y_index];
round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
new_z = float(round_off) / 1000.0; new_z = float(round_off) / 1000.0;
KEEPALIVE_STATE(PAUSED_FOR_USER);
ubl_has_control_of_lcd_panel = true; ubl_has_control_of_lcd_panel = true;
lcd_implementation_clear(); lcd_implementation_clear();
lcd_mesh_edit_setup(new_z); lcd_mesh_edit_setup(new_z);
wait_for_user = true;
do { do {
new_z = lcd_mesh_edit(); new_z = lcd_mesh_edit();
idle(); idle();
@ -1399,7 +1395,6 @@
while (ubl_lcd_clicked()) idle(); while (ubl_lcd_clicked()) idle();
ubl_has_control_of_lcd_panel = false;
goto FINE_TUNE_EXIT; goto FINE_TUNE_EXIT;
} }
} }
@ -1415,6 +1410,7 @@
FINE_TUNE_EXIT: FINE_TUNE_EXIT:
ubl_has_control_of_lcd_panel = false; ubl_has_control_of_lcd_panel = false;
KEEPALIVE_STATE(IN_HANDLER);
if (do_ubl_mesh_map) ubl.display_map(map_type); if (do_ubl_mesh_map) ubl.display_map(map_type);
restore_ubl_active_state_and_leave(); restore_ubl_active_state_and_leave();

@ -1235,20 +1235,17 @@ void Config_ResetDefault() {
SERIAL_ECHOPAIR("EEPROM can hold ", (int)((UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values))); SERIAL_ECHOPAIR("EEPROM can hold ", (int)((UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values)));
SERIAL_ECHOLNPGM(" meshes.\n"); SERIAL_ECHOLNPGM(" meshes.\n");
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS); SERIAL_ECHOLNPGM("UBL_MESH_NUM_X_POINTS " STRINGIFY(UBL_MESH_NUM_X_POINTS));
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS); SERIAL_ECHOLNPGM("UBL_MESH_NUM_Y_POINTS " STRINGIFY(UBL_MESH_NUM_Y_POINTS));
SERIAL_ECHOPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X); SERIAL_ECHOLNPGM("UBL_MESH_MIN_X " STRINGIFY(UBL_MESH_MIN_X));
SERIAL_ECHOPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y); SERIAL_ECHOLNPGM("UBL_MESH_MIN_Y " STRINGIFY(UBL_MESH_MIN_Y));
SERIAL_ECHOPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X); SERIAL_ECHOLNPGM("UBL_MESH_MAX_X " STRINGIFY(UBL_MESH_MAX_X));
SERIAL_ECHOPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y); SERIAL_ECHOLNPGM("UBL_MESH_MAX_Y " STRINGIFY(UBL_MESH_MAX_Y));
SERIAL_ECHOPGM("\nMESH_X_DIST "); SERIAL_ECHOLNPGM("MESH_X_DIST " STRINGIFY(MESH_X_DIST));
SERIAL_ECHO_F(MESH_X_DIST, 6); SERIAL_ECHOLNPGM("MESH_Y_DIST " STRINGIFY(MESH_Y_DIST));
SERIAL_ECHOPGM("\nMESH_Y_DIST ");
SERIAL_ECHO_F(MESH_Y_DIST, 6);
SERIAL_EOL;
SERIAL_EOL; SERIAL_EOL;
} }

@ -26,22 +26,25 @@
#include "hex_print_routines.h" #include "hex_print_routines.h"
void prt_hex_nibble(uint8_t n) { static char _hex[5] = { 0 };
if (n <= 9)
SERIAL_CHAR('0'+n);
else
SERIAL_CHAR('A' + n - 10);
delay(3);
}
void prt_hex_byte(uint8_t b) { char* hex_byte(const uint8_t b) {
prt_hex_nibble((b & 0xF0) >> 4); _hex[0] = hex_nybble(b >> 4);
prt_hex_nibble(b & 0x0F); _hex[1] = hex_nybble(b);
_hex[2] = '\0';
return _hex;
} }
void prt_hex_word(uint16_t w) { char* hex_word(const uint16_t w) {
prt_hex_byte((w & 0xFF00) >> 8); _hex[0] = hex_nybble(w >> 12);
prt_hex_byte(w & 0x0FF); _hex[1] = hex_nybble(w >> 8);
_hex[2] = hex_nybble(w >> 4);
_hex[3] = hex_nybble(w);
return _hex;
} }
void print_hex_nybble(const uint8_t n) { SERIAL_CHAR(hex_nybble(n)); }
void print_hex_byte(const uint8_t b) { SERIAL_ECHO(hex_byte(b)); }
void print_hex_word(const uint16_t w) { SERIAL_ECHO(hex_word(w)); }
#endif // AUTO_BED_LEVELING_UBL || M100_FREE_MEMORY_WATCHER #endif // AUTO_BED_LEVELING_UBL || M100_FREE_MEMORY_WATCHER

@ -23,11 +23,23 @@
#ifndef HEX_PRINT_ROUTINES_H #ifndef HEX_PRINT_ROUTINES_H
#define HEX_PRINT_ROUTINES_H #define HEX_PRINT_ROUTINES_H
#include "MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(M100_FREE_MEMORY_WATCHER)
// //
// 3 support routines to print hex numbers. We can print a nibble, byte and word // Utility functions to create and print hex strings as nybble, byte, and word.
// //
void prt_hex_nibble(uint8_t n);
void prt_hex_byte(uint8_t b);
void prt_hex_word(uint16_t w);
inline char hex_nybble(const uint8_t n) {
return (n & 0xF) + ((n & 0xF) < 10 ? '0' : 'A' - 10);
}
char* hex_byte(const uint8_t b);
char* hex_word(const uint16_t w);
void print_hex_nybble(const uint8_t n);
void print_hex_byte(const uint8_t b);
void print_hex_word(const uint16_t w);
#endif // AUTO_BED_LEVELING_UBL || M100_FREE_MEMORY_WATCHER
#endif // HEX_PRINT_ROUTINES_H #endif // HEX_PRINT_ROUTINES_H

@ -100,7 +100,7 @@
#endif #endif
#if TEMP_SENSOR_2 == -1 #if TEMP_SENSOR_2 == -1
#define TEMP_2_PIN 7 // Analog Input (connector *K3* on RUMBA thermocouple ADD ON is used <-- this can not be used when TEMP_SENSOR_BED is defined as thermocouple) #define TEMP_2_PIN 7 // Analog Input (connector *K3* on RUMBA thermocouple ADD ON is used <-- this can't be used when TEMP_SENSOR_BED is defined as thermocouple)
#else #else
#define TEMP_2_PIN 13 // Analog Input (default connector for thermistor *T2* on rumba board is used) #define TEMP_2_PIN 13 // Analog Input (default connector for thermistor *T2* on rumba board is used)
#endif #endif
@ -109,7 +109,7 @@
//#define TEMP_X_PIN 12 // Analog Input (default connector for thermistor *T3* on rumba board is used) //#define TEMP_X_PIN 12 // Analog Input (default connector for thermistor *T3* on rumba board is used)
#if TEMP_SENSOR_BED == -1 #if TEMP_SENSOR_BED == -1
#define TEMP_BED_PIN 7 // Analog Input (connector *K3* on RUMBA thermocouple ADD ON is used <-- this can not be used when TEMP_SENSOR_2 is defined as thermocouple) #define TEMP_BED_PIN 7 // Analog Input (connector *K3* on RUMBA thermocouple ADD ON is used <-- this can't be used when TEMP_SENSOR_2 is defined as thermocouple)
#else #else
#define TEMP_BED_PIN 11 // Analog Input (default connector for thermistor *THB* on rumba board is used) #define TEMP_BED_PIN 11 // Analog Input (default connector for thermistor *THB* on rumba board is used)
#endif #endif

@ -859,65 +859,45 @@ void kill_screen(const char* lcd_msg) {
static int ubl_encoderPosition = 0; static int ubl_encoderPosition = 0;
static void _lcd_mesh_fine_tune(const char* msg) { static void _lcd_mesh_fine_tune(const char* msg) {
// static millis_t next_click = 0; // We are going to accelerate the number speed when the wheel
// // turns fast. But that isn't implemented yet
int16_t last_digit;
int32_t rounded;
defer_return_to_status = true; defer_return_to_status = true;
if (ubl_encoderDiff) { if (ubl_encoderDiff) {
if ( ubl_encoderDiff > 0 ) ubl_encoderPosition = (ubl_encoderDiff > 0) ? 1 : -1;
ubl_encoderPosition = 1;
else {
ubl_encoderPosition = -1;
}
ubl_encoderDiff = 0; ubl_encoderDiff = 0;
// next_click = millis();
mesh_edit_accumulator += ( (float) (ubl_encoderPosition)) * .005 / 2.0 ; mesh_edit_accumulator += float(ubl_encoderPosition) * 0.005 / 2.0;
mesh_edit_value = mesh_edit_accumulator; mesh_edit_value = mesh_edit_accumulator;
encoderPosition = 0; encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW; lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
rounded = (int32_t)(mesh_edit_value * 1000.0); const int32_t rounded = (int32_t)(mesh_edit_value * 1000.0);
last_digit = rounded % 5L; //10L; mesh_edit_value = float(rounded - (rounded % 5L)) / 1000.0;
rounded -= last_digit;
mesh_edit_value = float(rounded) / 1000.0;
} }
if (lcdDrawUpdate) if (lcdDrawUpdate)
lcd_implementation_drawedit(msg, ftostr43sign(mesh_edit_value)); lcd_implementation_drawedit(msg, ftostr43sign(mesh_edit_value));
} }
void _lcd_mesh_edit_NOP() { void _lcd_mesh_edit_NOP() {
defer_return_to_status = true; defer_return_to_status = true;
} }
void _lcd_mesh_edit() { void _lcd_mesh_edit() {
_lcd_mesh_fine_tune(PSTR("Mesh Editor: ")); _lcd_mesh_fine_tune(PSTR("Mesh Editor: "));
defer_return_to_status = true;
} }
float lcd_mesh_edit() { float lcd_mesh_edit() {
lcd_goto_screen(_lcd_mesh_edit_NOP); lcd_goto_screen(_lcd_mesh_edit_NOP);
_lcd_mesh_fine_tune(PSTR("Mesh Editor: ")); _lcd_mesh_fine_tune(PSTR("Mesh Editor: "));
defer_return_to_status = true;
return mesh_edit_value; return mesh_edit_value;
} }
void lcd_mesh_edit_setup(float initial) { void lcd_mesh_edit_setup(float initial) {
mesh_edit_value = mesh_edit_accumulator = initial; mesh_edit_value = mesh_edit_accumulator = initial;
lcd_goto_screen(_lcd_mesh_edit_NOP); lcd_goto_screen(_lcd_mesh_edit_NOP);
mesh_edit_value = mesh_edit_accumulator = initial;
defer_return_to_status = true;
} }
void _lcd_z_offset_edit() { void _lcd_z_offset_edit() {
_lcd_mesh_fine_tune(PSTR("Z-Offset: ")); _lcd_mesh_fine_tune(PSTR("Z-Offset: "));
defer_return_to_status = true;
} }
float lcd_z_offset_edit() { float lcd_z_offset_edit() {

Loading…
Cancel
Save