Merge pull request #5060 from thinkyhead/rc_fix_ugly_code

Reduce, clean up MINTEMP / MAXTEMP test code
2.0.x
Scott Lahteine 8 years ago committed by GitHub
commit cfb47929ca

@ -3145,7 +3145,7 @@ inline void gcode_G4() {
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
#endif
// Init the current position of all carriages to 0,0,0
memset(current_position, 0, sizeof(current_position));
ZERO(current_position);
sync_plan_position();
// Move all carriages together linearly until an endstop is hit.

@ -674,7 +674,7 @@ bool SdBaseFile::open(SdBaseFile* dirFile,
index = 0;
}
// initialize as empty file
memset(p, 0, sizeof(dir_t));
ZERO(p);
memcpy(p->name, dname, 11);
// set timestamps

@ -36,7 +36,7 @@ CardReader::CardReader() {
sdpos = 0;
workDirDepth = 0;
file_subcall_ctr = 0;
memset(workDirParents, 0, sizeof(workDirParents));
ZERO(workDirParents);
autostart_stilltocheck = true; //the SD start is delayed, because otherwise the serial cannot answer fast enough to make contact with the host software.
autostart_index = 0;

@ -40,7 +40,6 @@
// Change EEPROM version if these are changed:
#define EEPROM_OFFSET 100
#define MAX_EXTRUDERS 4
/**
* V24 EEPROM Layout:

@ -78,6 +78,7 @@
#define NUMERIC(a) ((a) >= '0' && '9' >= (a))
#define NUMERIC_SIGNED(a) (NUMERIC(a) || (a) == '-')
#define COUNT(a) (sizeof(a)/sizeof(*a))
#define ZERO(a) memset(a,0,sizeof(a))
// Macros for initializing arrays
#define ARRAY_6(v1, v2, v3, v4, v5, v6, args...) { v1, v2, v3, v4, v5, v6 }

@ -31,7 +31,7 @@
void mesh_bed_leveling::reset() {
status = MBL_STATUS_NONE;
z_offset = 0;
memset(z_values, 0, sizeof(z_values));
ZERO(z_values);
}
#endif // MESH_BED_LEVELING

@ -275,6 +275,10 @@
#define SUICIDE_PIN -1
#endif
#ifndef MAX_EXTRUDERS
#define MAX_EXTRUDERS 4
#endif
// Marlin needs to account for pins that equal -1
#define marlinAnalogInputToDigitalPin(p) ((p) == -1 ? -1 : analogInputToDigitalPin(p))

@ -137,8 +137,8 @@ Planner::Planner() { init(); }
void Planner::init() {
block_buffer_head = block_buffer_tail = 0;
memset(position, 0, sizeof(position));
memset(previous_speed, 0, sizeof(previous_speed));
ZERO(position);
ZERO(previous_speed);
previous_nominal_speed = 0.0;
#if ABL_PLANAR
bed_level_matrix.set_to_identity();
@ -1266,7 +1266,7 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
stepper.set_position(na, nb, nc, ne);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
memset(previous_speed, 0, sizeof(previous_speed));
ZERO(previous_speed);
}
void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {

@ -151,7 +151,7 @@ volatile bool Temperature::temp_meas_ready = false;
millis_t Temperature::next_bed_check_ms;
#endif
unsigned long Temperature::raw_temp_value[4] = { 0 };
unsigned long Temperature::raw_temp_value[MAX_EXTRUDERS] = { 0 };
unsigned long Temperature::raw_temp_bed_value = 0;
// Init min and max temp with extreme values to prevent false errors during startup
@ -1758,6 +1758,9 @@ void Temperature::isr() {
} // switch(temp_state)
if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
temp_count = 0;
// Update the raw values if they've been read. Else we could be updating them during reading.
if (!temp_meas_ready) set_current_temp_raw();
@ -1766,85 +1769,54 @@ void Temperature::isr() {
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
#endif
temp_count = 0;
for (int i = 0; i < 4; i++) raw_temp_value[i] = 0;
ZERO(raw_temp_value);
raw_temp_bed_value = 0;
#if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
#define GE0 <=
int constexpr temp_dir[] = {
#if ENABLED(HEATER_0_USES_MAX6675)
0
#elif HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
-1
#else
#define GE0 >=
1
#endif
if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
if (minttemp_raw[0] GE0 current_temperature_raw[0] && !is_preheating(0) && target_temperature[0] > 0.0f) {
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
if (++consecutive_low_temperature_error[0] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
#endif
min_temp_error(0);
}
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
else
consecutive_low_temperature_error[0] = 0;
#endif
#endif
#if HAS_TEMP_1 && HOTENDS > 1
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
#define GE1 <=
, -1
#else
#define GE1 >=
, 1
#endif
if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
if (minttemp_raw[1] GE1 current_temperature_raw[1] && !is_preheating(1) && target_temperature[1] > 0.0f) {
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
if (++consecutive_low_temperature_error[1] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
#endif
min_temp_error(1);
}
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
else
consecutive_low_temperature_error[1] = 0;
#endif
#endif // TEMP_SENSOR_1
#if HAS_TEMP_2 && HOTENDS > 2
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
#define GE2 <=
, -1
#else
#define GE2 >=
#endif
if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
if (minttemp_raw[2] GE2 current_temperature_raw[2] && !is_preheating(2) && target_temperature[2] > 0.0f) {
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
if (++consecutive_low_temperature_error[2] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
, 1
#endif
min_temp_error(2);
}
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
else
consecutive_low_temperature_error[2] = 0;
#endif
#endif // TEMP_SENSOR_2
#if HAS_TEMP_3 && HOTENDS > 3
#if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
#define GE3 <=
, -1
#else
#define GE3 >=
, 1
#endif
if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
if (minttemp_raw[3] GE3 current_temperature_raw[3] && !is_preheating(3) && target_temperature[3] > 0.0f) {
#endif
};
for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
const int tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir;
if (rawtemp > maxttemp_raw[e] * tdir) max_temp_error(e);
if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && target_temperature[e] > 0.0f) {
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
if (++consecutive_low_temperature_error[3] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
#endif
min_temp_error(3);
min_temp_error(e);
}
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
else
consecutive_low_temperature_error[3] = 0;
consecutive_low_temperature_error[e] = 0;
#endif
#endif // TEMP_SENSOR_3
}
#if HAS_TEMP_BED
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP

Loading…
Cancel
Save