Merge pull request #5829 from thinkyhead/rc_fix_isr_reentry

Combine fixes for LIN_ADVANCE and temperature ISR
2.0.x
Scott Lahteine 8 years ago committed by GitHub
commit c04d6b5aa6

@ -672,11 +672,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
#endif #endif
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
const float target_float[XYZE] = { a, b, c, e }, const float mm_D_float = sqrt(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS]));
de_float = target_float[E_AXIS] - position_float[E_AXIS],
mm_D_float = sqrt(sq(target_float[X_AXIS] - position_float[X_AXIS]) + sq(target_float[Y_AXIS] - position_float[Y_AXIS]));
memcpy(position_float, target_float, sizeof(position_float));
#endif #endif
const long da = target[X_AXIS] - position[X_AXIS], const long da = target[X_AXIS] - position[X_AXIS],
@ -707,15 +703,28 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
//*/ //*/
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
if (DEBUGGING(DRYRUN)) position[E_AXIS] = target[E_AXIS]; if (DEBUGGING(DRYRUN)) {
position[E_AXIS] = target[E_AXIS];
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
#endif
}
long de = target[E_AXIS] - position[E_AXIS]; long de = target[E_AXIS] - position[E_AXIS];
#if ENABLED(LIN_ADVANCE)
float de_float = e - position_float[E_AXIS];
#endif
#if ENABLED(PREVENT_COLD_EXTRUSION) #if ENABLED(PREVENT_COLD_EXTRUSION)
if (de) { if (de) {
if (thermalManager.tooColdToExtrude(extruder)) { if (thermalManager.tooColdToExtrude(extruder)) {
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference de = 0; // no difference
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
de_float = 0;
#endif
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
} }
@ -723,6 +732,10 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
if (labs(de) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int if (labs(de) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference de = 0; // no difference
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
de_float = 0;
#endif
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
} }
@ -1342,6 +1355,12 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
// Update the position (only when a move was queued) // Update the position (only when a move was queued)
memcpy(position, target, sizeof(position)); memcpy(position, target, sizeof(position));
#if ENABLED(LIN_ADVANCE)
position_float[X_AXIS] = a;
position_float[Y_AXIS] = b;
position_float[Z_AXIS] = c;
position_float[E_AXIS] = e;
#endif
recalculate(); recalculate();
@ -1367,6 +1386,12 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
nb = position[Y_AXIS] = lround(b * axis_steps_per_mm[Y_AXIS]), nb = position[Y_AXIS] = lround(b * axis_steps_per_mm[Y_AXIS]),
nc = position[Z_AXIS] = lround(c * axis_steps_per_mm[Z_AXIS]), nc = position[Z_AXIS] = lround(c * axis_steps_per_mm[Z_AXIS]),
ne = position[E_AXIS] = lround(e * axis_steps_per_mm[_EINDEX]); ne = position[E_AXIS] = lround(e * axis_steps_per_mm[_EINDEX]);
#if ENABLED(LIN_ADVANCE)
position_float[X_AXIS] = a;
position_float[Y_AXIS] = b;
position_float[Z_AXIS] = c;
position_float[E_AXIS] = e;
#endif
stepper.set_position(na, nb, nc, ne); stepper.set_position(na, nb, nc, ne);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
ZERO(previous_speed); ZERO(previous_speed);
@ -1392,6 +1417,9 @@ void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
*/ */
void Planner::sync_from_steppers() { void Planner::sync_from_steppers() {
LOOP_XYZE(i) position[i] = stepper.position((AxisEnum)i); LOOP_XYZE(i) position[i] = stepper.position((AxisEnum)i);
#if ENABLED(LIN_ADVANCE)
LOOP_XYZE(i) position_float[i] = stepper.position((AxisEnum)i) * steps_to_mm[i];
#endif
} }
/** /**
@ -1405,6 +1433,9 @@ void Planner::set_position_mm(const AxisEnum axis, const float& v) {
const uint8_t axis_index = axis; const uint8_t axis_index = axis;
#endif #endif
position[axis] = lround(v * axis_steps_per_mm[axis_index]); position[axis] = lround(v * axis_steps_per_mm[axis_index]);
#if ENABLED(LIN_ADVANCE)
position_float[axis] = v;
#endif
stepper.set_position(axis, v); stepper.set_position(axis, v);
previous_speed[axis] = 0.0; previous_speed[axis] = 0.0;
} }

@ -342,13 +342,14 @@ ISR(TIMER1_COMPA_vect) {
#endif #endif
} }
void Stepper::isr() { #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
#define _ENABLE_ISRs() cli(); SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT()
uint16_t timer, remainder, ocr_val; void Stepper::isr() {
static uint32_t step_remaining = 0; static uint32_t step_remaining = 0;
uint16_t ocr_val;
#define ENDSTOP_NOMINAL_OCR_VAL 3000 // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch #define ENDSTOP_NOMINAL_OCR_VAL 3000 // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
#define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
@ -366,7 +367,7 @@ void Stepper::isr() {
#define SPLIT(L) do { \ #define SPLIT(L) do { \
_SPLIT(L); \ _SPLIT(L); \
if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \ if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \ uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \ ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
step_remaining = (uint16_t)L - ocr_val; \ step_remaining = (uint16_t)L - ocr_val; \
} \ } \
@ -374,13 +375,16 @@ void Stepper::isr() {
if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
endstops.update(); endstops.update();
ocr_val = step_remaining;
if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) { if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) {
step_remaining = step_remaining - ENDSTOP_NOMINAL_OCR_VAL; step_remaining -= ENDSTOP_NOMINAL_OCR_VAL;
ocr_val = ENDSTOP_NOMINAL_OCR_VAL; ocr_val = ENDSTOP_NOMINAL_OCR_VAL;
} }
else step_remaining = 0; // last one before the ISR that does the step else {
_NEXT_ISR(ocr_val); // ocr_val = step_remaining;
step_remaining = 0; // last one before the ISR that does the step
}
_NEXT_ISR(ocr_val);
NOLESS(OCR1A, TCNT1 + 16); NOLESS(OCR1A, TCNT1 + 16);
@ -867,9 +871,7 @@ void Stepper::isr() {
NOLESS(OCR1A, TCNT1 + 16); NOLESS(OCR1A, TCNT1 + 16);
// Restore original ISR settings // Restore original ISR settings
cli(); _ENABLE_ISRs();
SBI(TIMSK0, OCIE0B);
ENABLE_STEPPER_DRIVER_INTERRUPT();
} }
#endif // ADVANCE or LIN_ADVANCE #endif // ADVANCE or LIN_ADVANCE

@ -1483,8 +1483,15 @@ void Temperature::set_current_temp_raw() {
*/ */
ISR(TIMER0_COMPB_vect) { Temperature::isr(); } ISR(TIMER0_COMPB_vect) { Temperature::isr(); }
volatile bool Temperature::in_temp_isr = false;
void Temperature::isr() { void Temperature::isr() {
//Allow UART and stepper ISRs // The stepper ISR can interrupt this ISR. When it does it re-enables this ISR
// at the end of its run, potentially causing re-entry. This flag prevents it.
if (in_temp_isr) return;
in_temp_isr = true;
// Allow UART and stepper ISRs
CBI(TIMSK0, OCIE0B); //Disable Temperature ISR CBI(TIMSK0, OCIE0B); //Disable Temperature ISR
sei(); sei();
@ -1949,5 +1956,7 @@ void Temperature::isr() {
} }
#endif #endif
cli();
in_temp_isr = false;
SBI(TIMSK0, OCIE0B); //re-enable Temperature ISR SBI(TIMSK0, OCIE0B); //re-enable Temperature ISR
} }

@ -61,6 +61,8 @@ class Temperature {
current_temperature_bed_raw, current_temperature_bed_raw,
target_temperature_bed; target_temperature_bed;
static volatile bool in_temp_isr;
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
static float redundant_temperature; static float redundant_temperature;
#endif #endif

Loading…
Cancel
Save