[2.0.x] Squelch compiler warnings seen with -Wall (#11889)

2.0.x
Marcio Teixeira 6 years ago committed by Scott Lahteine
parent 83105590a0
commit c411e7eb0d

@ -41,7 +41,7 @@
#define EEPROMSize 4096
#define PagesPerGroup 128
#define GroupCount 2
#define PageSize 256
#define PageSize 256u
/* Flash storage */
typedef struct FLASH_SECTOR {
@ -109,9 +109,9 @@ static const FLASH_SECTOR_T* getFlashStorage(int page) {
return (const FLASH_SECTOR_T*)&flashStorage[page*PageSize];
}
static uint8_t buffer[256] = {0}; // The RAM buffer to accumulate writes
static uint8_t curPage = 0; // Current FLASH page inside the group
static uint8_t curGroup = 0xFF; // Current FLASH group
static uint8_t buffer[256] = {0}, // The RAM buffer to accumulate writes
curPage = 0, // Current FLASH page inside the group
curGroup = 0xFF; // Current FLASH group
//#define EE_EMU_DEBUG
#ifdef EE_EMU_DEBUG
@ -125,12 +125,10 @@ static uint8_t curGroup = 0xFF; // Current FLASH group
char* p = &buffer[0];
for (int i = 0; i< PageSize; ++i) {
if ((i & 15) == 0) {
p += sprintf(p,"%04x] ",i);
}
if ((i & 0xF) == 0) p += sprintf(p,"%04x] ", i);
p += sprintf(p," %02x", c[i]);
if ((i & 15) == 15) {
if ((i & 0xF) == 0xF) {
*p++ = '\n';
*p = 0;
SERIAL_PROTOCOL(buffer);
@ -160,7 +158,7 @@ static uint8_t curGroup = 0xFF; // Current FLASH group
__attribute__ ((long_call, section (".ramfunc")))
static bool ee_PageWrite(uint16_t page,const void* data) {
int i;
uint16_t i;
uint32_t addrflash = ((uint32_t)getFlashStorage(page));
// Read the flash contents
@ -173,9 +171,8 @@ static bool ee_PageWrite(uint16_t page,const void* data) {
// Programming mode works only with 128-bit (or higher) boundaries. It cannot
// be used with boundaries lower than 128 bits (8, 16 or 32-bit for example)."
// All bits that did not change, set them to 1.
for (i = 0; i <PageSize >> 2; i++) {
for (i = 0; i <PageSize >> 2; i++)
pageContents[i] = (((uint32_t*)data)[i]) | (~(pageContents[i] ^ ((uint32_t*)data)[i]));
}
#ifdef EE_EMU_DEBUG
SERIAL_ECHO_START();
@ -207,7 +204,7 @@ static bool ee_PageWrite(uint16_t page,const void* data) {
uint32_t orgWS = (efc->EEFC_FMR & EEFC_FMR_FWS_Msk) >> EEFC_FMR_FWS_Pos;
// Set wait states to 6 (SAM errata)
efc->EEFC_FMR = efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk) | EEFC_FMR_FWS(6);
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(6);
// Unlock the flash page
uint32_t status;
@ -220,7 +217,7 @@ static bool ee_PageWrite(uint16_t page,const void* data) {
if ((status & EEFC_ERROR_FLAGS) != 0) {
// Restore original wait states
efc->EEFC_FMR = efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk) | EEFC_FMR_FWS(orgWS);
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
@ -247,7 +244,7 @@ static bool ee_PageWrite(uint16_t page,const void* data) {
if ((status & EEFC_ERROR_FLAGS) != 0) {
// Restore original wait states
efc->EEFC_FMR = efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk) | EEFC_FMR_FWS(orgWS);
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
@ -260,7 +257,7 @@ static bool ee_PageWrite(uint16_t page,const void* data) {
}
// Restore original wait states
efc->EEFC_FMR = efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk) | EEFC_FMR_FWS(orgWS);
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
@ -305,7 +302,7 @@ static bool ee_PageWrite(uint16_t page,const void* data) {
__attribute__ ((long_call, section (".ramfunc")))
static bool ee_PageErase(uint16_t page) {
int i;
uint16_t i;
uint32_t addrflash = ((uint32_t)getFlashStorage(page));
#ifdef EE_EMU_DEBUG
@ -338,7 +335,7 @@ static bool ee_PageErase(uint16_t page) {
uint32_t orgWS = (efc->EEFC_FMR & EEFC_FMR_FWS_Msk) >> EEFC_FMR_FWS_Pos;
// Set wait states to 6 (SAM errata)
efc->EEFC_FMR = efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk) | EEFC_FMR_FWS(6);
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(6);
// Unlock the flash page
uint32_t status;
@ -350,7 +347,7 @@ static bool ee_PageErase(uint16_t page) {
if ((status & EEFC_ERROR_FLAGS) != 0) {
// Restore original wait states
efc->EEFC_FMR = efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk) | EEFC_FMR_FWS(orgWS);
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
@ -375,7 +372,7 @@ static bool ee_PageErase(uint16_t page) {
if ((status & EEFC_ERROR_FLAGS) != 0) {
// Restore original wait states
efc->EEFC_FMR = efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk) | EEFC_FMR_FWS(orgWS);
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
@ -388,7 +385,7 @@ static bool ee_PageErase(uint16_t page) {
}
// Restore original wait states
efc->EEFC_FMR = efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk) | EEFC_FMR_FWS(orgWS);
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
@ -421,7 +418,7 @@ static uint8_t ee_Read(uint32_t address, bool excludeRAMBuffer = false) {
// Check that the value is not contained in the RAM buffer
if (!excludeRAMBuffer) {
int i = 0;
uint16_t i = 0;
while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Get the address of the block
@ -462,7 +459,7 @@ static uint8_t ee_Read(uint32_t address, bool excludeRAMBuffer = false) {
// Get a pointer to the flash page
uint8_t* pflash = (uint8_t*)getFlashStorage(page + curGroup * PagesPerGroup);
int i = 0;
uint16_t i = 0;
while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Get the address of the block
@ -476,18 +473,13 @@ static uint8_t ee_Read(uint32_t address, bool excludeRAMBuffer = false) {
break;
// Check if data is contained in this block
if (address >= baddr &&
address < (baddr + blen)) {
// Yes, it is contained. Return it!
return pflash[i + 3 + address - baddr];
}
if (address >= baddr && address < (baddr + blen))
return pflash[i + 3 + address - baddr]; // Yes, it is contained. Return it!
// As blocks are always sorted, if the starting address of this block is higher
// than the address we are looking for, break loop now - We wont find the value
// associated to the address
if (baddr > address)
break;
if (baddr > address) break;
// Jump to the next block
i += 3 + blen;
@ -499,14 +491,14 @@ static uint8_t ee_Read(uint32_t address, bool excludeRAMBuffer = false) {
}
static uint32_t ee_GetAddrRange(uint32_t address, bool excludeRAMBuffer = false) {
uint32_t baddr;
uint32_t blen;
uint32_t nextAddr = 0xFFFF;
uint32_t nextRange = 0;
uint32_t baddr,
blen,
nextAddr = 0xFFFF,
nextRange = 0;
// Check that the value is not contained in the RAM buffer
if (!excludeRAMBuffer) {
int i = 0;
uint16_t i = 0;
while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Get the address of the block
@ -516,16 +508,11 @@ static uint32_t ee_GetAddrRange(uint32_t address, bool excludeRAMBuffer = false)
blen = buffer[i + 2];
// If we reach the end of the list, break loop
if (blen == 0xFF)
break;
if (blen == 0xFF) break;
// Check if address and address + 1 is contained in this block
if (address >= baddr &&
address < (baddr + blen)) {
// Yes, it is contained. Return it!
return address | ((blen - address + baddr) << 16);
}
if (address >= baddr && address < (baddr + blen))
return address | ((blen - address + baddr) << 16); // Yes, it is contained. Return it!
// Otherwise, check if we can use it as a limit
if (baddr > address && baddr < nextAddr) {
@ -536,8 +523,7 @@ static uint32_t ee_GetAddrRange(uint32_t address, bool excludeRAMBuffer = false)
// As blocks are always sorted, if the starting address of this block is higher
// than the address we are looking for, break loop now - We wont find the value
// associated to the address
if (baddr > address)
break;
if (baddr > address) break;
// Jump to the next block
i += 3 + blen;
@ -553,7 +539,7 @@ static uint32_t ee_GetAddrRange(uint32_t address, bool excludeRAMBuffer = false)
// Get a pointer to the flash page
uint8_t* pflash = (uint8_t*)getFlashStorage(page + curGroup * PagesPerGroup);
int i = 0;
uint16_t i = 0;
while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Get the address of the block
@ -563,16 +549,11 @@ static uint32_t ee_GetAddrRange(uint32_t address, bool excludeRAMBuffer = false)
blen = pflash[i + 2];
// If we reach the end of the list, break loop
if (blen == 0xFF)
break;
if (blen == 0xFF) break;
// Check if data is contained in this block
if (address >= baddr &&
address < (baddr + blen)) {
// Yes, it is contained. Return it!
return address | ((blen - address + baddr) << 16);
}
if (address >= baddr && address < (baddr + blen))
return address | ((blen - address + baddr) << 16); // Yes, it is contained. Return it!
// Otherwise, check if we can use it as a limit
if (baddr > address && baddr < nextAddr) {
@ -583,8 +564,7 @@ static uint32_t ee_GetAddrRange(uint32_t address, bool excludeRAMBuffer = false)
// As blocks are always sorted, if the starting address of this block is higher
// than the address we are looking for, break loop now - We wont find the value
// associated to the address
if (baddr > address)
break;
if (baddr > address) break;
// Jump to the next block
i += 3 + blen;
@ -596,12 +576,9 @@ static uint32_t ee_GetAddrRange(uint32_t address, bool excludeRAMBuffer = false)
}
static bool ee_IsPageClean(int page) {
uint32_t* pflash = (uint32_t*) getFlashStorage(page);
for (int i = 0; i < (PageSize >> 2); ++i) {
if (*pflash++ != 0xFFFFFFFF)
return false;
}
for (uint16_t i = 0; i < (PageSize >> 2); ++i)
if (*pflash++ != 0xFFFFFFFF) return false;
return true;
}
@ -610,7 +587,7 @@ static bool ee_Flush(uint32_t overrideAddress = 0xFFFFFFFF, uint8_t overrideData
// Check if RAM buffer has something to be written
bool isEmpty = true;
uint32_t* p = (uint32_t*) &buffer[0];
for (int j = 0; j < (PageSize >> 2); j++) {
for (uint16_t j = 0; j < (PageSize >> 2); j++) {
if (*p++ != 0xFFFFFFFF) {
isEmpty = false;
break;
@ -648,13 +625,11 @@ static bool ee_Flush(uint32_t overrideAddress = 0xFFFFFFFF, uint8_t overrideData
}
// We have no space left on the current group - We must compact the values
int i = 0;
uint16_t i = 0;
// Compute the next group to use
int curwPage = 0;
int curwGroup = curGroup + 1;
if (curwGroup >= GroupCount)
curwGroup = 0;
int curwPage = 0, curwGroup = curGroup + 1;
if (curwGroup >= GroupCount) curwGroup = 0;
uint32_t rdAddr = 0;
do {
@ -774,12 +749,11 @@ static bool ee_Flush(uint32_t overrideAddress = 0xFFFFFFFF, uint8_t overrideData
static bool ee_Write(uint32_t address, uint8_t data) {
// If we were requested an address outside of the emulated range, fail now
if (address >= EEPROMSize)
return false;
if (address >= EEPROMSize) return false;
// Lets check if we have a block with that data previously defined. Block
// start addresses are always sorted in ascending order
int i = 0;
uint16_t i = 0;
while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Get the address of the block
@ -805,8 +779,7 @@ static bool ee_Write(uint32_t address, uint8_t data) {
// Maybe we could add it to the front or to the back
// of this block ?
if ((address + 1) == baddr ||
address == (baddr + blen)) {
if ((address + 1) == baddr || address == (baddr + blen)) {
// Potentially, it could be done. But we must ensure there is room
// so we can expand the block. Lets find how much free space remains
@ -840,9 +813,9 @@ static bool ee_Write(uint32_t address, uint8_t data) {
// Insert at the end - There is a very interesting thing that could happen here:
// Maybe we could coalesce the next block with this block. Let's try to do it!
int inext = i + 3 + blen;
uint16_t inext = i + 3 + blen;
if (inext <= (PageSize - 4) &&
(buffer[inext] | (buffer[inext + 1] << 8)) == (baddr + blen + 1)) {
(buffer[inext] | (uint16_t(buffer[inext + 1]) << 8)) == (baddr + blen + 1)) {
// YES! ... we can coalesce blocks! . Do it!
// Adjust this block header to include the next one
@ -879,8 +852,7 @@ static bool ee_Write(uint32_t address, uint8_t data) {
// As blocks are always sorted, if the starting address of this block is higher
// than the address we are looking for, break loop now - We wont find the value
// associated to the address
if (baddr > address)
break;
if (baddr > address) break;
// Jump to the next block
i += 3 + blen;
@ -924,21 +896,17 @@ static bool ee_Write(uint32_t address, uint8_t data) {
static void ee_Init() {
// Just init once!
if (curGroup != 0xFF)
return;
if (curGroup != 0xFF) return;
// Clean up the SRAM buffer
memset(buffer, 0xFF, sizeof(buffer));
// Now, we must find out the group where settings are stored
for (curGroup = 0; curGroup < GroupCount; curGroup++) {
if (!ee_IsPageClean(curGroup * PagesPerGroup))
break;
}
for (curGroup = 0; curGroup < GroupCount; curGroup++)
if (!ee_IsPageClean(curGroup * PagesPerGroup)) break;
// If all groups seem to be used, default to first group
if (curGroup >= GroupCount)
curGroup = 0;
if (curGroup >= GroupCount) curGroup = 0;
#ifdef EE_EMU_DEBUG
SERIAL_ECHO_START();
@ -948,8 +916,7 @@ static void ee_Init() {
// Now, validate that all the other group pages are empty
for (int grp = 0; grp < GroupCount; grp++) {
if (grp == curGroup)
continue;
if (grp == curGroup) continue;
for (int page = 0; page < PagesPerGroup; page++) {
if (!ee_IsPageClean(grp * PagesPerGroup + page)) {

@ -161,8 +161,8 @@ void GcodeSuite::M912() {
void GcodeSuite::M913() {
#define TMC_SAY_PWMTHRS(A,Q) tmc_get_pwmthrs(stepper##Q, TMC_##Q, planner.axis_steps_per_mm[_AXIS(A)])
#define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, value, planner.axis_steps_per_mm[_AXIS(A)])
#define TMC_SAY_PWMTHRS_E(E) do{ const uint8_t extruder = E; tmc_get_pwmthrs(stepperE##E, TMC_E##E, planner.axis_steps_per_mm[E_AXIS_N]); }while(0)
#define TMC_SET_PWMTHRS_E(E) do{ const uint8_t extruder = E; tmc_set_pwmthrs(stepperE##E, value, planner.axis_steps_per_mm[E_AXIS_N]); }while(0)
#define TMC_SAY_PWMTHRS_E(E) do{ constexpr uint8_t extruder = E; tmc_get_pwmthrs(stepperE##E, TMC_E##E, planner.axis_steps_per_mm[E_AXIS_N]); UNUSED(extruder); }while(0)
#define TMC_SET_PWMTHRS_E(E) do{ constexpr uint8_t extruder = E; tmc_set_pwmthrs(stepperE##E, value, planner.axis_steps_per_mm[E_AXIS_N]); UNUSED(extruder); }while(0)
bool report = true;
const uint8_t index = parser.byteval('I');

@ -258,16 +258,19 @@
_TMC2130_INIT(E0, planner.axis_steps_per_mm[E_AXIS]);
#endif
#if AXIS_DRIVER_TYPE(E1, TMC2130)
{ constexpr int extruder = 1; _TMC2130_INIT(E1, planner.axis_steps_per_mm[E_AXIS_N]); }
{ constexpr uint8_t extruder = 1; _TMC2130_INIT(E1, planner.axis_steps_per_mm[E_AXIS_N]); UNUSED(extruder); }
#endif
#if AXIS_DRIVER_TYPE(E2, TMC2130)
{ constexpr int extruder = 2; _TMC2130_INIT(E2, planner.axis_steps_per_mm[E_AXIS_N]); }
{ constexpr uint8_t extruder = 2; _TMC2130_INIT(E2, planner.axis_steps_per_mm[E_AXIS_N]); UNUSED(extruder); }
#endif
#if AXIS_DRIVER_TYPE(E3, TMC2130)
{ constexpr int extruder = 3; _TMC2130_INIT(E3, planner.axis_steps_per_mm[E_AXIS_N]); }
{ constexpr uint8_t extruder = 3; _TMC2130_INIT(E3, planner.axis_steps_per_mm[E_AXIS_N]); UNUSED(extruder); }
#endif
#if AXIS_DRIVER_TYPE(E4, TMC2130)
{ constexpr int extruder = 4; _TMC2130_INIT(E4, planner.axis_steps_per_mm[E_AXIS_N]); }
{ constexpr uint8_t extruder = 4; _TMC2130_INIT(E4, planner.axis_steps_per_mm[E_AXIS_N]); UNUSED(extruder); }
#endif
#if AXIS_DRIVER_TYPE(E5, TMC2130)
{ constexpr uint8_t extruder = 5; _TMC2130_INIT(E5, planner.axis_steps_per_mm[E_AXIS_N]); UNUSED(extruder); }
#endif
#if ENABLED(SENSORLESS_HOMING)
@ -580,6 +583,9 @@
#if AXIS_DRIVER_TYPE(E4, TMC2208)
{ constexpr int extruder = 4; _TMC2208_INIT(E4, planner.axis_steps_per_mm[E_AXIS_N]); }
#endif
#if AXIS_DRIVER_TYPE(E5, TMC2208)
{ constexpr int extruder = 5; _TMC2208_INIT(E5, planner.axis_steps_per_mm[E_AXIS_N]); }
#endif
}
#endif // TMC2208

Loading…
Cancel
Save