Merge git://github.com/daid/Marlin into Marlin_v1

Added invert step pins to corexy code
2.0.x
Erik van der Zalm 13 years ago
commit cd57bf305b

@ -88,6 +88,12 @@
#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step) #define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
//By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step.
#define INVERT_X_STEP_PIN false
#define INVERT_Y_STEP_PIN false
#define INVERT_Z_STEP_PIN false
#define INVERT_E_STEP_PIN false
//default stepper release if idle //default stepper release if idle
#define DEFAULT_STEPPER_DEACTIVE_TIME 60 #define DEFAULT_STEPPER_DEACTIVE_TIME 60

@ -486,18 +486,18 @@ ISR(TIMER1_COMPA_vect)
#if !defined COREXY #if !defined COREXY
counter_x += current_block->steps_x; counter_x += current_block->steps_x;
if (counter_x > 0) { if (counter_x > 0) {
WRITE(X_STEP_PIN, HIGH); WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
counter_x -= current_block->step_event_count; counter_x -= current_block->step_event_count;
count_position[X_AXIS]+=count_direction[X_AXIS]; count_position[X_AXIS]+=count_direction[X_AXIS];
WRITE(X_STEP_PIN, LOW); WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
} }
counter_y += current_block->steps_y; counter_y += current_block->steps_y;
if (counter_y > 0) { if (counter_y > 0) {
WRITE(Y_STEP_PIN, HIGH); WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
counter_y -= current_block->step_event_count; counter_y -= current_block->step_event_count;
count_position[Y_AXIS]+=count_direction[Y_AXIS]; count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE(Y_STEP_PIN, LOW); WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
} }
#endif #endif
@ -506,64 +506,64 @@ ISR(TIMER1_COMPA_vect)
counter_y += current_block->steps_y; counter_y += current_block->steps_y;
if ((counter_x > 0)&&!(counter_y>0)){ //X step only if ((counter_x > 0)&&!(counter_y>0)){ //X step only
WRITE(X_STEP_PIN, HIGH); WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
WRITE(Y_STEP_PIN, HIGH); WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
counter_x -= current_block->step_event_count; counter_x -= current_block->step_event_count;
count_position[X_AXIS]+=count_direction[X_AXIS]; count_position[X_AXIS]+=count_direction[X_AXIS];
WRITE(X_STEP_PIN, LOW); WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
WRITE(Y_STEP_PIN, LOW); WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
} }
if (!(counter_x > 0)&&(counter_y>0)){ //Y step only if (!(counter_x > 0)&&(counter_y>0)){ //Y step only
WRITE(X_STEP_PIN, HIGH); WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
WRITE(Y_STEP_PIN, HIGH); WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
counter_y -= current_block->step_event_count; counter_y -= current_block->step_event_count;
count_position[Y_AXIS]+=count_direction[Y_AXIS]; count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE(X_STEP_PIN, LOW); WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
WRITE(Y_STEP_PIN, LOW); WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
} }
if ((counter_x > 0)&&(counter_y>0)){ //step in both axes if ((counter_x > 0)&&(counter_y>0)){ //step in both axes
if (((out_bits & (1<<X_AXIS)) == 0)^((out_bits & (1<<Y_AXIS)) == 0)){ //X and Y in different directions if (((out_bits & (1<<X_AXIS)) == 0)^((out_bits & (1<<Y_AXIS)) == 0)){ //X and Y in different directions
WRITE(Y_STEP_PIN, HIGH); WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
counter_x -= current_block->step_event_count; counter_x -= current_block->step_event_count;
WRITE(Y_STEP_PIN, LOW); WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
step_wait(); step_wait();
count_position[X_AXIS]+=count_direction[X_AXIS]; count_position[X_AXIS]+=count_direction[X_AXIS];
count_position[Y_AXIS]+=count_direction[Y_AXIS]; count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE(Y_STEP_PIN, HIGH); WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
counter_y -= current_block->step_event_count; counter_y -= current_block->step_event_count;
WRITE(Y_STEP_PIN, LOW); WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
} }
else{ //X and Y in same direction else{ //X and Y in same direction
WRITE(X_STEP_PIN, HIGH); WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
counter_x -= current_block->step_event_count; counter_x -= current_block->step_event_count;
WRITE(X_STEP_PIN, LOW) ; WRITE(X_STEP_PIN, INVERT_X_STEP_PIN) ;
step_wait(); step_wait();
count_position[X_AXIS]+=count_direction[X_AXIS]; count_position[X_AXIS]+=count_direction[X_AXIS];
count_position[Y_AXIS]+=count_direction[Y_AXIS]; count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE(X_STEP_PIN, HIGH); WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
counter_y -= current_block->step_event_count; counter_y -= current_block->step_event_count;
WRITE(X_STEP_PIN, LOW); WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
} }
} }
#endif //corexy #endif //corexy
counter_z += current_block->steps_z; counter_z += current_block->steps_z;
if (counter_z > 0) { if (counter_z > 0) {
WRITE(Z_STEP_PIN, HIGH); WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
counter_z -= current_block->step_event_count; counter_z -= current_block->step_event_count;
count_position[Z_AXIS]+=count_direction[Z_AXIS]; count_position[Z_AXIS]+=count_direction[Z_AXIS];
WRITE(Z_STEP_PIN, LOW); WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
} }
#ifndef ADVANCE #ifndef ADVANCE
counter_e += current_block->steps_e; counter_e += current_block->steps_e;
if (counter_e > 0) { if (counter_e > 0) {
WRITE_E_STEP(HIGH); WRITE_E_STEP(!INVERT_E_STEP_PIN);
counter_e -= current_block->step_event_count; counter_e -= current_block->step_event_count;
count_position[E_AXIS]+=count_direction[E_AXIS]; count_position[E_AXIS]+=count_direction[E_AXIS];
WRITE_E_STEP(LOW); WRITE(E_STEP_PIN, INVERT_E_STEP_PIN);
} }
#endif //!ADVANCE #endif //!ADVANCE
step_events_completed += 1; step_events_completed += 1;
@ -647,45 +647,45 @@ ISR(TIMER1_COMPA_vect)
// Set E direction (Depends on E direction + advance) // Set E direction (Depends on E direction + advance)
for(unsigned char i=0; i<4;i++) { for(unsigned char i=0; i<4;i++) {
if (e_steps[0] != 0) { if (e_steps[0] != 0) {
WRITE(E0_STEP_PIN, LOW); WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
if (e_steps[0] < 0) { if (e_steps[0] < 0) {
WRITE(E0_DIR_PIN, INVERT_E0_DIR); WRITE(E0_DIR_PIN, INVERT_E0_DIR);
e_steps[0]++; e_steps[0]++;
WRITE(E0_STEP_PIN, HIGH); WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
} }
else if (e_steps[0] > 0) { else if (e_steps[0] > 0) {
WRITE(E0_DIR_PIN, !INVERT_E0_DIR); WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
e_steps[0]--; e_steps[0]--;
WRITE(E0_STEP_PIN, HIGH); WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
} }
} }
#if EXTRUDERS > 1 #if EXTRUDERS > 1
if (e_steps[1] != 0) { if (e_steps[1] != 0) {
WRITE(E1_STEP_PIN, LOW); WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
if (e_steps[1] < 0) { if (e_steps[1] < 0) {
WRITE(E1_DIR_PIN, INVERT_E1_DIR); WRITE(E1_DIR_PIN, INVERT_E1_DIR);
e_steps[1]++; e_steps[1]++;
WRITE(E1_STEP_PIN, HIGH); WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
} }
else if (e_steps[1] > 0) { else if (e_steps[1] > 0) {
WRITE(E1_DIR_PIN, !INVERT_E1_DIR); WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
e_steps[1]--; e_steps[1]--;
WRITE(E1_STEP_PIN, HIGH); WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
} }
} }
#endif #endif
#if EXTRUDERS > 2 #if EXTRUDERS > 2
if (e_steps[2] != 0) { if (e_steps[2] != 0) {
WRITE(E2_STEP_PIN, LOW); WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
if (e_steps[2] < 0) { if (e_steps[2] < 0) {
WRITE(E2_DIR_PIN, INVERT_E2_DIR); WRITE(E2_DIR_PIN, INVERT_E2_DIR);
e_steps[2]++; e_steps[2]++;
WRITE(E2_STEP_PIN, HIGH); WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
} }
else if (e_steps[2] > 0) { else if (e_steps[2] > 0) {
WRITE(E2_DIR_PIN, !INVERT_E2_DIR); WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
e_steps[2]--; e_steps[2]--;
WRITE(E2_STEP_PIN, HIGH); WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
} }
} }
#endif #endif
@ -790,26 +790,32 @@ void st_init()
//Initialize Step Pins //Initialize Step Pins
#if (X_STEP_PIN > -1) #if (X_STEP_PIN > -1)
SET_OUTPUT(X_STEP_PIN); SET_OUTPUT(X_STEP_PIN);
WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH); if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
#endif #endif
#if (Y_STEP_PIN > -1) #if (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN); SET_OUTPUT(Y_STEP_PIN);
WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH); if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
#endif #endif
#if (Z_STEP_PIN > -1) #if (Z_STEP_PIN > -1)
SET_OUTPUT(Z_STEP_PIN); SET_OUTPUT(Z_STEP_PIN);
WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH); if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
#endif #endif
#if (E0_STEP_PIN > -1) #if (E0_STEP_PIN > -1)
SET_OUTPUT(E0_STEP_PIN); SET_OUTPUT(E0_STEP_PIN);
WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH); if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
#endif #endif
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
SET_OUTPUT(E1_STEP_PIN); SET_OUTPUT(E1_STEP_PIN);
WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH); if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
#endif #endif
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
SET_OUTPUT(E2_STEP_PIN); SET_OUTPUT(E2_STEP_PIN);
WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH); if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
#endif #endif

Loading…
Cancel
Save