Merge pull request #1556 from thinkyhead/enhanced_g29

Enhanced G29
2.0.x
Scott Lahteine 10 years ago
commit 94fd8c7555

@ -428,9 +428,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe) // these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
// X and Y offsets must be integers // X and Y offsets must be integers
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 #define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 #define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 #define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance. #define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case // Be sure you have this distance over your Z_MAX_POS in case

@ -1198,22 +1198,24 @@ static void retract_z_probe() {
#endif #endif
} }
enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
/// Probe bed height at position (x,y), returns the measured z value /// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before, int retract_action=0) { static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract) {
// move to right place // move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
#ifndef Z_PROBE_SLED #ifndef Z_PROBE_SLED
if ((retract_action==0) || (retract_action==1)) if (retract_action & ProbeEngage) engage_z_probe();
engage_z_probe(); // Engage Z Servo endstop if available #endif
#endif // Z_PROBE_SLED
run_z_probe(); run_z_probe();
float measured_z = current_position[Z_AXIS]; float measured_z = current_position[Z_AXIS];
#ifndef Z_PROBE_SLED
if ((retract_action==0) || (retract_action==3)) #ifndef Z_PROBE_SLED
retract_z_probe(); if (retract_action & ProbeRetract) retract_z_probe();
#endif // Z_PROBE_SLED #endif
SERIAL_PROTOCOLPGM(MSG_BED); SERIAL_PROTOCOLPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" x: "); SERIAL_PROTOCOLPGM(" x: ");
@ -1374,6 +1376,11 @@ void refresh_cmd_timeout(void)
#endif //FWRETRACT #endif //FWRETRACT
#ifdef Z_PROBE_SLED #ifdef Z_PROBE_SLED
#ifndef SLED_DOCKING_OFFSET
#define SLED_DOCKING_OFFSET 0
#endif
// //
// Method to dock/undock a sled designed by Charles Bell. // Method to dock/undock a sled designed by Charles Bell.
// //
@ -1660,10 +1667,10 @@ void process_commands()
// Let's see if X and Y are homed and probe is inside bed area. // Let's see if X and Y are homed and probe is inside bed area.
if(code_seen(axis_codes[Z_AXIS])) { if(code_seen(axis_codes[Z_AXIS])) {
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \ if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \ && (current_position[X_AXIS] >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER) \
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \ && (current_position[X_AXIS] <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER) \
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \ && (current_position[Y_AXIS] >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) \
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) { && (current_position[Y_AXIS] <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER)) {
current_position[Z_AXIS] = 0; current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
@ -1717,193 +1724,327 @@ void process_commands()
break; break;
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
#if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling!!! Z_MIN_PIN must point to a valid hardware pin."
#endif
/**
* Enhanced G29 Auto Bed Leveling Probe Routine
*
* Parameters With AUTO_BED_LEVELING_GRID:
*
* P Set the size of the grid that will be probed (P x P points).
* Example: "G29 P4"
*
* V Set the verbose level (0-4). Example: "G29 V3"
*
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
* This is useful for manual bed leveling and finding flaws in the bed (to
* assist with part placement).
*
* F Set the Front limit of the probing grid
* B Set the Back limit of the probing grid
* L Set the Left limit of the probing grid
* R Set the Right limit of the probing grid
*
* Global Parameters:
*
* E/e By default G29 engages / disengages the probe for each point.
* Include "E" to engage and disengage the probe just once.
* There's no extra effect if you have a fixed probe.
* Usage: "G29 E" or "G29 e"
*
*/
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
// Override probing area by providing [F]ront [B]ack [L]eft [R]ight Grid[P]oints values {
{ // Use one of these defines to specify the origin
#if Z_MIN_PIN == -1 // for a topographical map to be printed for your bed.
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin." #define ORIGIN_BACK_LEFT 1
#endif #define ORIGIN_FRONT_RIGHT 2
#define ORIGIN_BACK_RIGHT 3
#define ORIGIN_FRONT_LEFT 4
#define TOPO_ORIGIN ORIGIN_FRONT_LEFT
// Prevent user from running a G29 without first homing in X and Y
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS])) {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
break; // abort G29, since we don't know where we are
}
// Prevent user from running a G29 without first homing in X and Y bool enhanced_g29 = code_seen('E') || code_seen('e');
if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
{
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
break; // abort G29, since we don't know where we are
}
#ifdef Z_PROBE_SLED #ifdef AUTO_BED_LEVELING_GRID
dock_sled(false);
#endif // Z_PROBE_SLED
st_synchronize();
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
//vector_3 corrected_position = plan_get_position_mm();
//corrected_position.debug("position before G29");
plan_bed_level_matrix.set_to_identity();
vector_3 uncorrected_position = plan_get_position();
//uncorrected_position.debug("position durring G29");
current_position[X_AXIS] = uncorrected_position.x;
current_position[Y_AXIS] = uncorrected_position.y;
current_position[Z_AXIS] = uncorrected_position.z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS]; // Example Syntax: G29 N4 V2 E T
#ifdef AUTO_BED_LEVELING_GRID int verbose_level = 1;
// probe at the points of a lattice grid
int left_probe_bed_position=LEFT_PROBE_BED_POSITION; bool topo_flag = code_seen('T') || code_seen('t');
int right_probe_bed_position=RIGHT_PROBE_BED_POSITION;
int back_probe_bed_position=BACK_PROBE_BED_POSITION; if (code_seen('V') || code_seen('v')) {
int front_probe_bed_position=FRONT_PROBE_BED_POSITION; verbose_level = code_value();
int auto_bed_leveling_grid_points=AUTO_BED_LEVELING_GRID_POINTS; if (verbose_level < 0 || verbose_level > 4) {
if (code_seen('L')) left_probe_bed_position=(int)code_value(); SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
if (code_seen('R')) right_probe_bed_position=(int)code_value(); break;
if (code_seen('B')) back_probe_bed_position=(int)code_value(); }
if (code_seen('F')) front_probe_bed_position=(int)code_value(); if (verbose_level > 0) {
if (code_seen('P')) auto_bed_leveling_grid_points=(int)code_value(); SERIAL_PROTOCOLPGM("G29 Enhanced Auto Bed Leveling Code V1.25:\n");
SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
if (verbose_level > 2) topo_flag = true;
}
}
int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) {
SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
break;
}
// Define the possible boundaries for probing based on the set limits.
// Code above (in G28) might have these limits wrong, or I am wrong here.
#define MIN_PROBE_EDGE 10 // Edges of the probe square can be no less
const int min_probe_x = max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
max_probe_x = min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
min_probe_y = max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER),
max_probe_y = min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER);
int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
bool left_out_l = left_probe_bed_position < min_probe_x,
left_out_r = left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
left_out = left_out_l || left_out_r,
right_out_r = right_probe_bed_position > max_probe_x,
right_out_l =right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
right_out = right_out_l || right_out_r,
front_out_f = front_probe_bed_position < min_probe_y,
front_out_b = front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
front_out = front_out_f || front_out_b,
back_out_b = back_probe_bed_position > max_probe_y,
back_out_f = back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE,
back_out = back_out_f || back_out_b;
if (left_out || right_out || front_out || back_out) {
if (left_out) {
SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
left_probe_bed_position = left_out_l ? min_probe_x : right_probe_bed_position - MIN_PROBE_EDGE;
}
if (right_out) {
SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
right_probe_bed_position = right_out_r ? max_probe_x : left_probe_bed_position + MIN_PROBE_EDGE;
}
if (front_out) {
SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
front_probe_bed_position = front_out_f ? min_probe_y : back_probe_bed_position - MIN_PROBE_EDGE;
}
if (back_out) {
SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
back_probe_bed_position = back_out_b ? max_probe_y : front_probe_bed_position + MIN_PROBE_EDGE;
}
break;
}
int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1); #endif
int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
#ifdef Z_PROBE_SLED
dock_sled(false); // engage (un-dock) the probe
#endif
// solve the plane equation ax + by + d = z st_synchronize();
// A is the matrix with rows [x y 1] for all the probed points // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
// B is the vector of the Z positions //vector_3 corrected_position = plan_get_position_mm();
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0 //corrected_position.debug("position before G29");
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z plan_bed_level_matrix.set_to_identity();
vector_3 uncorrected_position = plan_get_position();
//uncorrected_position.debug("position durring G29");
current_position[X_AXIS] = uncorrected_position.x;
current_position[Y_AXIS] = uncorrected_position.y;
current_position[Z_AXIS] = uncorrected_position.z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
setup_for_endstop_move();
// "A" matrix of the linear system of equations feedrate = homing_feedrate[Z_AXIS];
double eqnAMatrix[auto_bed_leveling_grid_points*auto_bed_leveling_grid_points*3];
// "B" vector of Z points #ifdef AUTO_BED_LEVELING_GRID
double eqnBVector[auto_bed_leveling_grid_points*auto_bed_leveling_grid_points]; // probe at the points of a lattice grid
int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
// solve the plane equation ax + by + d = z
// A is the matrix with rows [x y 1] for all the probed points
// B is the vector of the Z positions
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
int probePointCounter = 0; int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
bool zig = true;
for (int yProbe=front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
eqnBVector[abl2], // "B" vector of Z points
mean = 0.0;
{ int probePointCounter = 0;
int xProbe, xInc; bool zig = true;
if (zig)
{
xProbe = left_probe_bed_position;
//xEnd = right_probe_bed_position;
xInc = xGridSpacing;
zig = false;
} else // zag
{
xProbe = right_probe_bed_position;
//xEnd = left_probe_bed_position;
xInc = -xGridSpacing;
zig = true;
}
for (int xCount=0; xCount < auto_bed_leveling_grid_points; xCount++) for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) {
{ int xProbe, xInc;
float z_before;
if (probePointCounter == 0) if (zig)
{ xProbe = left_probe_bed_position, xInc = xGridSpacing;
// raise before probing else
z_before = Z_RAISE_BEFORE_PROBING; xProbe = right_probe_bed_position, xInc = -xGridSpacing;
} else
{ // If topo_flag is set then don't zig-zag. Just scan in one direction.
// raise extruder // This gets the probe points in more readable order.
z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS; if (!topo_flag) zig = !zig;
}
for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
float measured_z; // raise extruder
//Enhanced G29 - Do not retract servo between probes float z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
if (code_seen('E') || code_seen('e') ) measured_z;
{
if ((yProbe==FRONT_PROBE_BED_POSITION) && (xCount==0)) // Enhanced G29 - Do not retract servo between probes
{ ProbeAction act;
measured_z = probe_pt(xProbe, yProbe, z_before,1); if (enhanced_g29) {
} else if ((yProbe==FRONT_PROBE_BED_POSITION + (yGridSpacing * (AUTO_BED_LEVELING_GRID_POINTS-1))) && (xCount == AUTO_BED_LEVELING_GRID_POINTS-1)) if (yProbe == front_probe_bed_position && xCount == 0)
{ act = ProbeEngage;
measured_z = probe_pt(xProbe, yProbe, z_before,3); else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
} else { act = ProbeRetract;
measured_z = probe_pt(xProbe, yProbe, z_before,2); else
} act = ProbeStay;
} else {
measured_z = probe_pt(xProbe, yProbe, z_before);
}
eqnBVector[probePointCounter] = measured_z;
eqnAMatrix[probePointCounter + 0*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = xProbe;
eqnAMatrix[probePointCounter + 1*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = yProbe;
eqnAMatrix[probePointCounter + 2*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = 1;
probePointCounter++;
xProbe += xInc;
}
} }
clean_up_after_endstop_move(); else
act = ProbeEngageRetract;
// solve lsq problem measured_z = probe_pt(xProbe, yProbe, z_before, act);
double *plane_equation_coefficients = qr_solve(auto_bed_leveling_grid_points*auto_bed_leveling_grid_points, 3, eqnAMatrix, eqnBVector);
SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); mean += measured_z;
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL(plane_equation_coefficients[1]);
SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
eqnBVector[probePointCounter] = measured_z;
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
set_bed_level_equation_lsq(plane_equation_coefficients); probePointCounter++;
xProbe += xInc;
free(plane_equation_coefficients); } //xProbe
#else // AUTO_BED_LEVELING_GRID not defined } //yProbe
// Probe at 3 arbitrary points clean_up_after_endstop_move();
// Enhanced G29
float z_at_pt_1, z_at_pt_2, z_at_pt_3; // solve lsq problem
double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
mean /= abl2;
if (verbose_level) {
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL(plane_equation_coefficients[1]);
SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_PROTOCOLPGM(" \n");
}
}
if (code_seen('E') || code_seen('e')) { if (topo_flag) {
// probe 1
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING,1);
// probe 2
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,2);
// probe 3
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,3);
}
else {
// probe 1
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
// probe 2
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
// probe 3
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
}
clean_up_after_endstop_move();
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
int xx, yy;
#endif // AUTO_BED_LEVELING_GRID SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
st_synchronize(); #if TOPO_ORIGIN == ORIGIN_FRONT_LEFT
for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
#else
for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
#endif
{
#if TOPO_ORIGIN == ORIGIN_BACK_RIGHT
for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
#else
for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
#endif
{
int ind =
#if TOPO_ORIGIN == ORIGIN_BACK_RIGHT || TOPO_ORIGIN == ORIGIN_FRONT_LEFT
yy * auto_bed_leveling_grid_points + xx
#elif TOPO_ORIGIN == ORIGIN_BACK_LEFT
xx * auto_bed_leveling_grid_points + yy
#elif TOPO_ORIGIN == ORIGIN_FRONT_RIGHT
abl2 - xx * auto_bed_leveling_grid_points - yy - 1
#endif
;
float diff = eqnBVector[ind] - mean;
if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +"); // Watch column alignment in Pronterface
else
SERIAL_PROTOCOLPGM(" -");
SERIAL_PROTOCOL_F(diff, 5);
} // xx
SERIAL_PROTOCOLPGM("\n");
} // yy
SERIAL_PROTOCOLPGM("\n");
// The following code correct the Z height difference from z-probe position and hotend tip position. } //topo_flag
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected.
real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
z_tmp = current_position[Z_AXIS];
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. set_bed_level_equation_lsq(plane_equation_coefficients);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); free(plane_equation_coefficients);
#ifdef Z_PROBE_SLED
dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel. #else // !AUTO_BED_LEVELING_GRID
#endif // Z_PROBE_SLED
// Probe at 3 arbitrary points
float z_at_pt_1, z_at_pt_2, z_at_pt_3;
if (enhanced_g29) {
// Basic Enhanced G29
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage);
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay);
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract);
} }
break; else {
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
}
clean_up_after_endstop_move();
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
#endif // !AUTO_BED_LEVELING_GRID
st_synchronize();
if (verbose_level > 0)
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
// The following code correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected.
real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
z_tmp = current_position[Z_AXIS];
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#ifdef Z_PROBE_SLED
dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
#endif
}
break;
#ifndef Z_PROBE_SLED #ifndef Z_PROBE_SLED
case 30: // G30 Single Z Probe case 30: // G30 Single Z Probe
{ {
@ -2036,6 +2177,7 @@ void process_commands()
enable_e0(); enable_e0();
enable_e1(); enable_e1();
enable_e2(); enable_e2();
enable_e3();
break; break;
#ifdef SDSUPPORT #ifdef SDSUPPORT
@ -2744,6 +2886,7 @@ Sigma_Exit:
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
disable_e3();
finishAndDisableSteppers(); finishAndDisableSteppers();
fanSpeed = 0; fanSpeed = 0;
delay(1000); // Wait a little before to switch off delay(1000); // Wait a little before to switch off
@ -2780,6 +2923,7 @@ Sigma_Exit:
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
disable_e3();
finishAndDisableSteppers(); finishAndDisableSteppers();
} }
else else
@ -2793,6 +2937,7 @@ Sigma_Exit:
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
disable_e3();
} }
#endif #endif
} }
@ -3731,6 +3876,7 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
disable_e3();
delay(100); delay(100);
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE); LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
uint8_t cnt=0; uint8_t cnt=0;
@ -4479,6 +4625,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
disable_e3();
} }
} }
} }
@ -4584,6 +4731,7 @@ void kill()
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
disable_e3();
#if defined(PS_ON_PIN) && PS_ON_PIN > -1 #if defined(PS_ON_PIN) && PS_ON_PIN > -1
pinMode(PS_ON_PIN,INPUT); pinMode(PS_ON_PIN,INPUT);

Loading…
Cancel
Save