Merged from Upstream Master

2.0.x
xifle 12 years ago
commit 9eeb711c96

@ -51,6 +51,9 @@
#define MOTHERBOARD 7 #define MOTHERBOARD 7
#endif #endif
// This defines the number of extruders
#define EXTRUDERS 1
//// The following define selects which power supply you have. Please choose the one that matches your setup //// The following define selects which power supply you have. Please choose the one that matches your setup
// 1 = ATX // 1 = ATX
// 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC) // 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)
@ -315,6 +318,15 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// please keep turned on if you can. // please keep turned on if you can.
//#define EEPROM_CHITCHAT //#define EEPROM_CHITCHAT
// Preheat Constants
#define PLA_PREHEAT_HOTEND_TEMP 180
#define PLA_PREHEAT_HPB_TEMP 70
#define PLA_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
#define ABS_PREHEAT_HOTEND_TEMP 240
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
//LCD and SD support //LCD and SD support
//#define ULTRA_LCD //general lcd support, also 16x2 //#define ULTRA_LCD //general lcd support, also 16x2
//#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family) //#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
@ -360,15 +372,46 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
#define ULTIPANEL #define ULTIPANEL
#endif #endif
// Preheat Constants //I2C PANELS
#define PLA_PREHEAT_HOTEND_TEMP 180
#define PLA_PREHEAT_HPB_TEMP 70
#define PLA_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
#define ABS_PREHEAT_HOTEND_TEMP 240 //#define LCD_I2C_SAINSMART_YWROBOT
#define ABS_PREHEAT_HPB_TEMP 100 #ifdef LCD_I2C_SAINSMART_YWROBOT
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255 // This uses the LiquidCrystal_I2C library ( https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home )
// Make sure it is placed in the Arduino libraries directory.
#define LCD_I2C_TYPE_PCF8575
#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
#define NEWPANEL
#define ULTIPANEL
#endif
// PANELOLU2 LCD with status LEDs, separate encoder and click inputs
//#define LCD_I2C_PANELOLU2
#ifdef LCD_I2C_PANELOLU2
// This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )
// Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
// (v1.2.3 no longer requires you to define PANELOLU in the LiquidTWI2.h library header file)
// Note: The PANELOLU2 encoder click input can either be directly connected to a pin
// (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
#define LCD_I2C_TYPE_MCP23017
#define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
#define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD
#define NEWPANEL
#define ULTIPANEL
#endif
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
#ifdef LCD_I2C_VIKI
// This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )
// Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
// Note: The pause/stop/resume LCD button pin should be connected to the Arduino
// BTN_ENC pin (or set BTN_ENC to -1 if not used)
#define LCD_I2C_TYPE_MCP23017
#define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
#define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD (requires LiquidTWI2 v1.2.3 or later)
#define NEWPANEL
#define ULTIPANEL
#endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
// #define NEWPANEL //enable this if you have a click-encoder panel // #define NEWPANEL //enable this if you have a click-encoder panel
@ -403,6 +446,26 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// SF send wrong arc g-codes when using Arc Point as fillet procedure // SF send wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX //#define SF_ARC_FIX
// Support for the BariCUDA Paste Extruder.
//#define BARICUDA
/*********************************************************************\
*
* R/C SERVO support
*
* Sponsored by TrinityLabs, Reworked by codexmas
*
**********************************************************************/
// Number of servos
//
// If you select a configuration below, this will receive a default value and does not need to be set manually
// set it manually if you have more servos than extruders and wish to manually control some
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//
// #define NUM_SERVOS 3
#include "Configuration_adv.h" #include "Configuration_adv.h"
#include "thermistortables.h" #include "thermistortables.h"

@ -63,21 +63,31 @@
//This is for controlling a fan to cool down the stepper drivers //This is for controlling a fan to cool down the stepper drivers
//it will turn on when any driver is enabled //it will turn on when any driver is enabled
//and turn off after the set amount of seconds from last driver being disabled again //and turn off after the set amount of seconds from last driver being disabled again
//#define CONTROLLERFAN_PIN 23 //Pin used for the fan to cool controller, comment out to disable this function #define CONTROLLERFAN_PIN -1 //Pin used for the fan to cool controller (-1 to disable)
#define CONTROLLERFAN_SEC 60 //How many seconds, after all motors were disabled, the fan should run #define CONTROLLERFAN_SECS 60 //How many seconds, after all motors were disabled, the fan should run
#define CONTROLLERFAN_SPEED 255 // == full speed
// When first starting the main fan, run it at full speed for the // When first starting the main fan, run it at full speed for the
// given number of milliseconds. This gets the fan spinning reliably // given number of milliseconds. This gets the fan spinning reliably
// before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu) // before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu)
//#define FAN_KICKSTART_TIME 100 //#define FAN_KICKSTART_TIME 100
// Extruder cooling fans
// Configure fan pin outputs to automatically turn on/off when the associated
// extruder temperature is above/below EXTRUDER_AUTO_FAN_TEMPERATURE.
// Multiple extruders can be assigned to the same pin in which case
// the fan will turn on when any selected extruder is above the threshold.
#define EXTRUDER_0_AUTO_FAN_PIN -1
#define EXTRUDER_1_AUTO_FAN_PIN -1
#define EXTRUDER_2_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
//=========================================================================== //===========================================================================
//=============================Mechanical Settings=========================== //=============================Mechanical Settings===========================
//=========================================================================== //===========================================================================
// This defines the number of extruders
#define EXTRUDERS 1
#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing #define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing

@ -213,7 +213,7 @@ CXXSRC = WMath.cpp WString.cpp Print.cpp Marlin_main.cpp \
SdFile.cpp SdVolume.cpp motion_control.cpp planner.cpp \ SdFile.cpp SdVolume.cpp motion_control.cpp planner.cpp \
stepper.cpp temperature.cpp cardreader.cpp ConfigurationStore.cpp \ stepper.cpp temperature.cpp cardreader.cpp ConfigurationStore.cpp \
watchdog.cpp watchdog.cpp
CXXSRC += LiquidCrystal.cpp ultralcd.cpp SPI.cpp CXXSRC += LiquidCrystal.cpp ultralcd.cpp SPI.cpp Servo.cpp
#Check for Arduino 1.0.0 or higher and use the correct sourcefiles for that version #Check for Arduino 1.0.0 or higher and use the correct sourcefiles for that version
ifeq ($(shell [ $(ARDUINO_VERSION) -ge 100 ] && echo true), true) ifeq ($(shell [ $(ARDUINO_VERSION) -ge 100 ] && echo true), true)

@ -186,6 +186,10 @@ extern float add_homeing[3];
extern float min_pos[3]; extern float min_pos[3];
extern float max_pos[3]; extern float max_pos[3];
extern int fanSpeed; extern int fanSpeed;
#ifdef BARICUDA
extern int ValvePressure;
extern int EtoPPressure;
#endif
#ifdef FWRETRACT #ifdef FWRETRACT
extern bool autoretract_enabled; extern bool autoretract_enabled;

@ -34,7 +34,13 @@
#include "pins.h" #include "pins.h"
#ifdef ULTRA_LCD #ifdef ULTRA_LCD
#ifdef DOGLCD #if defined(LCD_I2C_TYPE_PCF8575)
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#elif defined(LCD_I2C_TYPE_MCP23017) || defined(LCD_I2C_TYPE_MCP23008)
#include <Wire.h>
#include <LiquidTWI2.h>
#elif defined(DOGLCD)
#include <U8glib.h> // library for graphics LCD by Oli Kraus (https://code.google.com/p/u8glib/) #include <U8glib.h> // library for graphics LCD by Oli Kraus (https://code.google.com/p/u8glib/)
#else #else
#include <LiquidCrystal.h> // library for character LCD #include <LiquidCrystal.h> // library for character LCD

@ -40,7 +40,11 @@
#include "language.h" #include "language.h"
#include "pins_arduino.h" #include "pins_arduino.h"
#if DIGIPOTSS_PIN > -1 #if NUM_SERVOS > 0
#include "Servo.h"
#endif
#if DIGIPOTSS_PIN > 0
#include <SPI.h> #include <SPI.h>
#endif #endif
@ -101,6 +105,10 @@
// M115 - Capabilities string // M115 - Capabilities string
// M117 - display message // M117 - display message
// M119 - Output Endstop status to serial port // M119 - Output Endstop status to serial port
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M140 - Set bed target temp // M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp. // M190 - Wait for bed current temp to reach target temp.
// M200 - Set filament diameter // M200 - Set filament diameter
@ -117,6 +125,7 @@
// M220 S<factor in percent>- set speed factor override percentage // M220 S<factor in percent>- set speed factor override percentage
// M221 S<factor in percent>- set extrude factor override percentage // M221 S<factor in percent>- set extrude factor override percentage
// M240 - Trigger a camera to take a photograph // M240 - Trigger a camera to take a photograph
// M280 - set servo position absolute. P: servo index, S: angle or microseconds
// M300 - Play beepsound S<frequency Hz> P<duration ms> // M300 - Play beepsound S<frequency Hz> P<duration ms>
// M301 - Set PID parameters P I and D // M301 - Set PID parameters P I and D
// M302 - Allow cold extrudes // M302 - Allow cold extrudes
@ -168,6 +177,10 @@ float extruder_offset[2][EXTRUDERS] = {
#endif #endif
uint8_t active_extruder = 0; uint8_t active_extruder = 0;
int fanSpeed=0; int fanSpeed=0;
#ifdef BARICUDA
int ValvePressure=0;
int EtoPPressure=0;
#endif
#ifdef FWRETRACT #ifdef FWRETRACT
bool autoretract_enabled=true; bool autoretract_enabled=true;
@ -217,6 +230,10 @@ static uint8_t tmp_extruder;
bool Stopped=false; bool Stopped=false;
#if NUM_SERVOS > 0
Servo servos[NUM_SERVOS];
#endif
//=========================================================================== //===========================================================================
//=============================ROUTINES============================= //=============================ROUTINES=============================
//=========================================================================== //===========================================================================
@ -292,7 +309,7 @@ void setup_killpin()
void setup_photpin() void setup_photpin()
{ {
#ifdef PHOTOGRAPH_PIN #ifdef PHOTOGRAPH_PIN
#if (PHOTOGRAPH_PIN > -1) #if (PHOTOGRAPH_PIN > 0)
SET_OUTPUT(PHOTOGRAPH_PIN); SET_OUTPUT(PHOTOGRAPH_PIN);
WRITE(PHOTOGRAPH_PIN, LOW); WRITE(PHOTOGRAPH_PIN, LOW);
#endif #endif
@ -302,12 +319,12 @@ void setup_photpin()
void setup_powerhold() void setup_powerhold()
{ {
#ifdef SUICIDE_PIN #ifdef SUICIDE_PIN
#if (SUICIDE_PIN> -1) #if (SUICIDE_PIN> 0)
SET_OUTPUT(SUICIDE_PIN); SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, HIGH); WRITE(SUICIDE_PIN, HIGH);
#endif #endif
#endif #endif
#if (PS_ON_PIN > -1) #if (PS_ON_PIN > 0)
SET_OUTPUT(PS_ON_PIN); SET_OUTPUT(PS_ON_PIN);
WRITE(PS_ON_PIN, PS_ON_AWAKE); WRITE(PS_ON_PIN, PS_ON_AWAKE);
#endif #endif
@ -316,13 +333,32 @@ void setup_powerhold()
void suicide() void suicide()
{ {
#ifdef SUICIDE_PIN #ifdef SUICIDE_PIN
#if (SUICIDE_PIN> -1) #if (SUICIDE_PIN > 0)
SET_OUTPUT(SUICIDE_PIN); SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, LOW); WRITE(SUICIDE_PIN, LOW);
#endif #endif
#endif #endif
} }
void servo_init()
{
#if (NUM_SERVOS >= 1) && (SERVO0_PIN > 0)
servos[0].attach(SERVO0_PIN);
#endif
#if (NUM_SERVOS >= 2) && (SERVO1_PIN > 0)
servos[1].attach(SERVO1_PIN);
#endif
#if (NUM_SERVOS >= 3) && (SERVO2_PIN > 0)
servos[2].attach(SERVO2_PIN);
#endif
#if (NUM_SERVOS >= 4) && (SERVO3_PIN > 0)
servos[3].attach(SERVO3_PIN);
#endif
#if (NUM_SERVOS >= 5)
#error "TODO: enter initalisation code for more servos"
#endif
}
void setup() void setup()
{ {
setup_killpin(); setup_killpin();
@ -371,16 +407,13 @@ void setup()
watchdog_init(); watchdog_init();
st_init(); // Initialize stepper, this enables interrupts! st_init(); // Initialize stepper, this enables interrupts!
setup_photpin(); setup_photpin();
servo_init();
lcd_init(); lcd_init();
#ifdef CONTROLLERFAN_PIN #if CONTROLLERFAN_PIN > 0
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
#endif #endif
#ifdef EXTRUDERFAN_PIN
SET_OUTPUT(EXTRUDERFAN_PIN); //Set pin used for extruder cooling fan
#endif
} }
@ -636,7 +669,7 @@ static void axis_is_at_home(int axis) {
static void homeaxis(int axis) { static void homeaxis(int axis) {
#define HOMEAXIS_DO(LETTER) \ #define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) ((LETTER##_MIN_PIN > 0 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > 0 && LETTER##_HOME_DIR==1))
if (axis==X_AXIS ? HOMEAXIS_DO(X) : if (axis==X_AXIS ? HOMEAXIS_DO(X) :
axis==Y_AXIS ? HOMEAXIS_DO(Y) : axis==Y_AXIS ? HOMEAXIS_DO(Y) :
@ -874,13 +907,13 @@ void process_commands()
previous_millis_cmd = millis(); previous_millis_cmd = millis();
if (codenum > 0){ if (codenum > 0){
codenum += millis(); // keep track of when we started waiting codenum += millis(); // keep track of when we started waiting
while(millis() < codenum && !LCD_CLICKED){ while(millis() < codenum && !lcd_clicked()){
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
lcd_update(); lcd_update();
} }
}else{ }else{
while(!LCD_CLICKED){ while(!lcd_clicked()){
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
lcd_update(); lcd_update();
@ -1003,6 +1036,10 @@ void process_commands()
break; break;
} }
} }
#if FAN_PIN > 0
if (pin_number == FAN_PIN)
fanSpeed = pin_status;
#endif
if (pin_number > -1) if (pin_number > -1)
{ {
pinMode(pin_number, OUTPUT); pinMode(pin_number, OUTPUT);
@ -1025,12 +1062,12 @@ void process_commands()
if(setTargetedHotend(105)){ if(setTargetedHotend(105)){
break; break;
} }
#if (TEMP_0_PIN > -1) #if (TEMP_0_PIN > 0)
SERIAL_PROTOCOLPGM("ok T:"); SERIAL_PROTOCOLPGM("ok T:");
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1); SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1); SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
#if TEMP_BED_PIN > -1 #if TEMP_BED_PIN > 0
SERIAL_PROTOCOLPGM(" B:"); SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(),1); SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOLPGM(" /");
@ -1128,7 +1165,7 @@ void process_commands()
} }
break; break;
case 190: // M190 - Wait for bed heater to reach target. case 190: // M190 - Wait for bed heater to reach target.
#if TEMP_BED_PIN > -1 #if TEMP_BED_PIN > 0
LCD_MESSAGEPGM(MSG_BED_HEATING); LCD_MESSAGEPGM(MSG_BED_HEATING);
if (code_seen('S')) setTargetBed(code_value()); if (code_seen('S')) setTargetBed(code_value());
codenum = millis(); codenum = millis();
@ -1155,7 +1192,7 @@ void process_commands()
#endif #endif
break; break;
#if FAN_PIN > -1 #if FAN_PIN > 0
case 106: //M106 Fan On case 106: //M106 Fan On
if (code_seen('S')){ if (code_seen('S')){
fanSpeed=constrain(code_value(),0,255); fanSpeed=constrain(code_value(),0,255);
@ -1168,8 +1205,39 @@ void process_commands()
fanSpeed = 0; fanSpeed = 0;
break; break;
#endif //FAN_PIN #endif //FAN_PIN
#ifdef BARICUDA
// PWM for HEATER_1_PIN
#if HEATER_1_PIN > 0
case 126: //M126 valve open
if (code_seen('S')){
ValvePressure=constrain(code_value(),0,255);
}
else {
ValvePressure=255;
}
break;
case 127: //M127 valve closed
ValvePressure = 0;
break;
#endif //HEATER_1_PIN
// PWM for HEATER_2_PIN
#if HEATER_2_PIN > 0
case 128: //M128 valve open
if (code_seen('S')){
EtoPPressure=constrain(code_value(),0,255);
}
else {
EtoPPressure=255;
}
break;
case 129: //M129 valve closed
EtoPPressure = 0;
break;
#endif //HEATER_2_PIN
#endif
#if (PS_ON_PIN > -1) #if (PS_ON_PIN > 0)
case 80: // M80 - ATX Power On case 80: // M80 - ATX Power On
SET_OUTPUT(PS_ON_PIN); //GND SET_OUTPUT(PS_ON_PIN); //GND
WRITE(PS_ON_PIN, PS_ON_AWAKE); WRITE(PS_ON_PIN, PS_ON_AWAKE);
@ -1178,10 +1246,10 @@ void process_commands()
case 81: // M81 - ATX Power Off case 81: // M81 - ATX Power Off
#if defined SUICIDE_PIN && SUICIDE_PIN > -1 #if defined SUICIDE_PIN && SUICIDE_PIN > 0
st_synchronize(); st_synchronize();
suicide(); suicide();
#elif (PS_ON_PIN > -1) #elif (PS_ON_PIN > 0)
SET_OUTPUT(PS_ON_PIN); SET_OUTPUT(PS_ON_PIN);
WRITE(PS_ON_PIN, PS_ON_ASLEEP); WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#endif #endif
@ -1286,27 +1354,27 @@ void process_commands()
break; break;
case 119: // M119 case 119: // M119
SERIAL_PROTOCOLLN(MSG_M119_REPORT); SERIAL_PROTOCOLLN(MSG_M119_REPORT);
#if (X_MIN_PIN > -1) #if (X_MIN_PIN > 0)
SERIAL_PROTOCOLPGM(MSG_X_MIN); SERIAL_PROTOCOLPGM(MSG_X_MIN);
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif #endif
#if (X_MAX_PIN > -1) #if (X_MAX_PIN > 0)
SERIAL_PROTOCOLPGM(MSG_X_MAX); SERIAL_PROTOCOLPGM(MSG_X_MAX);
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif #endif
#if (Y_MIN_PIN > -1) #if (Y_MIN_PIN > 0)
SERIAL_PROTOCOLPGM(MSG_Y_MIN); SERIAL_PROTOCOLPGM(MSG_Y_MIN);
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif #endif
#if (Y_MAX_PIN > -1) #if (Y_MAX_PIN > 0)
SERIAL_PROTOCOLPGM(MSG_Y_MAX); SERIAL_PROTOCOLPGM(MSG_Y_MAX);
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif #endif
#if (Z_MIN_PIN > -1) #if (Z_MIN_PIN > 0)
SERIAL_PROTOCOLPGM(MSG_Z_MIN); SERIAL_PROTOCOLPGM(MSG_Z_MIN);
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif #endif
#if (Z_MAX_PIN > -1) #if (Z_MAX_PIN > 0)
SERIAL_PROTOCOLPGM(MSG_Z_MAX); SERIAL_PROTOCOLPGM(MSG_Z_MAX);
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif #endif
@ -1446,16 +1514,51 @@ void process_commands()
} }
break; break;
#if defined(LARGE_FLASH) && LARGE_FLASH == true && defined(BEEPER) && BEEPER > -1 #if NUM_SERVOS > 0
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
{
int servo_index = -1;
int servo_position = 0;
if (code_seen('P'))
servo_index = code_value();
if (code_seen('S')) {
servo_position = code_value();
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
servos[servo_index].write(servo_position);
}
else {
SERIAL_ECHO_START;
SERIAL_ECHO("Servo ");
SERIAL_ECHO(servo_index);
SERIAL_ECHOLN(" out of range");
}
}
else if (servo_index >= 0) {
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" Servo ");
SERIAL_PROTOCOL(servo_index);
SERIAL_PROTOCOL(": ");
SERIAL_PROTOCOL(servos[servo_index].read());
SERIAL_PROTOCOLLN("");
}
}
break;
#endif // NUM_SERVOS > 0
#if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
case 300: // M300 case 300: // M300
{ {
int beepS = 1; int beepS = 400;
int beepP = 1000; int beepP = 1000;
if(code_seen('S')) beepS = code_value(); if(code_seen('S')) beepS = code_value();
if(code_seen('P')) beepP = code_value(); if(code_seen('P')) beepP = code_value();
#if BEEPER > 0
tone(BEEPER, beepS); tone(BEEPER, beepS);
delay(beepP); delay(beepP);
noTone(BEEPER); noTone(BEEPER);
#elif defined(ULTRALCD)
lcd_buzz(beepS, beepP);
#endif
} }
break; break;
#endif // M300 #endif // M300
@ -1510,7 +1613,7 @@ void process_commands()
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/ case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
{ {
#ifdef PHOTOGRAPH_PIN #ifdef PHOTOGRAPH_PIN
#if (PHOTOGRAPH_PIN > -1) #if (PHOTOGRAPH_PIN > 0)
const uint8_t NUM_PULSES=16; const uint8_t NUM_PULSES=16;
const float PULSE_LENGTH=0.01524; const float PULSE_LENGTH=0.01524;
for(int i=0; i < NUM_PULSES; i++) { for(int i=0; i < NUM_PULSES; i++) {
@ -1666,24 +1769,25 @@ void process_commands()
delay(100); delay(100);
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE); LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
uint8_t cnt=0; uint8_t cnt=0;
while(!LCD_CLICKED){ while(!lcd_clicked()){
cnt++; cnt++;
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
lcd_update(); lcd_update();
#if BEEPER > -1
if(cnt==0) if(cnt==0)
{ {
#if BEEPER > 0
SET_OUTPUT(BEEPER); SET_OUTPUT(BEEPER);
WRITE(BEEPER,HIGH); WRITE(BEEPER,HIGH);
delay(3); delay(3);
WRITE(BEEPER,LOW); WRITE(BEEPER,LOW);
delay(3); delay(3);
} #else
lcd_buzz(1000/6,100);
#endif #endif
} }
}
//return to normal //return to normal
if(code_seen('L')) if(code_seen('L'))
@ -1707,7 +1811,7 @@ void process_commands()
#endif //FILAMENTCHANGEENABLE #endif //FILAMENTCHANGEENABLE
case 907: // M907 Set digital trimpot motor current using axis codes. case 907: // M907 Set digital trimpot motor current using axis codes.
{ {
#if DIGIPOTSS_PIN > -1 #if DIGIPOTSS_PIN > 0
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value()); for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
if(code_seen('B')) digipot_current(4,code_value()); if(code_seen('B')) digipot_current(4,code_value());
if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value()); if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
@ -1716,7 +1820,7 @@ void process_commands()
break; break;
case 908: // M908 Control digital trimpot directly. case 908: // M908 Control digital trimpot directly.
{ {
#if DIGIPOTSS_PIN > -1 #if DIGIPOTSS_PIN > 0
uint8_t channel,current; uint8_t channel,current;
if(code_seen('P')) channel=code_value(); if(code_seen('P')) channel=code_value();
if(code_seen('S')) current=code_value(); if(code_seen('S')) current=code_value();
@ -1726,7 +1830,7 @@ void process_commands()
break; break;
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
{ {
#if X_MS1_PIN > -1 #if X_MS1_PIN > 0
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value()); if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value()); for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
if(code_seen('B')) microstep_mode(4,code_value()); if(code_seen('B')) microstep_mode(4,code_value());
@ -1736,7 +1840,7 @@ void process_commands()
break; break;
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
{ {
#if X_MS1_PIN > -1 #if X_MS1_PIN > 0
if(code_seen('S')) switch((int)code_value()) if(code_seen('S')) switch((int)code_value())
{ {
case 1: case 1:
@ -1960,7 +2064,12 @@ void prepare_arc_move(char isclockwise) {
previous_millis_cmd = millis(); previous_millis_cmd = millis();
} }
#ifdef CONTROLLERFAN_PIN #if CONTROLLERFAN_PIN > 0
#if CONTROLLERFAN_PIN == FAN_PIN
#error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
#endif
unsigned long lastMotor = 0; //Save the time for when a motor was turned on last unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
unsigned long lastMotorCheck = 0; unsigned long lastMotorCheck = 0;
@ -1982,34 +2091,16 @@ void controllerFan()
lastMotor = millis(); //... set time to NOW so the fan will turn on lastMotor = millis(); //... set time to NOW so the fan will turn on
} }
if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC... if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
{
WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off
}
else
{
WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on
}
}
}
#endif
#ifdef EXTRUDERFAN_PIN
unsigned long lastExtruderCheck = 0;
void extruderFan()
{
if ((millis() - lastExtruderCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
{
lastExtruderCheck = millis();
if (degHotend(active_extruder) < EXTRUDERFAN_DEC)
{ {
WRITE(EXTRUDERFAN_PIN, LOW); //... turn the fan off digitalWrite(CONTROLLERFAN_PIN, 0);
analogWrite(CONTROLLERFAN_PIN, 0);
} }
else else
{ {
WRITE(EXTRUDERFAN_PIN, HIGH); //... turn the fan on // allows digital or PWM fan output to be used (see M42 handling)
digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
} }
} }
} }
@ -2033,11 +2124,11 @@ void manage_inactivity()
} }
} }
} }
#if( KILL_PIN>-1 ) #if KILL_PIN > 0
if( 0 == READ(KILL_PIN) ) if( 0 == READ(KILL_PIN) )
kill(); kill();
#endif #endif
#ifdef CONTROLLERFAN_PIN #if CONTROLLERFAN_PIN > 0
controllerFan(); //Check if fan should be turned on to cool stepper drivers down controllerFan(); //Check if fan should be turned on to cool stepper drivers down
#endif #endif
#ifdef EXTRUDER_RUNOUT_PREVENT #ifdef EXTRUDER_RUNOUT_PREVENT
@ -2074,7 +2165,7 @@ void kill()
disable_e1(); disable_e1();
disable_e2(); disable_e2();
if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); if(PS_ON_PIN > 0) pinMode(PS_ON_PIN,INPUT);
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_KILLED); SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
LCD_ALERTMESSAGEPGM(MSG_KILLED); LCD_ALERTMESSAGEPGM(MSG_KILLED);

@ -0,0 +1,339 @@
/*
Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
Copyright (c) 2009 Michael Margolis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
The servos are pulsed in the background using the value most recently written using the write() method
Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
The methods are:
Servo - Class for manipulating servo motors connected to Arduino pins.
attach(pin ) - Attaches a servo motor to an i/o pin.
attach(pin, min, max ) - Attaches to a pin setting min and max values in microseconds
default min is 544, max is 2400
write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)
writeMicroseconds() - Sets the servo pulse width in microseconds
read() - Gets the last written servo pulse width as an angle between 0 and 180.
readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
attached() - Returns true if there is a servo attached.
detach() - Stops an attached servos from pulsing its i/o pin.
*/
#ifdef NUM_SERVOS
#include <avr/interrupt.h>
#include <Arduino.h>
#include "Servo.h"
#define usToTicks(_us) (( clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8) // 12 Aug 2009
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009
//#define NBR_TIMERS (MAX_SERVOS / SERVOS_PER_TIMER)
static servo_t servos[MAX_SERVOS]; // static array of servo structures
static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
uint8_t ServoCount = 0; // the total number of attached servos
// convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
/************ static functions common to all instances ***********************/
static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA)
{
if( Channel[timer] < 0 )
*TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
else{
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true )
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated
}
Channel[timer]++; // increment to the next channel
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
*OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks;
if(SERVO(timer,Channel[timer]).Pin.isActive == true) // check if activated
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
}
else {
// finished all channels so wait for the refresh period to expire before starting over
if( ((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL) ) // allow a few ticks to ensure the next OCR1A not missed
*OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
else
*OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
}
}
#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
// Interrupt handlers for Arduino
#if defined(_useTimer1)
SIGNAL (TIMER1_COMPA_vect)
{
handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif
#if defined(_useTimer3)
SIGNAL (TIMER3_COMPA_vect)
{
handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif
#if defined(_useTimer4)
SIGNAL (TIMER4_COMPA_vect)
{
handle_interrupts(_timer4, &TCNT4, &OCR4A);
}
#endif
#if defined(_useTimer5)
SIGNAL (TIMER5_COMPA_vect)
{
handle_interrupts(_timer5, &TCNT5, &OCR5A);
}
#endif
#elif defined WIRING
// Interrupt handlers for Wiring
#if defined(_useTimer1)
void Timer1Service()
{
handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif
#if defined(_useTimer3)
void Timer3Service()
{
handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif
#endif
static void initISR(timer16_Sequence_t timer)
{
#if defined (_useTimer1)
if(timer == _timer1) {
TCCR1A = 0; // normal counting mode
TCCR1B = _BV(CS11); // set prescaler of 8
TCNT1 = 0; // clear the timer count
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
TIFR |= _BV(OCF1A); // clear any pending interrupts;
TIMSK |= _BV(OCIE1A) ; // enable the output compare interrupt
#else
// here if not ATmega8 or ATmega128
TIFR1 |= _BV(OCF1A); // clear any pending interrupts;
TIMSK1 |= _BV(OCIE1A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)
timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
#endif
}
#endif
#if defined (_useTimer3)
if(timer == _timer3) {
TCCR3A = 0; // normal counting mode
TCCR3B = _BV(CS31); // set prescaler of 8
TCNT3 = 0; // clear the timer count
#if defined(__AVR_ATmega128__)
TIFR |= _BV(OCF3A); // clear any pending interrupts;
ETIMSK |= _BV(OCIE3A); // enable the output compare interrupt
#else
TIFR3 = _BV(OCF3A); // clear any pending interrupts;
TIMSK3 = _BV(OCIE3A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)
timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
#endif
}
#endif
#if defined (_useTimer4)
if(timer == _timer4) {
TCCR4A = 0; // normal counting mode
TCCR4B = _BV(CS41); // set prescaler of 8
TCNT4 = 0; // clear the timer count
TIFR4 = _BV(OCF4A); // clear any pending interrupts;
TIMSK4 = _BV(OCIE4A) ; // enable the output compare interrupt
}
#endif
#if defined (_useTimer5)
if(timer == _timer5) {
TCCR5A = 0; // normal counting mode
TCCR5B = _BV(CS51); // set prescaler of 8
TCNT5 = 0; // clear the timer count
TIFR5 = _BV(OCF5A); // clear any pending interrupts;
TIMSK5 = _BV(OCIE5A) ; // enable the output compare interrupt
}
#endif
}
static void finISR(timer16_Sequence_t timer)
{
//disable use of the given timer
#if defined WIRING // Wiring
if(timer == _timer1) {
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
TIMSK1 &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
#else
TIMSK &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
#endif
timerDetach(TIMER1OUTCOMPAREA_INT);
}
else if(timer == _timer3) {
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
TIMSK3 &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
#else
ETIMSK &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
#endif
timerDetach(TIMER3OUTCOMPAREA_INT);
}
#else
//For arduino - in future: call here to a currently undefined function to reset the timer
#endif
}
static boolean isTimerActive(timer16_Sequence_t timer)
{
// returns true if any servo is active on this timer
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
if(SERVO(timer,channel).Pin.isActive == true)
return true;
}
return false;
}
/****************** end of static functions ******************************/
Servo::Servo()
{
if( ServoCount < MAX_SERVOS) {
this->servoIndex = ServoCount++; // assign a servo index to this instance
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
}
else
this->servoIndex = INVALID_SERVO ; // too many servos
}
uint8_t Servo::attach(int pin)
{
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
uint8_t Servo::attach(int pin, int min, int max)
{
if(this->servoIndex < MAX_SERVOS ) {
pinMode( pin, OUTPUT) ; // set servo pin to output
servos[this->servoIndex].Pin.nbr = pin;
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
this->max = (MAX_PULSE_WIDTH - max)/4;
// initialize the timer if it has not already been initialized
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if(isTimerActive(timer) == false)
initISR(timer);
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
}
return this->servoIndex ;
}
void Servo::detach()
{
servos[this->servoIndex].Pin.isActive = false;
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if(isTimerActive(timer) == false) {
finISR(timer);
}
}
void Servo::write(int value)
{
if(value < MIN_PULSE_WIDTH)
{ // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if(value < 0) value = 0;
if(value > 180) value = 180;
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
}
this->writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value)
{
// calculate and store the values for the given channel
byte channel = this->servoIndex;
if( (channel < MAX_SERVOS) ) // ensure channel is valid
{
if( value < SERVO_MIN() ) // ensure pulse width is valid
value = SERVO_MIN();
else if( value > SERVO_MAX() )
value = SERVO_MAX();
value = value - TRIM_DURATION;
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009
uint8_t oldSREG = SREG;
cli();
servos[channel].ticks = value;
SREG = oldSREG;
}
}
int Servo::read() // return the value as degrees
{
return map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
}
int Servo::readMicroseconds()
{
unsigned int pulsewidth;
if( this->servoIndex != INVALID_SERVO )
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION ; // 12 aug 2009
else
pulsewidth = 0;
return pulsewidth;
}
bool Servo::attached()
{
return servos[this->servoIndex].Pin.isActive ;
}
#endif

@ -0,0 +1,132 @@
/*
Servo.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
Copyright (c) 2009 Michael Margolis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
The servos are pulsed in the background using the value most recently written using the write() method
Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
The sequence used to sieze timers is defined in timers.h
The methods are:
Servo - Class for manipulating servo motors connected to Arduino pins.
attach(pin ) - Attaches a servo motor to an i/o pin.
attach(pin, min, max ) - Attaches to a pin setting min and max values in microseconds
default min is 544, max is 2400
write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)
writeMicroseconds() - Sets the servo pulse width in microseconds
read() - Gets the last written servo pulse width as an angle between 0 and 180.
readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
attached() - Returns true if there is a servo attached.
detach() - Stops an attached servos from pulsing its i/o pin.
*/
#ifndef Servo_h
#define Servo_h
#include <inttypes.h>
/*
* Defines for 16 bit timers used with Servo library
*
* If _useTimerX is defined then TimerX is a 16 bit timer on the curent board
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
* _Nbr_16timers indicates how many 16 bit timers are available.
*
*/
// Say which 16 bit timers can be used and in what order
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define _useTimer5
//#define _useTimer1
#define _useTimer3
#define _useTimer4
//typedef enum { _timer5, _timer1, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer5, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t ;
#elif defined(__AVR_ATmega32U4__)
//#define _useTimer1
#define _useTimer3
//typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ;
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#define _useTimer3
//#define _useTimer1
//typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ;
#elif defined(__AVR_ATmega128__) ||defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
#define _useTimer3
//#define _useTimer1
//typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ;
#else // everything else
//#define _useTimer1
//typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _Nbr_16timers } timer16_Sequence_t ;
#endif
#define Servo_VERSION 2 // software version of this library
#define MIN_PULSE_WIDTH 544 // the shortest pulse sent to a servo
#define MAX_PULSE_WIDTH 2400 // the longest pulse sent to a servo
#define DEFAULT_PULSE_WIDTH 1500 // default pulse width when servo is attached
#define REFRESH_INTERVAL 20000 // minumim time to refresh servos in microseconds
#define SERVOS_PER_TIMER 12 // the maximum number of servos controlled by one timer
#define MAX_SERVOS (_Nbr_16timers * SERVOS_PER_TIMER)
#define INVALID_SERVO 255 // flag indicating an invalid servo index
typedef struct {
uint8_t nbr :6 ; // a pin number from 0 to 63
uint8_t isActive :1 ; // true if this channel is enabled, pin not pulsed if false
} ServoPin_t ;
typedef struct {
ServoPin_t Pin;
unsigned int ticks;
} servo_t;
class Servo
{
public:
Servo();
uint8_t attach(int pin); // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if failure
uint8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes.
void detach();
void write(int value); // if value is < 200 its treated as an angle, otherwise as pulse width in microseconds
void writeMicroseconds(int value); // Write pulse width in microseconds
int read(); // returns current pulse width as an angle between 0 and 180 degrees
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
bool attached(); // return true if this servo is attached, otherwise false
private:
uint8_t servoIndex; // index into the channel data for this servo
int8_t min; // minimum is this value times 4 added to MIN_PULSE_WIDTH
int8_t max; // maximum is this value times 4 added to MAX_PULSE_WIDTH
};
#endif

@ -291,14 +291,6 @@
#define BTN_EN2 10 #define BTN_EN2 10
#define BTN_ENC 12 //the click #define BTN_ENC 12 //the click
#define BLEN_C 2
#define BLEN_B 1
#define BLEN_A 0
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif #endif
/**************************************************************************************** /****************************************************************************************
@ -383,19 +375,14 @@
#define HEATER_BED_PIN 8 // BED #define HEATER_BED_PIN 8 // BED
#define TEMP_BED_PIN 14 // ANALOG NUMBERING #define TEMP_BED_PIN 14 // ANALOG NUMBERING
#define SERVO0_PIN 11
#define SERVO1_PIN 6
#define SERVO2_PIN 5
#define SERVO3_PIN 4
#ifdef ULTRA_LCD #ifdef ULTRA_LCD
#ifdef NEWPANEL #ifdef NEWPANEL
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#define BLEN_A 0
#define BLEN_B 1
#define BLEN_C 2
#define LCD_PINS_RS 16 #define LCD_PINS_RS 16
#define LCD_PINS_ENABLE 17 #define LCD_PINS_ENABLE 17
#define LCD_PINS_D4 23 #define LCD_PINS_D4 23
@ -423,15 +410,6 @@
#define SHIFT_OUT 40 // shift register #define SHIFT_OUT 40 // shift register
#define SHIFT_CLK 44 // shift register #define SHIFT_CLK 44 // shift register
#define SHIFT_LD 42 // shift register #define SHIFT_LD 42 // shift register
// define register bit values, don't change it
#define BLEN_REPRAPWORLD_KEYPAD_F3 0
#define BLEN_REPRAPWORLD_KEYPAD_F2 1
#define BLEN_REPRAPWORLD_KEYPAD_F1 2
#define BLEN_REPRAPWORLD_KEYPAD_UP 3
#define BLEN_REPRAPWORLD_KEYPAD_RIGHT 4
#define BLEN_REPRAPWORLD_KEYPAD_MIDDLE 5
#define BLEN_REPRAPWORLD_KEYPAD_DOWN 6
#define BLEN_REPRAPWORLD_KEYPAD_LEFT 7
#else #else
#define BTN_EN1 37 #define BTN_EN1 37
#define BTN_EN2 35 #define BTN_EN2 35
@ -447,7 +425,7 @@
#else //old style panel with shift register #else //old style panel with shift register
//arduino pin witch triggers an piezzo beeper //arduino pin witch triggers an piezzo beeper
#define BEEPER 33 No Beeper added #define BEEPER 33 // No Beeper added
//buttons are attached to a shift register //buttons are attached to a shift register
// Not wired this yet // Not wired this yet
@ -462,25 +440,6 @@
#define LCD_PINS_D5 25 #define LCD_PINS_D5 25
#define LCD_PINS_D6 27 #define LCD_PINS_D6 27
#define LCD_PINS_D7 29 #define LCD_PINS_D7 29
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
//bits in the shift register that carry the buttons for:
// left up center down right red
#define BL_LE 7
#define BL_UP 6
#define BL_MI 5
#define BL_DW 4
#define BL_RI 3
#define BL_ST 2
#define BLEN_B 1
#define BLEN_A 0
#endif #endif
#endif //ULTRA_LCD #endif //ULTRA_LCD
@ -774,23 +733,12 @@
#define LCD_PINS_D7 27 #define LCD_PINS_D7 27
#endif #endif
//The encoder and click button //The encoder and click button
#define BTN_EN1 11 //must be a hardware interrupt pin #define BTN_EN1 11
#define BTN_EN2 10 //must be hardware interrupt pin #define BTN_EN2 10
#define BTN_ENC 16 //the switch #define BTN_ENC 16 //the switch
//not connected to a pin //not connected to a pin
#define SDCARDDETECT -1 #define SDCARDDETECT -1
//from the same bit in the RAMPS Newpanel define
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#define BLEN_C 2
#define BLEN_B 1
#define BLEN_A 0
#endif //Newpanel #endif //Newpanel
#endif //Ultipanel #endif //Ultipanel
@ -875,17 +823,8 @@
#define BTN_EN2 42 #define BTN_EN2 42
#define BTN_ENC 19 //the click #define BTN_ENC 19 //the click
#define BLEN_C 2
#define BLEN_B 1
#define BLEN_A 0
#define SDCARDDETECT 38 #define SDCARDDETECT 38
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#else //old style panel with shift register #else //old style panel with shift register
//arduino pin witch triggers an piezzo beeper //arduino pin witch triggers an piezzo beeper
#define BEEPER 18 #define BEEPER 18
@ -903,32 +842,7 @@
#define LCD_PINS_D6 20 #define LCD_PINS_D6 20
#define LCD_PINS_D7 19 #define LCD_PINS_D7 19
//encoder rotation values
#ifndef ULTIMAKERCONTROLLER
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#else
#define encrot0 0
#define encrot1 1
#define encrot2 3
#define encrot3 2
#endif
#define SDCARDDETECT -1 #define SDCARDDETECT -1
//bits in the shift register that carry the buttons for:
// left up center down right red
#define BL_LE 7
#define BL_UP 6
#define BL_MI 5
#define BL_DW 4
#define BL_RI 3
#define BL_ST 2
#define BLEN_B 1
#define BLEN_A 0
#endif #endif
#endif //ULTRA_LCD #endif //ULTRA_LCD
@ -1053,17 +967,56 @@
#define PS_ON_PIN 45 #define PS_ON_PIN 45
#define KILL_PIN 46 #define KILL_PIN 46
#define HEATER_0_PIN 2 // EXTRUDER 1 #if (TEMP_SENSOR_0==0)
#define HEATER_1_PIN 3 // EXTRUDER 2 #define TEMP_0_PIN -1
#define HEATER_2_PIN 6 // EXTRUDER 3 #define HEATER_0_PIN -1
#else
#define HEATER_0_PIN 2 // EXTRUDER 1
#if (TEMP_SENSOR_0==-1)
#define TEMP_0_PIN 6 // ANALOG NUMBERING - connector *K1* on RUMBA thermocouple ADD ON is used
#else
#define TEMP_0_PIN 15 // ANALOG NUMBERING - default connector for thermistor *T0* on rumba board is used
#endif
#endif
#if (TEMP_SENSOR_1==0)
#define TEMP_1_PIN -1
#define HEATER_1_PIN -1
#else
#define HEATER_1_PIN 3 // EXTRUDER 2
#if (TEMP_SENSOR_1==-1)
#define TEMP_1_PIN 5 // ANALOG NUMBERING - connector *K2* on RUMBA thermocouple ADD ON is used
#else
#define TEMP_1_PIN 14 // ANALOG NUMBERING - default connector for thermistor *T1* on rumba board is used
#endif
#endif
#if (TEMP_SENSOR_2==0)
#define TEMP_2_PIN -1
#define HEATER_2_PIN -1
#else
#define HEATER_2_PIN 6 // EXTRUDER 3
#if (TEMP_SENSOR_2==-1)
#define TEMP_2_PIN 7 // ANALOG NUMBERING - connector *K3* on RUMBA thermocouple ADD ON is used <-- this can not be used when TEMP_SENSOR_BED is defined as thermocouple
#else
#define TEMP_2_PIN 13 // ANALOG NUMBERING - default connector for thermistor *T2* on rumba board is used
#endif
#endif
//optional for extruder 4 or chamber: #define TEMP_X_PIN 12 // ANALOG NUMBERING - default connector for thermistor *T3* on rumba board is used
//optional FAN1 can be used as 4th heater output: #define HEATER_3_PIN 8 // EXTRUDER 4 //optional FAN1 can be used as 4th heater output: #define HEATER_3_PIN 8 // EXTRUDER 4
#define HEATER_BED_PIN 9 // BED
#define TEMP_0_PIN 15 // ANALOG NUMBERING #if (TEMP_SENSOR_BED==0)
#define TEMP_1_PIN 14 // ANALOG NUMBERING #define TEMP_BED_PIN -1
#define TEMP_2_PIN 13 // ANALOG NUMBERING #define HEATER_BED_PIN -1
//optional for extruder 4 or chamber: #define TEMP_2_PIN 12 // ANALOG NUMBERING #else
#define TEMP_BED_PIN 11 // ANALOG NUMBERING #define HEATER_BED_PIN 9 // BED
#if (TEMP_SENSOR_BED==-1)
#define TEMP_BED_PIN 7 // ANALOG NUMBERING - connector *K3* on RUMBA thermocouple ADD ON is used <-- this can not be used when TEMP_SENSOR_2 is defined as thermocouple
#else
#define TEMP_BED_PIN 11 // ANALOG NUMBERING - default connector for thermistor *THB* on rumba board is used
#endif
#endif
#define SDPOWER -1 #define SDPOWER -1
#define SDSS 53 #define SDSS 53
@ -1078,14 +1031,6 @@
#define BTN_EN1 11 #define BTN_EN1 11
#define BTN_EN2 12 #define BTN_EN2 12
#define BTN_ENC 43 #define BTN_ENC 43
//encoder rotation values
#define BLEN_C 2
#define BLEN_B 1
#define BLEN_A 0
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif //MOTHERBOARD==80 #endif //MOTHERBOARD==80
@ -1474,7 +1419,11 @@
#define HEATER_1_PIN 7 #define HEATER_1_PIN 7
#define TEMP_1_PIN 1 #define TEMP_1_PIN 1
#ifdef BARICUDA
#define HEATER_2_PIN 6
#else
#define HEATER_2_PIN -1 #define HEATER_2_PIN -1
#endif
#define TEMP_2_PIN -1 #define TEMP_2_PIN -1
#define E0_STEP_PIN 34 #define E0_STEP_PIN 34
@ -1589,17 +1538,7 @@
#define BTN_EN2 64 #define BTN_EN2 64
#define BTN_ENC 43 //the click #define BTN_ENC 43 //the click
#define BLEN_C 2
#define BLEN_B 1
#define BLEN_A 0
#define SDCARDDETECT -1 // Ramps does not use this port #define SDCARDDETECT -1 // Ramps does not use this port
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif #endif
#endif //ULTRA_LCD #endif //ULTRA_LCD

@ -439,12 +439,20 @@ void check_axes_activity()
unsigned char z_active = 0; unsigned char z_active = 0;
unsigned char e_active = 0; unsigned char e_active = 0;
unsigned char tail_fan_speed = fanSpeed; unsigned char tail_fan_speed = fanSpeed;
#ifdef BARICUDA
unsigned char tail_valve_pressure = ValvePressure;
unsigned char tail_e_to_p_pressure = EtoPPressure;
#endif
block_t *block; block_t *block;
if(block_buffer_tail != block_buffer_head) if(block_buffer_tail != block_buffer_head)
{ {
uint8_t block_index = block_buffer_tail; uint8_t block_index = block_buffer_tail;
tail_fan_speed = block_buffer[block_index].fan_speed; tail_fan_speed = block_buffer[block_index].fan_speed;
#ifdef BARICUDA
tail_valve_pressure = block_buffer[block_index].valve_pressure;
tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure;
#endif
while(block_index != block_buffer_head) while(block_index != block_buffer_head)
{ {
block = &block_buffer[block_index]; block = &block_buffer[block_index];
@ -486,6 +494,16 @@ void check_axes_activity()
#ifdef AUTOTEMP #ifdef AUTOTEMP
getHighESpeed(); getHighESpeed();
#endif #endif
#ifdef BARICUDA
#if HEATER_1_PIN > -1
analogWrite(HEATER_1_PIN,tail_valve_pressure);
#endif
#if HEATER_2_PIN > -1
analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
#endif
#endif
} }
@ -559,6 +577,10 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
} }
block->fan_speed = fanSpeed; block->fan_speed = fanSpeed;
#ifdef BARICUDA
block->valve_pressure = ValvePressure;
block->e_to_p_pressure = EtoPPressure;
#endif
// Compute direction bits for this block // Compute direction bits for this block
block->direction_bits = 0; block->direction_bits = 0;

@ -60,6 +60,10 @@ typedef struct {
unsigned long final_rate; // The minimal rate at exit unsigned long final_rate; // The minimal rate at exit
unsigned long acceleration_st; // acceleration steps/sec^2 unsigned long acceleration_st; // acceleration steps/sec^2
unsigned long fan_speed; unsigned long fan_speed;
#ifdef BARICUDA
unsigned long valve_pressure;
unsigned long e_to_p_pressure;
#endif
volatile char busy; volatile char busy;
} block_t; } block_t;

@ -879,10 +879,6 @@ void st_init()
disable_e2(); disable_e2();
#endif #endif
#ifdef CONTROLLERFAN_PIN
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
#endif
// waveform generation = 0100 = CTC // waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13); TCCR1B &= ~(1<<WGM13);
TCCR1B |= (1<<WGM12); TCCR1B |= (1<<WGM12);

@ -99,8 +99,9 @@ static volatile bool temp_meas_ready = false;
#ifdef FAN_SOFT_PWM #ifdef FAN_SOFT_PWM
static unsigned char soft_pwm_fan; static unsigned char soft_pwm_fan;
#endif #endif
#if EXTRUDER_0_AUTO_FAN_PIN > 0 || EXTRUDER_1_AUTO_FAN_PIN > 0 || EXTRUDER_2_AUTO_FAN_PIN > 0
static unsigned long extruder_autofan_last_check;
#endif
#if EXTRUDERS > 3 #if EXTRUDERS > 3
# error Unsupported number of extruders # error Unsupported number of extruders
@ -306,6 +307,76 @@ int getHeaterPower(int heater) {
return soft_pwm[heater]; return soft_pwm[heater];
} }
#if EXTRUDER_0_AUTO_FAN_PIN > 0 || EXTRUDER_1_AUTO_FAN_PIN > 0 || EXTRUDER_2_AUTO_FAN_PIN > 0
#if FAN_PIN > 0
#if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
#endif
#if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
#endif
#if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
#endif
#endif
void setExtruderAutoFanState(int pin, bool state)
{
unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
// this idiom allows both digital and PWM fan outputs (see M42 handling).
pinMode(pin, OUTPUT);
digitalWrite(pin, newFanSpeed);
analogWrite(pin, newFanSpeed);
}
void checkExtruderAutoFans()
{
uint8_t fanState = 0;
// which fan pins need to be turned on?
#if EXTRUDER_0_AUTO_FAN_PIN > 0
if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
fanState |= 1;
#endif
#if EXTRUDER_1_AUTO_FAN_PIN > 0
if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{
if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
fanState |= 1;
else
fanState |= 2;
}
#endif
#if EXTRUDER_2_AUTO_FAN_PIN > 0
if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{
if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
fanState |= 1;
else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
fanState |= 2;
else
fanState |= 4;
}
#endif
// update extruder auto fan states
#if EXTRUDER_0_AUTO_FAN_PIN > 0
setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
#endif
#if EXTRUDER_1_AUTO_FAN_PIN > 0
if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
#endif
#if EXTRUDER_2_AUTO_FAN_PIN > 0
if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
&& EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
#endif
}
#endif // any extruder auto fan pins set
void manage_heater() void manage_heater()
{ {
float pid_input; float pid_input;
@ -399,6 +470,13 @@ void manage_heater()
} // End extruder for loop } // End extruder for loop
#if EXTRUDER_0_AUTO_FAN_PIN > 0 || EXTRUDER_1_AUTO_FAN_PIN > 0 || EXTRUDER_2_AUTO_FAN_PIN > 0
if(millis() - extruder_autofan_last_check > 2500) // only need to check fan state very infrequently
{
checkExtruderAutoFans();
extruder_autofan_last_check = millis();
}
#endif
#ifndef PIDTEMPBED #ifndef PIDTEMPBED
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL) if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
@ -571,6 +649,12 @@ static void updateTemperaturesFromRawValues()
void tp_init() void tp_init()
{ {
#if (MOTHERBOARD == 80) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR=(1<<JTD);
MCUCR=(1<<JTD);
#endif
// Finish init of mult extruder arrays // Finish init of mult extruder arrays
for(int e = 0; e < EXTRUDERS; e++) { for(int e = 0; e < EXTRUDERS; e++) {
// populate with the first value // populate with the first value
@ -647,7 +731,7 @@ void tp_init()
#if TEMP_2_PIN < 8 #if TEMP_2_PIN < 8
DIDR0 |= 1 << TEMP_2_PIN; DIDR0 |= 1 << TEMP_2_PIN;
#else #else
DIDR2 = 1<<(TEMP_2_PIN - 8); DIDR2 |= 1<<(TEMP_2_PIN - 8);
#endif #endif
#endif #endif
#if (TEMP_BED_PIN > -1) #if (TEMP_BED_PIN > -1)
@ -689,7 +773,7 @@ void tp_init()
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP) #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
minttemp[1] = HEATER_1_MINTEMP; minttemp[1] = HEATER_1_MINTEMP;
while(analog2temp(minttemp_raw[1], 1) > HEATER_1_MINTEMP) { while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
minttemp_raw[1] += OVERSAMPLENR; minttemp_raw[1] += OVERSAMPLENR;
#else #else
@ -710,7 +794,7 @@ void tp_init()
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP) #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
minttemp[2] = HEATER_2_MINTEMP; minttemp[2] = HEATER_2_MINTEMP;
while(analog2temp(minttemp_raw[2], 2) > HEATER_2_MINTEMP) { while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
minttemp_raw[2] += OVERSAMPLENR; minttemp_raw[2] += OVERSAMPLENR;
#else #else

@ -79,6 +79,13 @@ static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned l
#define ENCODER_STEPS_PER_MENU_ITEM 5 #define ENCODER_STEPS_PER_MENU_ITEM 5
#define ENCODER_FEEDRATE_DEADZONE 10 #define ENCODER_FEEDRATE_DEADZONE 10
#if !defined(LCD_I2C_VIKI)
#define ENCODER_STEPS_PER_MENU_ITEM 5
#else
#define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation
#endif
/* Helper macros for menus */ /* Helper macros for menus */
#define START_MENU() do { \ #define START_MENU() do { \
if (encoderPosition > 0x8000) encoderPosition = 0; \ if (encoderPosition > 0x8000) encoderPosition = 0; \
@ -113,15 +120,18 @@ static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned l
} } while(0) } } while(0)
/** Used variables to keep track of the menu */ /** Used variables to keep track of the menu */
#ifndef REPRAPWORLD_KEYPAD
volatile uint8_t buttons;//Contains the bits of the currently pressed buttons. volatile uint8_t buttons;//Contains the bits of the currently pressed buttons.
volatile uint8_t buttons_reprapworld_keypad; // to store the reprapworld_keypad shiftregister values #else
volatile uint16_t buttons;//Contains the bits of the currently pressed buttons (extended).
#endif
uint8_t currentMenuViewOffset; /* scroll offset in the current menu */ uint8_t currentMenuViewOffset; /* scroll offset in the current menu */
uint32_t blocking_enc; uint32_t blocking_enc;
uint8_t lastEncoderBits; uint8_t lastEncoderBits;
int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */ int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */
uint32_t encoderPosition; uint32_t encoderPosition;
#if (SDCARDDETECT > -1) #if (SDCARDDETECT > 0)
bool lcd_oldcardstatus; bool lcd_oldcardstatus;
#endif #endif
#endif//ULTIPANEL #endif//ULTIPANEL
@ -800,11 +810,13 @@ void lcd_init()
#ifdef NEWPANEL #ifdef NEWPANEL
pinMode(BTN_EN1,INPUT); pinMode(BTN_EN1,INPUT);
pinMode(BTN_EN2,INPUT); pinMode(BTN_EN2,INPUT);
pinMode(BTN_ENC,INPUT);
pinMode(SDCARDDETECT,INPUT); pinMode(SDCARDDETECT,INPUT);
WRITE(BTN_EN1,HIGH); WRITE(BTN_EN1,HIGH);
WRITE(BTN_EN2,HIGH); WRITE(BTN_EN2,HIGH);
#if BTN_ENC > 0
pinMode(BTN_ENC,INPUT);
WRITE(BTN_ENC,HIGH); WRITE(BTN_ENC,HIGH);
#endif
#ifdef REPRAPWORLD_KEYPAD #ifdef REPRAPWORLD_KEYPAD
pinMode(SHIFT_CLK,OUTPUT); pinMode(SHIFT_CLK,OUTPUT);
pinMode(SHIFT_LD,OUTPUT); pinMode(SHIFT_LD,OUTPUT);
@ -821,12 +833,14 @@ void lcd_init()
WRITE(SHIFT_LD,HIGH); WRITE(SHIFT_LD,HIGH);
WRITE(SHIFT_EN,LOW); WRITE(SHIFT_EN,LOW);
#endif//!NEWPANEL #endif//!NEWPANEL
#if (SDCARDDETECT > -1) #if (SDCARDDETECT > 0)
WRITE(SDCARDDETECT, HIGH); WRITE(SDCARDDETECT, HIGH);
lcd_oldcardstatus = IS_SD_INSERTED; lcd_oldcardstatus = IS_SD_INSERTED;
#endif//(SDCARDDETECT > -1) #endif//(SDCARDDETECT > 0)
lcd_buttons_update(); lcd_buttons_update();
#ifdef ULTIPANEL
encoderDiff = 0; encoderDiff = 0;
#endif
} }
void lcd_update() void lcd_update()
@ -835,7 +849,11 @@ void lcd_update()
lcd_buttons_update(); lcd_buttons_update();
#if (SDCARDDETECT > -1) #ifdef LCD_HAS_SLOW_BUTTONS
buttons |= lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
#endif
#if (SDCARDDETECT > 0)
if((IS_SD_INSERTED != lcd_oldcardstatus)) if((IS_SD_INSERTED != lcd_oldcardstatus))
{ {
lcdDrawUpdate = 2; lcdDrawUpdate = 2;
@ -883,7 +901,8 @@ void lcd_update()
#ifdef DOGLCD // Changes due to different driver architecture of the DOGM display #ifdef DOGLCD // Changes due to different driver architecture of the DOGM display
blink++; // Variable for fan animation and alive dot blink++; // Variable for fan animation and alive dot
u8g.firstPage(); u8g.firstPage();
do { do
{
u8g.setFont(u8g_font_6x10_marlin); u8g.setFont(u8g_font_6x10_marlin);
u8g.setPrintPos(125,0); u8g.setPrintPos(125,0);
if (blink % 2) u8g.setColorIndex(1); else u8g.setColorIndex(0); // Set color for the alive dot if (blink % 2) u8g.setColorIndex(1); else u8g.setColorIndex(0); // Set color for the alive dot
@ -896,6 +915,10 @@ void lcd_update()
(*currentMenu)(); (*currentMenu)();
#endif #endif
#ifdef LCD_HAS_STATUS_INDICATORS
lcd_implementation_update_indicators();
#endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
if(timeoutToStatus < millis() && currentMenu != lcd_status_screen) if(timeoutToStatus < millis() && currentMenu != lcd_status_screen)
{ {
@ -946,9 +969,10 @@ void lcd_buttons_update()
uint8_t newbutton=0; uint8_t newbutton=0;
if(READ(BTN_EN1)==0) newbutton|=EN_A; if(READ(BTN_EN1)==0) newbutton|=EN_A;
if(READ(BTN_EN2)==0) newbutton|=EN_B; if(READ(BTN_EN2)==0) newbutton|=EN_B;
#if BTN_ENC > 0
if((blocking_enc<millis()) && (READ(BTN_ENC)==0)) if((blocking_enc<millis()) && (READ(BTN_ENC)==0))
newbutton |= EN_C; newbutton |= EN_C;
buttons = newbutton; #endif
#ifdef REPRAPWORLD_KEYPAD #ifdef REPRAPWORLD_KEYPAD
// for the reprapworld_keypad // for the reprapworld_keypad
uint8_t newbutton_reprapworld_keypad=0; uint8_t newbutton_reprapworld_keypad=0;
@ -961,8 +985,9 @@ void lcd_buttons_update()
WRITE(SHIFT_CLK,HIGH); WRITE(SHIFT_CLK,HIGH);
WRITE(SHIFT_CLK,LOW); WRITE(SHIFT_CLK,LOW);
} }
buttons_reprapworld_keypad=~newbutton_reprapworld_keypad; //invert it, because a pressed switch produces a logical 0 newbutton |= ((~newbutton_reprapworld_keypad) << REPRAPWORLD_BTN_OFFSET); //invert it, because a pressed switch produces a logical 0
#endif #endif
buttons = newbutton;
#else //read it from the shift register #else //read it from the shift register
uint8_t newbutton=0; uint8_t newbutton=0;
WRITE(SHIFT_LD,LOW); WRITE(SHIFT_LD,LOW);
@ -1017,6 +1042,18 @@ void lcd_buttons_update()
} }
lastEncoderBits = enc; lastEncoderBits = enc;
} }
void lcd_buzz(long duration, uint16_t freq)
{
#ifdef LCD_USE_I2C_BUZZER
lcd.buzz(duration,freq);
#endif
}
bool lcd_clicked()
{
return LCD_CLICKED;
}
#endif//ULTIPANEL #endif//ULTIPANEL
/********************************/ /********************************/

@ -22,10 +22,6 @@
#ifdef ULTIPANEL #ifdef ULTIPANEL
void lcd_buttons_update(); void lcd_buttons_update();
extern volatile uint8_t buttons; //the last checked buttons in a bit array.
#ifdef REPRAPWORLD_KEYPAD
extern volatile uint8_t buttons_reprapworld_keypad; // to store the keypad shiftregister values
#endif
#else #else
FORCE_INLINE void lcd_buttons_update() {} FORCE_INLINE void lcd_buttons_update() {}
#endif #endif
@ -38,40 +34,8 @@
extern int absPreheatHPBTemp; extern int absPreheatHPBTemp;
extern int absPreheatFanSpeed; extern int absPreheatFanSpeed;
#ifdef NEWPANEL void lcd_buzz(long duration,uint16_t freq);
#define EN_C (1<<BLEN_C) bool lcd_clicked();
#define EN_B (1<<BLEN_B)
#define EN_A (1<<BLEN_A)
#define LCD_CLICKED (buttons&EN_C)
#ifdef REPRAPWORLD_KEYPAD
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<BLEN_REPRAPWORLD_KEYPAD_F3)
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<BLEN_REPRAPWORLD_KEYPAD_F2)
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<BLEN_REPRAPWORLD_KEYPAD_F1)
#define EN_REPRAPWORLD_KEYPAD_UP (1<<BLEN_REPRAPWORLD_KEYPAD_UP)
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<BLEN_REPRAPWORLD_KEYPAD_RIGHT)
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<BLEN_REPRAPWORLD_KEYPAD_MIDDLE)
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<BLEN_REPRAPWORLD_KEYPAD_DOWN)
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<BLEN_REPRAPWORLD_KEYPAD_LEFT)
#define LCD_CLICKED ((buttons&EN_C) || (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F1))
#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_DOWN)
#define REPRAPWORLD_KEYPAD_MOVE_Y_UP (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_UP)
#define REPRAPWORLD_KEYPAD_MOVE_HOME (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_MIDDLE)
#endif //REPRAPWORLD_KEYPAD
#else
//atomatic, do not change
#define B_LE (1<<BL_LE)
#define B_UP (1<<BL_UP)
#define B_MI (1<<BL_MI)
#define B_DW (1<<BL_DW)
#define B_RI (1<<BL_RI)
#define B_ST (1<<BL_ST)
#define EN_B (1<<BLEN_B)
#define EN_A (1<<BLEN_A)
#define LCD_CLICKED ((buttons&B_MI)||(buttons&B_ST))
#endif//NEWPANEL
#else //no lcd #else //no lcd
FORCE_INLINE void lcd_update() {} FORCE_INLINE void lcd_update() {}
@ -79,6 +43,7 @@
FORCE_INLINE void lcd_setstatus(const char* message) {} FORCE_INLINE void lcd_setstatus(const char* message) {}
FORCE_INLINE void lcd_buttons_update() {} FORCE_INLINE void lcd_buttons_update() {}
FORCE_INLINE void lcd_reset_alert_level() {} FORCE_INLINE void lcd_reset_alert_level() {}
FORCE_INLINE void lcd_buzz(long duration,uint16_t freq) {}
#define LCD_MESSAGEPGM(x) #define LCD_MESSAGEPGM(x)
#define LCD_ALERTMESSAGEPGM(x) #define LCD_ALERTMESSAGEPGM(x)

@ -6,12 +6,191 @@
* When selecting the rusian language, a slightly different LCD implementation is used to handle UTF8 characters. * When selecting the rusian language, a slightly different LCD implementation is used to handle UTF8 characters.
**/ **/
#if LANGUAGE_CHOICE == 6 #ifndef REPRAPWORLD_KEYPAD
#include "LiquidCrystalRus.h" extern volatile uint8_t buttons; //the last checked buttons in a bit array.
#define LCD_CLASS LiquidCrystalRus
#else #else
#include <LiquidCrystal.h> extern volatile uint16_t buttons; //an extended version of the last checked buttons in a bit array.
#define LCD_CLASS LiquidCrystal #endif
////////////////////////////////////
// Setup button and encode mappings for each panel (into 'buttons' variable)
//
// This is just to map common functions (across different panels) onto the same
// macro name. The mapping is independent of whether the button is directly connected or
// via a shift/i2c register.
#ifdef ULTIPANEL
// All Ultipanels might have an encoder - so this is always be mapped onto first two bits
#define BLEN_B 1
#define BLEN_A 0
#define EN_B (1<<BLEN_B) // The two encoder pins are connected through BTN_EN1 and BTN_EN2
#define EN_A (1<<BLEN_A)
#if defined(BTN_ENC) && BTN_ENC > -1
// encoder click is directly connected
#define BLEN_C 2
#define EN_C (1<<BLEN_C)
#endif
//
// Setup other button mappings of each panel
//
#if defined(LCD_I2C_VIKI)
#define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C)
// button and encoder bit positions within 'buttons'
#define B_LE (BUTTON_LEFT<<B_I2C_BTN_OFFSET) // The remaining normalized buttons are all read via I2C
#define B_UP (BUTTON_UP<<B_I2C_BTN_OFFSET)
#define B_MI (BUTTON_SELECT<<B_I2C_BTN_OFFSET)
#define B_DW (BUTTON_DOWN<<B_I2C_BTN_OFFSET)
#define B_RI (BUTTON_RIGHT<<B_I2C_BTN_OFFSET)
#if defined(BTN_ENC) && BTN_ENC > -1
// the pause/stop/restart button is connected to BTN_ENC when used
#define B_ST (EN_C) // Map the pause/stop/resume button into its normalized functional name
#define LCD_CLICKED (buttons&(B_MI|B_RI|B_ST)) // pause/stop button also acts as click until we implement proper pause/stop.
#else
#define LCD_CLICKED (buttons&(B_MI|B_RI))
#endif
// I2C buttons take too long to read inside an interrupt context and so we read them during lcd_update
#define LCD_HAS_SLOW_BUTTONS
#elif defined(LCD_I2C_PANELOLU2)
// encoder click can be read through I2C if not directly connected
#if BTN_ENC <= 0
#define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C)
#define B_MI (PANELOLU2_ENCODER_C<<B_I2C_BTN_OFFSET) // requires LiquidTWI2 library v1.2.3 or later
#define LCD_CLICKED (buttons&B_MI)
// I2C buttons take too long to read inside an interrupt context and so we read them during lcd_update
#define LCD_HAS_SLOW_BUTTONS
#else
#define LCD_CLICKED (buttons&EN_C)
#endif
#elif defined(REPRAPWORLD_KEYPAD)
// define register bit values, don't change it
#define BLEN_REPRAPWORLD_KEYPAD_F3 0
#define BLEN_REPRAPWORLD_KEYPAD_F2 1
#define BLEN_REPRAPWORLD_KEYPAD_F1 2
#define BLEN_REPRAPWORLD_KEYPAD_UP 3
#define BLEN_REPRAPWORLD_KEYPAD_RIGHT 4
#define BLEN_REPRAPWORLD_KEYPAD_MIDDLE 5
#define BLEN_REPRAPWORLD_KEYPAD_DOWN 6
#define BLEN_REPRAPWORLD_KEYPAD_LEFT 7
#define REPRAPWORLD_BTN_OFFSET 3 // bit offset into buttons for shift register values
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<(BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<(BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<(BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_UP (1<<(BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<(BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<(BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<(BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<(BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET))
#define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1))
#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN)
#define REPRAPWORLD_KEYPAD_MOVE_Y_UP (buttons&EN_REPRAPWORLD_KEYPAD_UP)
#define REPRAPWORLD_KEYPAD_MOVE_HOME (buttons&EN_REPRAPWORLD_KEYPAD_MIDDLE)
#elif defined(NEWPANEL)
#define LCD_CLICKED (buttons&EN_C)
#else // old style ULTIPANEL
//bits in the shift register that carry the buttons for:
// left up center down right red(stop)
#define BL_LE 7
#define BL_UP 6
#define BL_MI 5
#define BL_DW 4
#define BL_RI 3
#define BL_ST 2
//automatic, do not change
#define B_LE (1<<BL_LE)
#define B_UP (1<<BL_UP)
#define B_MI (1<<BL_MI)
#define B_DW (1<<BL_DW)
#define B_RI (1<<BL_RI)
#define B_ST (1<<BL_ST)
#define LCD_CLICKED (buttons&(B_MI|B_ST))
#endif
////////////////////////
// Setup Rotary Encoder Bit Values (for two pin encoders to indicate movement)
// These values are independent of which pins are used for EN_A and EN_B indications
// The rotary encoder part is also independent to the chipset used for the LCD
#if defined(EN_A) && defined(EN_B)
#ifndef ULTIMAKERCONTROLLER
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#else
#define encrot0 0
#define encrot1 1
#define encrot2 3
#define encrot3 2
#endif
#endif
#endif //ULTIPANEL
////////////////////////////////////
// Create LCD class instance and chipset-specific information
#if defined(LCD_I2C_TYPE_PCF8575)
// note: these are register mapped pins on the PCF8575 controller not Arduino pins
#define LCD_I2C_PIN_BL 3
#define LCD_I2C_PIN_EN 2
#define LCD_I2C_PIN_RW 1
#define LCD_I2C_PIN_RS 0
#define LCD_I2C_PIN_D4 4
#define LCD_I2C_PIN_D5 5
#define LCD_I2C_PIN_D6 6
#define LCD_I2C_PIN_D7 7
#include <Wire.h>
#include <LCD.h>
#include <LiquidCrystal_I2C.h>
#define LCD_CLASS LiquidCrystal_I2C
LCD_CLASS lcd(LCD_I2C_ADDRESS,LCD_I2C_PIN_EN,LCD_I2C_PIN_RW,LCD_I2C_PIN_RS,LCD_I2C_PIN_D4,LCD_I2C_PIN_D5,LCD_I2C_PIN_D6,LCD_I2C_PIN_D7);
#elif defined(LCD_I2C_TYPE_MCP23017)
//for the LED indicators (which maybe mapped to different things in lcd_implementation_update_indicators())
#define LED_A 0x04 //100
#define LED_B 0x02 //010
#define LED_C 0x01 //001
#define LCD_HAS_STATUS_INDICATORS
#include <Wire.h>
#include <LiquidTWI2.h>
#define LCD_CLASS LiquidTWI2
LCD_CLASS lcd(LCD_I2C_ADDRESS);
#elif defined(LCD_I2C_TYPE_MCP23008)
#include <Wire.h>
#include <LiquidTWI2.h>
#define LCD_CLASS LiquidTWI2
LCD_CLASS lcd(LCD_I2C_ADDRESS);
#else
// Standard directly connected LCD implementations
#if LANGUAGE_CHOICE == 6
#include "LiquidCrystalRus.h"
#define LCD_CLASS LiquidCrystalRus
#else
#include <LiquidCrystal.h>
#define LCD_CLASS LiquidCrystal
#endif
LCD_CLASS lcd(LCD_PINS_RS, LCD_PINS_ENABLE, LCD_PINS_D4, LCD_PINS_D5,LCD_PINS_D6,LCD_PINS_D7); //RS,Enable,D4,D5,D6,D7
#endif #endif
/* Custom characters defined in the first 8 characters of the LCD */ /* Custom characters defined in the first 8 characters of the LCD */
@ -25,7 +204,6 @@
#define LCD_STR_CLOCK "\x07" #define LCD_STR_CLOCK "\x07"
#define LCD_STR_ARROW_RIGHT "\x7E" /* from the default character set */ #define LCD_STR_ARROW_RIGHT "\x7E" /* from the default character set */
LCD_CLASS lcd(LCD_PINS_RS, LCD_PINS_ENABLE, LCD_PINS_D4, LCD_PINS_D5,LCD_PINS_D6,LCD_PINS_D7); //RS,Enable,D4,D5,D6,D7
static void lcd_implementation_init() static void lcd_implementation_init()
{ {
byte bedTemp[8] = byte bedTemp[8] =
@ -111,7 +289,27 @@ static void lcd_implementation_init()
B00000, B00000,
B00000 B00000
}; //thanks Sonny Mounicou }; //thanks Sonny Mounicou
#if defined(LCDI2C_TYPE_PCF8575)
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
#ifdef LCD_I2C_PIN_BL
lcd.setBacklightPin(LCD_I2C_PIN_BL,POSITIVE);
lcd.setBacklight(HIGH);
#endif
#elif defined(LCD_I2C_TYPE_MCP23017)
lcd.setMCPType(LTI_TYPE_MCP23017);
lcd.begin(LCD_WIDTH, LCD_HEIGHT); lcd.begin(LCD_WIDTH, LCD_HEIGHT);
lcd.setBacklight(0); //set all the LEDs off to begin with
#elif defined(LCD_I2C_TYPE_MCP23008)
lcd.setMCPType(LTI_TYPE_MCP23008);
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
#else
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
#endif
lcd.createChar(LCD_STR_BEDTEMP[0], bedTemp); lcd.createChar(LCD_STR_BEDTEMP[0], bedTemp);
lcd.createChar(LCD_STR_DEGREE[0], degree); lcd.createChar(LCD_STR_DEGREE[0], degree);
lcd.createChar(LCD_STR_THERMOMETER[0], thermometer); lcd.createChar(LCD_STR_THERMOMETER[0], thermometer);
@ -501,7 +699,9 @@ static void lcd_implementation_drawmenu_sddirectory(uint8_t row, const char* pst
static void lcd_implementation_quick_feedback() static void lcd_implementation_quick_feedback()
{ {
#if BEEPER > -1 #ifdef LCD_USE_I2C_BUZZER
lcd.buzz(60,1000/6);
#elif defined(BEEPER) && BEEPER > -1
SET_OUTPUT(BEEPER); SET_OUTPUT(BEEPER);
for(int8_t i=0;i<10;i++) for(int8_t i=0;i<10;i++)
{ {
@ -512,4 +712,37 @@ static void lcd_implementation_quick_feedback()
} }
#endif #endif
} }
#ifdef LCD_HAS_STATUS_INDICATORS
static void lcd_implementation_update_indicators()
{
#if defined(LCD_I2C_PANELOLU2) || defined(LCD_I2C_VIKI)
//set the LEDS - referred to as backlights by the LiquidTWI2 library
static uint8_t ledsprev = 0;
uint8_t leds = 0;
if (target_temperature_bed > 0) leds |= LED_A;
if (target_temperature[0] > 0) leds |= LED_B;
if (fanSpeed) leds |= LED_C;
#if EXTRUDERS > 1
if (target_temperature[1] > 0) leds |= LED_C;
#endif
if (leds != ledsprev) {
lcd.setBacklight(leds);
ledsprev = leds;
}
#endif
}
#endif
#ifdef LCD_HAS_SLOW_BUTTONS
static uint8_t lcd_implementation_read_slow_buttons()
{
#ifdef LCD_I2C_TYPE_MCP23017
// Reading these buttons this is likely to be too slow to call inside interrupt context
// so they are called during normal lcd_update
return lcd.readButtons() << B_I2C_BTN_OFFSET;
#endif
}
#endif
#endif//ULTRA_LCD_IMPLEMENTATION_HITACHI_HD44780_H #endif//ULTRA_LCD_IMPLEMENTATION_HITACHI_HD44780_H

@ -1,10 +1,13 @@
WARNING: ==========================
-------- Marlin 3D Printer Firmware
THIS IS RELEASE CANDIDATE 2 FOR MARLIN 1.0.0 ==========================
The configuration is now split in two files Notes:
Configuration.h for the normal settings -----
Configuration_adv.h for the advanced settings
The configuration is now split in two files:
Configuration.h for the normal settings
Configuration_adv.h for the advanced settings
Gen7T is not supported. Gen7T is not supported.
@ -46,6 +49,7 @@ Features:
* PID tuning * PID tuning
* CoreXY kinematics (www.corexy.com/theory.html) * CoreXY kinematics (www.corexy.com/theory.html)
* Configurable serial port to support connection of wireless adaptors. * Configurable serial port to support connection of wireless adaptors.
* Automatic operation of extruder/cold-end cooling fans based on nozzle temperature
The default baudrate is 250000. This baudrate has less jitter and hence errors than the usual 115200 baud, but is less supported by drivers and host-environments. The default baudrate is 250000. This baudrate has less jitter and hence errors than the usual 115200 baud, but is less supported by drivers and host-environments.

Loading…
Cancel
Save