|
|
@ -5331,71 +5331,56 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
|
|
|
|
piy = MIN(piy, MESH_NUM_Y_POINTS-2);
|
|
|
|
piy = MIN(piy, MESH_NUM_Y_POINTS-2);
|
|
|
|
ix = MIN(ix, MESH_NUM_X_POINTS-2);
|
|
|
|
ix = MIN(ix, MESH_NUM_X_POINTS-2);
|
|
|
|
iy = MIN(iy, MESH_NUM_Y_POINTS-2);
|
|
|
|
iy = MIN(iy, MESH_NUM_Y_POINTS-2);
|
|
|
|
if (ix > pix && (x_splits)&(1<<ix)) {
|
|
|
|
if (pix == ix && piy == iy) {
|
|
|
|
float nx = mbl.get_x(ix);
|
|
|
|
// Start and end on same mesh square
|
|
|
|
float normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
|
|
|
|
plan_buffer_line(x, y, z, e, feed_rate, extruder);
|
|
|
|
float ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
|
|
current_position[i] = destination[i];
|
|
|
|
x_splits ^= 1 << ix;
|
|
|
|
}
|
|
|
|
destination[X_AXIS] = nx;
|
|
|
|
|
|
|
|
destination[Y_AXIS] = ny;
|
|
|
|
|
|
|
|
destination[E_AXIS] = ne;
|
|
|
|
|
|
|
|
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
|
|
|
|
|
|
|
|
destination[X_AXIS] = x;
|
|
|
|
|
|
|
|
destination[Y_AXIS] = y;
|
|
|
|
|
|
|
|
destination[E_AXIS] = e;
|
|
|
|
|
|
|
|
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
} else if (ix < pix && (x_splits)&(1<<pix)) {
|
|
|
|
|
|
|
|
float nx = mbl.get_x(pix);
|
|
|
|
|
|
|
|
float normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
|
|
|
|
|
|
|
|
float ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
x_splits ^= 1 << pix;
|
|
|
|
|
|
|
|
destination[X_AXIS] = nx;
|
|
|
|
|
|
|
|
destination[Y_AXIS] = ny;
|
|
|
|
|
|
|
|
destination[E_AXIS] = ne;
|
|
|
|
|
|
|
|
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
|
|
|
|
|
|
|
|
destination[X_AXIS] = x;
|
|
|
|
|
|
|
|
destination[Y_AXIS] = y;
|
|
|
|
|
|
|
|
destination[E_AXIS] = e;
|
|
|
|
|
|
|
|
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
} else if (iy > piy && (y_splits)&(1<<iy)) {
|
|
|
|
|
|
|
|
float ny = mbl.get_y(iy);
|
|
|
|
|
|
|
|
float normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
|
|
|
|
|
|
|
|
float nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
y_splits ^= 1 << iy;
|
|
|
|
|
|
|
|
destination[X_AXIS] = nx;
|
|
|
|
|
|
|
|
destination[Y_AXIS] = ny;
|
|
|
|
|
|
|
|
destination[E_AXIS] = ne;
|
|
|
|
|
|
|
|
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
|
|
|
|
|
|
|
|
destination[X_AXIS] = x;
|
|
|
|
|
|
|
|
destination[Y_AXIS] = y;
|
|
|
|
|
|
|
|
destination[E_AXIS] = e;
|
|
|
|
|
|
|
|
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
} else if (iy < piy && (y_splits)&(1<<piy)) {
|
|
|
|
|
|
|
|
float ny = mbl.get_y(piy);
|
|
|
|
|
|
|
|
float normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
|
|
|
|
|
|
|
|
float nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
float ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
y_splits ^= 1 << piy;
|
|
|
|
|
|
|
|
destination[X_AXIS] = nx;
|
|
|
|
|
|
|
|
destination[Y_AXIS] = ny;
|
|
|
|
|
|
|
|
destination[E_AXIS] = ne;
|
|
|
|
|
|
|
|
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
|
|
|
|
|
|
|
|
destination[X_AXIS] = x;
|
|
|
|
|
|
|
|
destination[Y_AXIS] = y;
|
|
|
|
|
|
|
|
destination[E_AXIS] = e;
|
|
|
|
|
|
|
|
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
|
|
|
|
|
|
|
|
return;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
plan_buffer_line(x, y, z, e, feed_rate, extruder);
|
|
|
|
float nx, ny, ne, normalized_dist;
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
if (ix > pix && (x_splits) & BIT(ix)) {
|
|
|
|
current_position[i] = destination[i];
|
|
|
|
nx = mbl.get_x(ix);
|
|
|
|
|
|
|
|
normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
|
|
|
|
|
|
|
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
x_splits ^= BIT(ix);
|
|
|
|
|
|
|
|
} else if (ix < pix && (x_splits) & BIT(pix)) {
|
|
|
|
|
|
|
|
nx = mbl.get_x(pix);
|
|
|
|
|
|
|
|
normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
|
|
|
|
|
|
|
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
x_splits ^= BIT(pix);
|
|
|
|
|
|
|
|
} else if (iy > piy && (y_splits) & BIT(iy)) {
|
|
|
|
|
|
|
|
ny = mbl.get_y(iy);
|
|
|
|
|
|
|
|
normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
|
|
|
|
|
|
|
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
y_splits ^= BIT(iy);
|
|
|
|
|
|
|
|
} else if (iy < piy && (y_splits) & BIT(piy)) {
|
|
|
|
|
|
|
|
ny = mbl.get_y(piy);
|
|
|
|
|
|
|
|
normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
|
|
|
|
|
|
|
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
|
|
|
|
|
|
y_splits ^= BIT(piy);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
// Already split on a border
|
|
|
|
|
|
|
|
plan_buffer_line(x, y, z, e, feed_rate, extruder);
|
|
|
|
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
|
|
|
|
current_position[i] = destination[i];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Do the split and look for more borders
|
|
|
|
|
|
|
|
destination[X_AXIS] = nx;
|
|
|
|
|
|
|
|
destination[Y_AXIS] = ny;
|
|
|
|
|
|
|
|
destination[E_AXIS] = ne;
|
|
|
|
|
|
|
|
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
|
|
|
|
|
|
|
|
destination[X_AXIS] = x;
|
|
|
|
|
|
|
|
destination[Y_AXIS] = y;
|
|
|
|
|
|
|
|
destination[E_AXIS] = e;
|
|
|
|
|
|
|
|
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
|
|