|
|
|
@ -23,68 +23,60 @@ import sys
|
|
|
|
|
import getopt
|
|
|
|
|
|
|
|
|
|
"Constants"
|
|
|
|
|
ZERO = 273.15 # zero point of Kelvin scale
|
|
|
|
|
VADC = 5 # ADC voltage
|
|
|
|
|
VCC = 5 # supply voltage
|
|
|
|
|
ARES = pow(2,10) # 10 Bit ADC resolution
|
|
|
|
|
VSTEP = VADC / ARES # ADC voltage resolution
|
|
|
|
|
TMIN = 0 # lowest temperature in table
|
|
|
|
|
TMAX = 350 # highest temperature in table
|
|
|
|
|
|
|
|
|
|
class Thermistor:
|
|
|
|
|
"Class to do the thermistor maths"
|
|
|
|
|
def __init__(self, rp, t1, r1, t2, r2, t3, r3):
|
|
|
|
|
t1 = t1 + 273.15 # low temperature (25C)
|
|
|
|
|
r1 = r1 # resistance at low temperature
|
|
|
|
|
t2 = t2 + 273.15 # middle temperature (150C)
|
|
|
|
|
r2 = r2 # resistance at middle temperature
|
|
|
|
|
t3 = t3 + 273.15 # high temperature (250C)
|
|
|
|
|
r3 = r3 # resistance at high temperature
|
|
|
|
|
self.rp = rp # pull-up resistance
|
|
|
|
|
self.vadc = 5.0 # ADC reference
|
|
|
|
|
self.vcc = 5.0 # supply voltage to potential divider
|
|
|
|
|
a1 = log(r1)
|
|
|
|
|
a2 = log(r2)
|
|
|
|
|
a3 = log(r3)
|
|
|
|
|
z = a1 - a2
|
|
|
|
|
y = a1 - a3
|
|
|
|
|
x = 1/t1 - 1/t2
|
|
|
|
|
w = 1/t1 - 1/t3
|
|
|
|
|
v = pow(a1,3) - pow(a2,3)
|
|
|
|
|
u = pow(a1,3) - pow(a3,3)
|
|
|
|
|
c3 = (x-z*w/y)/(v-z*u/y)
|
|
|
|
|
c2 = (x-c3*v)/z
|
|
|
|
|
c1 = 1/t1-c3*pow(a1,3)-c2*a1
|
|
|
|
|
self.c1 = c1
|
|
|
|
|
self.c2 = c2
|
|
|
|
|
self.c3 = c3
|
|
|
|
|
|
|
|
|
|
def res(self,adc):
|
|
|
|
|
l1 = log(r1)
|
|
|
|
|
l2 = log(r2)
|
|
|
|
|
l3 = log(r3)
|
|
|
|
|
y1 = 1.0 / (t1 + ZERO) # adjust scale
|
|
|
|
|
y2 = 1.0 / (t2 + ZERO)
|
|
|
|
|
y3 = 1.0 / (t3 + ZERO)
|
|
|
|
|
x = (y2 - y1) / (l2 - l1)
|
|
|
|
|
y = (y3 - y1) / (l3 - l1)
|
|
|
|
|
c = (y - x) / ((l3 - l2) * (l1 + l2 + l3))
|
|
|
|
|
b = x - c * (pow(l1,2) + pow(l2,2) + l1*l2)
|
|
|
|
|
a = y1 - (b + pow(l1,2)*c)*l1
|
|
|
|
|
self.c1 = a # Steinhart-Hart coefficients
|
|
|
|
|
self.c2 = b
|
|
|
|
|
self.c3 = c
|
|
|
|
|
self.rp = rp # pull-up resistance
|
|
|
|
|
|
|
|
|
|
def res(self, adc):
|
|
|
|
|
"Convert ADC reading into a resolution"
|
|
|
|
|
res = self.temp(adc)-self.temp(adc+1)
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
def v(self,adc):
|
|
|
|
|
def v(self, adc):
|
|
|
|
|
"Convert ADC reading into a Voltage"
|
|
|
|
|
v = adc * self.vadc / (1024 ) # convert the 10 bit ADC value to a voltage
|
|
|
|
|
return v
|
|
|
|
|
return adc * VSTEP # convert the 10 bit ADC value to a voltage
|
|
|
|
|
|
|
|
|
|
def r(self,adc):
|
|
|
|
|
def r(self, adc):
|
|
|
|
|
"Convert ADC reading into a resistance in Ohms"
|
|
|
|
|
v = adc * self.vadc / (1024 ) # convert the 10 bit ADC value to a voltage
|
|
|
|
|
r = self.rp * v / (self.vcc - v) # resistance of thermistor
|
|
|
|
|
r = self.rp * self.v(adc) / (VCC - self.v(adc)) # resistance of thermistor
|
|
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
def temp(self,adc):
|
|
|
|
|
def temp(self, adc):
|
|
|
|
|
"Convert ADC reading into a temperature in Celcius"
|
|
|
|
|
v = adc * self.vadc / (1024 ) # convert the 10 bit ADC value to a voltage
|
|
|
|
|
r = self.rp * v / (self.vcc - v) # resistance of thermistor
|
|
|
|
|
r = self.rp * self.v(adc) / (VCC - self.v(adc)) # resistance of thermistor
|
|
|
|
|
lnr = log(r)
|
|
|
|
|
Tinv = self.c1 + (self.c2*lnr) + (self.c3*pow(lnr,3))
|
|
|
|
|
return (1/Tinv) - 273.15 # temperature
|
|
|
|
|
return (1/Tinv) - ZERO # temperature
|
|
|
|
|
|
|
|
|
|
def adc(self,temp):
|
|
|
|
|
def adc(self, temp):
|
|
|
|
|
"Convert temperature into a ADC reading"
|
|
|
|
|
y = (self.c1 - (1/(temp+273.15))) / (2*self.c3)
|
|
|
|
|
x = sqrt(pow(self.c2 / (3*self.c3),3) + pow(y,2))
|
|
|
|
|
r = exp(pow(x-y,1.0/3) - pow(x+y,1.0/3)) # resistance of thermistor
|
|
|
|
|
return (r / (self.rp + r)) * (1024)
|
|
|
|
|
x = (self.c1 - (1.0 / (temp+ZERO))) / (2*self.c3)
|
|
|
|
|
y = sqrt(pow(self.c2 / (3*self.c3),3) + pow(x,2))
|
|
|
|
|
r = exp(pow(y-x,1.0/3) - pow(y+x,1.0/3)) # resistance of thermistor
|
|
|
|
|
return (r / (self.rp + r)) * ARES
|
|
|
|
|
|
|
|
|
|
def main(argv):
|
|
|
|
|
"Default values"
|
|
|
|
|