Easier to find 'static inline'

2.0.x
Scott Lahteine 7 years ago
parent cc0a60453f
commit a4b0148365

@ -215,7 +215,7 @@ class unified_bed_leveling {
* z_correction_for_x_on_horizontal_mesh_line is an optimization for * z_correction_for_x_on_horizontal_mesh_line is an optimization for
* the case where the printer is making a vertical line that only crosses horizontal mesh lines. * the case where the printer is making a vertical line that only crosses horizontal mesh lines.
*/ */
inline static float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) { static inline float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) {
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) { if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) {
@ -249,7 +249,7 @@ class unified_bed_leveling {
// //
// See comments above for z_correction_for_x_on_horizontal_mesh_line // See comments above for z_correction_for_x_on_horizontal_mesh_line
// //
inline static float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) { static inline float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) {
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) { if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) {
@ -362,7 +362,7 @@ class unified_bed_leveling {
static void line_to_destination_cartesian(const float &fr, const uint8_t e); static void line_to_destination_cartesian(const float &fr, const uint8_t e);
#endif #endif
inline static bool mesh_is_valid() { static inline bool mesh_is_valid() {
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (isnan(z_values[x][y])) return false; if (isnan(z_values[x][y])) return false;

@ -175,10 +175,10 @@ public:
FORCE_INLINE static bool has_value() { return value_ptr != NULL; } FORCE_INLINE static bool has_value() { return value_ptr != NULL; }
// Seen a parameter with a value // Seen a parameter with a value
inline static bool seenval(const char c) { return seen(c) && has_value(); } static inline bool seenval(const char c) { return seen(c) && has_value(); }
// Float removes 'E' to prevent scientific notation interpretation // Float removes 'E' to prevent scientific notation interpretation
inline static float value_float() { static inline float value_float() {
if (value_ptr) { if (value_ptr) {
char *e = value_ptr; char *e = value_ptr;
for (;;) { for (;;) {
@ -198,8 +198,8 @@ public:
} }
// Code value as a long or ulong // Code value as a long or ulong
inline static int32_t value_long() { return value_ptr ? strtol(value_ptr, NULL, 10) : 0L; } static inline int32_t value_long() { return value_ptr ? strtol(value_ptr, NULL, 10) : 0L; }
inline static uint32_t value_ulong() { return value_ptr ? strtoul(value_ptr, NULL, 10) : 0UL; } static inline uint32_t value_ulong() { return value_ptr ? strtoul(value_ptr, NULL, 10) : 0UL; }
// Code value for use as time // Code value for use as time
FORCE_INLINE static millis_t value_millis() { return value_ulong(); } FORCE_INLINE static millis_t value_millis() { return value_ulong(); }
@ -208,10 +208,10 @@ public:
// Reduce to fewer bits // Reduce to fewer bits
FORCE_INLINE static int16_t value_int() { return (int16_t)value_long(); } FORCE_INLINE static int16_t value_int() { return (int16_t)value_long(); }
FORCE_INLINE static uint16_t value_ushort() { return (uint16_t)value_long(); } FORCE_INLINE static uint16_t value_ushort() { return (uint16_t)value_long(); }
inline static uint8_t value_byte() { return (uint8_t)constrain(value_long(), 0, 255); } static inline uint8_t value_byte() { return (uint8_t)constrain(value_long(), 0, 255); }
// Bool is true with no value or non-zero // Bool is true with no value or non-zero
inline static bool value_bool() { return !has_value() || !!value_byte(); } static inline bool value_bool() { return !has_value() || !!value_byte(); }
// Units modes: Inches, Fahrenheit, Kelvin // Units modes: Inches, Fahrenheit, Kelvin
@ -220,7 +220,7 @@ public:
// Init linear units by constructor // Init linear units by constructor
GCodeParser() { set_input_linear_units(LINEARUNIT_MM); } GCodeParser() { set_input_linear_units(LINEARUNIT_MM); }
inline static void set_input_linear_units(const LinearUnit units) { static inline void set_input_linear_units(const LinearUnit units) {
switch (units) { switch (units) {
case LINEARUNIT_INCH: case LINEARUNIT_INCH:
linear_unit_factor = 25.4f; linear_unit_factor = 25.4f;
@ -233,13 +233,13 @@ public:
volumetric_unit_factor = POW(linear_unit_factor, 3); volumetric_unit_factor = POW(linear_unit_factor, 3);
} }
inline static float axis_unit_factor(const AxisEnum axis) { static inline float axis_unit_factor(const AxisEnum axis) {
return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor); return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
} }
inline static float value_linear_units() { return value_float() * linear_unit_factor; } static inline float value_linear_units() { return value_float() * linear_unit_factor; }
inline static float value_axis_units(const AxisEnum axis) { return value_float() * axis_unit_factor(axis); } static inline float value_axis_units(const AxisEnum axis) { return value_float() * axis_unit_factor(axis); }
inline static float value_per_axis_unit(const AxisEnum axis) { return value_float() / axis_unit_factor(axis); } static inline float value_per_axis_unit(const AxisEnum axis) { return value_float() / axis_unit_factor(axis); }
#else #else
@ -251,7 +251,7 @@ public:
#if ENABLED(TEMPERATURE_UNITS_SUPPORT) #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
inline static void set_input_temp_units(TempUnit units) { input_temp_units = units; } static inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
#if ENABLED(ULTIPANEL) && DISABLED(DISABLE_M503) #if ENABLED(ULTIPANEL) && DISABLED(DISABLE_M503)
@ -261,7 +261,7 @@ public:
FORCE_INLINE static const char* temp_units_name() { FORCE_INLINE static const char* temp_units_name() {
return input_temp_units == TEMPUNIT_K ? PSTR("Kelvin") : input_temp_units == TEMPUNIT_F ? PSTR("Fahrenheit") : PSTR("Celsius"); return input_temp_units == TEMPUNIT_K ? PSTR("Kelvin") : input_temp_units == TEMPUNIT_F ? PSTR("Fahrenheit") : PSTR("Celsius");
} }
inline static float to_temp_units(const float &f) { static inline float to_temp_units(const float &f) {
switch (input_temp_units) { switch (input_temp_units) {
case TEMPUNIT_F: case TEMPUNIT_F:
return f * 0.5555555556f + 32; return f * 0.5555555556f + 32;
@ -275,7 +275,7 @@ public:
#endif // ULTIPANEL && !DISABLE_M503 #endif // ULTIPANEL && !DISABLE_M503
inline static float value_celsius() { static inline float value_celsius() {
const float f = value_float(); const float f = value_float();
switch (input_temp_units) { switch (input_temp_units) {
case TEMPUNIT_F: case TEMPUNIT_F:
@ -288,7 +288,7 @@ public:
} }
} }
inline static float value_celsius_diff() { static inline float value_celsius_diff() {
switch (input_temp_units) { switch (input_temp_units) {
case TEMPUNIT_F: case TEMPUNIT_F:
return value_float() * 0.5555555556f; return value_float() * 0.5555555556f;

@ -82,7 +82,7 @@ class Buzzer {
* @brief Resets the state of the class * @brief Resets the state of the class
* @details Brings the class state to a known one. * @details Brings the class state to a known one.
*/ */
inline static void reset() { static inline void reset() {
off(); off();
state.endtime = 0; state.endtime = 0;
} }

@ -361,7 +361,7 @@ class Planner {
* Returns 1.0 if planner.z_fade_height is 0.0. * Returns 1.0 if planner.z_fade_height is 0.0.
* Returns 0.0 if Z is past the specified 'Fade Height'. * Returns 0.0 if Z is past the specified 'Fade Height'.
*/ */
inline static float fade_scaling_factor_for_z(const float &rz) { static inline float fade_scaling_factor_for_z(const float &rz) {
static float z_fade_factor = 1; static float z_fade_factor = 1;
if (z_fade_height) { if (z_fade_height) {
if (rz >= z_fade_height) return 0; if (rz >= z_fade_height) return 0;

@ -45,7 +45,7 @@
#define SIGMA 0.1f #define SIGMA 0.1f
// Compute the linear interpolation between two real numbers. // Compute the linear interpolation between two real numbers.
inline static float interp(float a, float b, float t) { return (1 - t) * a + t * b; } static inline float interp(const float &a, const float &b, const float &t) { return (1 - t) * a + t * b; }
/** /**
* Compute a Bézier curve using the De Casteljau's algorithm (see * Compute a Bézier curve using the De Casteljau's algorithm (see
@ -53,21 +53,20 @@ inline static float interp(float a, float b, float t) { return (1 - t) * a + t *
* easy to code and has good numerical stability (very important, * easy to code and has good numerical stability (very important,
* since Arudino works with limited precision real numbers). * since Arudino works with limited precision real numbers).
*/ */
inline static float eval_bezier(float a, float b, float c, float d, float t) { static inline float eval_bezier(const float &a, const float &b, const float &c, const float &d, const float &t) {
float iab = interp(a, b, t); const float iab = interp(a, b, t),
float ibc = interp(b, c, t); ibc = interp(b, c, t),
float icd = interp(c, d, t); icd = interp(c, d, t),
float iabc = interp(iab, ibc, t); iabc = interp(iab, ibc, t),
float ibcd = interp(ibc, icd, t); ibcd = interp(ibc, icd, t);
float iabcd = interp(iabc, ibcd, t); return interp(iabc, ibcd, t);
return iabcd;
} }
/** /**
* We approximate Euclidean distance with the sum of the coordinates * We approximate Euclidean distance with the sum of the coordinates
* offset (so-called "norm 1"), which is quicker to compute. * offset (so-called "norm 1"), which is quicker to compute.
*/ */
inline static float dist1(float x1, float y1, float x2, float y2) { return ABS(x1 - x2) + ABS(y1 - y2); } static inline float dist1(const float &x1, const float &y1, const float &x2, const float &y2) { return ABS(x1 - x2) + ABS(y1 - y2); }
/** /**
* The algorithm for computing the step is loosely based on the one in Kig * The algorithm for computing the step is loosely based on the one in Kig

@ -435,7 +435,7 @@ class Stepper {
#endif #endif
// Set the current position in steps // Set the current position in steps
inline static void set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) { static inline void set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) {
planner.synchronize(); planner.synchronize();
const bool was_enabled = STEPPER_ISR_ENABLED(); const bool was_enabled = STEPPER_ISR_ENABLED();
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
@ -443,7 +443,7 @@ class Stepper {
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
} }
inline static void set_position(const AxisEnum a, const int32_t &v) { static inline void set_position(const AxisEnum a, const int32_t &v) {
planner.synchronize(); planner.synchronize();
#ifdef __AVR__ #ifdef __AVR__

Loading…
Cancel
Save