Apply SCARA_FEEDRATE_SCALING to G2/G3

2.0.x
Scott Lahteine 7 years ago
parent ca145643bd
commit c694608450

@ -29,6 +29,12 @@
#include "../../module/planner.h" #include "../../module/planner.h"
#include "../../module/temperature.h" #include "../../module/temperature.h"
#if ENABLED(DELTA)
#include "../../module/delta.h"
#elif ENABLED(SCARA)
#include "../../module/scara.h"
#endif
#if N_ARC_CORRECTION < 1 #if N_ARC_CORRECTION < 1
#undef N_ARC_CORRECTION #undef N_ARC_CORRECTION
#define N_ARC_CORRECTION 1 #define N_ARC_CORRECTION 1
@ -113,7 +119,7 @@ void plan_arc(
* This is important when there are successive arc motions. * This is important when there are successive arc motions.
*/ */
// Vector rotation matrix values // Vector rotation matrix values
float arc_target[XYZE]; float raw[XYZE];
const float theta_per_segment = angular_travel / segments, const float theta_per_segment = angular_travel / segments,
linear_per_segment = linear_travel / segments, linear_per_segment = linear_travel / segments,
extruder_per_segment = extruder_travel / segments, extruder_per_segment = extruder_travel / segments,
@ -121,10 +127,10 @@ void plan_arc(
cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
// Initialize the linear axis // Initialize the linear axis
arc_target[l_axis] = current_position[l_axis]; raw[l_axis] = current_position[l_axis];
// Initialize the extruder axis // Initialize the extruder axis
arc_target[E_AXIS] = current_position[E_AXIS]; raw[E_AXIS] = current_position[E_AXIS];
const float fr_mm_s = MMS_SCALED(feedrate_mm_s); const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
@ -134,6 +140,14 @@ void plan_arc(
int8_t arc_recalc_count = N_ARC_CORRECTION; int8_t arc_recalc_count = N_ARC_CORRECTION;
#endif #endif
#if ENABLED(SCARA_FEEDRATE_SCALING)
// SCARA needs to scale the feed rate from mm/s to degrees/s
const float inv_segment_length = 1.0 / (MM_PER_ARC_SEGMENT),
inverse_secs = inv_segment_length * fr_mm_s;
float oldA = stepper.get_axis_position_degrees(A_AXIS),
oldB = stepper.get_axis_position_degrees(B_AXIS);
#endif
for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
thermalManager.manage_heater(); thermalManager.manage_heater();
@ -165,19 +179,34 @@ void plan_arc(
r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti; r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
} }
// Update arc_target location // Update raw location
arc_target[p_axis] = center_P + r_P; raw[p_axis] = center_P + r_P;
arc_target[q_axis] = center_Q + r_Q; raw[q_axis] = center_Q + r_Q;
arc_target[l_axis] += linear_per_segment; raw[l_axis] += linear_per_segment;
arc_target[E_AXIS] += extruder_per_segment; raw[E_AXIS] += extruder_per_segment;
clamp_to_software_endstops(arc_target); clamp_to_software_endstops(raw);
planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder); #if ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s.
// i.e., Complete the angular vector in the given time.
inverse_kinematics(raw);
ADJUST_DELTA(raw);
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
#else
planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
#endif
} }
// Ensure last segment arrives at target location. // Ensure last segment arrives at target location.
#if ENABLED(SCARA_FEEDRATE_SCALING)
inverse_kinematics(cart);
ADJUST_DELTA(cart);
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], cart[Z_AXIS], cart[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
#else
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder); planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder);
#endif
// As far as the parser is concerned, the position is now == target. In reality the // As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position // motion control system might still be processing the action and the real tool position

@ -587,7 +587,7 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
// SERIAL_ECHOPAIR(" seconds=", seconds); // SERIAL_ECHOPAIR(" seconds=", seconds);
// SERIAL_ECHOLNPAIR(" segments=", segments); // SERIAL_ECHOLNPAIR(" segments=", segments);
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING) #if ENABLED(SCARA_FEEDRATE_SCALING)
// SCARA needs to scale the feed rate from mm/s to degrees/s // SCARA needs to scale the feed rate from mm/s to degrees/s
const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
inverse_secs = inv_segment_length * _feedrate_mm_s; inverse_secs = inv_segment_length * _feedrate_mm_s;
@ -611,38 +611,29 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
} }
LOOP_XYZE(i) raw[i] += segment_distance[i]; LOOP_XYZE(i) raw[i] += segment_distance[i];
#if ENABLED(DELTA) #if ENABLED(DELTA)
DELTA_RAW_IK(); // Delta can inline its kinematics DELTA_RAW_IK(); // Delta can inline its kinematics
#else #else
inverse_kinematics(raw); inverse_kinematics(raw);
#endif #endif
ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING) #if ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s // For SCARA scale the feed rate from mm/s to degrees/s
// Use ratio between the length of the move and the larger angle change // i.e., Complete the angular vector in the given time.
const float adiff = abs(delta[A_AXIS] - oldA), planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
bdiff = abs(delta[B_AXIS] - oldB); oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * inverse_secs, active_extruder);
oldA = delta[A_AXIS];
oldB = delta[B_AXIS];
#else #else
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder);
#endif #endif
} }
// Since segment_distance is only approximate, // Ensure last segment arrives at target location.
// the final move must be to the exact destination. #if ENABLED(SCARA_FEEDRATE_SCALING)
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s
// With segments > 1 length is 1 segment, otherwise total length
inverse_kinematics(rtarget); inverse_kinematics(rtarget);
ADJUST_DELTA(rtarget); ADJUST_DELTA(rtarget);
const float adiff = abs(delta[A_AXIS] - oldA), planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], rtarget[Z_AXIS], rtarget[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
bdiff = abs(delta[B_AXIS] - oldB);
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * inverse_secs, active_extruder);
#else #else
planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder); planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
#endif #endif

Loading…
Cancel
Save