Merge pull request #8281 from thinkyhead/bf2_alligator_dac

[2.0] Use fastio for Alligator dac084s085, etc.
2.0.x
Scott Lahteine 7 years ago committed by GitHub
commit 94c7205d64
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -66,7 +66,7 @@
// Types // Types
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
typedef uint16_t timer_t; typedef uint16_t hal_timer_t;
#define HAL_TIMER_TYPE_MAX 0xFFFF #define HAL_TIMER_TYPE_MAX 0xFFFF
typedef int8_t pin_t; typedef int8_t pin_t;

@ -40,7 +40,7 @@
#define FORCE_INLINE __attribute__((always_inline)) inline #define FORCE_INLINE __attribute__((always_inline)) inline
typedef uint32_t timer_t; typedef uint32_t hal_timer_t;
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFF #define HAL_TIMER_TYPE_MAX 0xFFFFFFFF
#define STEP_TIMER_NUM 3 // index of timer to use for stepper #define STEP_TIMER_NUM 3 // index of timer to use for stepper
@ -92,7 +92,7 @@ static FORCE_INLINE void HAL_timer_set_count(const uint8_t timer_num, const uint
pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_RC = count; pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_RC = count;
} }
static FORCE_INLINE timer_t HAL_timer_get_count(const uint8_t timer_num) { static FORCE_INLINE hal_timer_t HAL_timer_get_count(const uint8_t timer_num) {
const tTimerConfig *pConfig = &TimerConfig[timer_num]; const tTimerConfig *pConfig = &TimerConfig[timer_num];
return pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_RC; return pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_RC;
} }

@ -40,7 +40,7 @@
#define FORCE_INLINE __attribute__((always_inline)) inline #define FORCE_INLINE __attribute__((always_inline)) inline
typedef uint32_t timer_t; typedef uint32_t hal_timer_t;
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFF #define HAL_TIMER_TYPE_MAX 0xFFFFFFFF
#define STEP_TIMER_NUM 0 // index of timer to use for stepper #define STEP_TIMER_NUM 0 // index of timer to use for stepper
@ -77,7 +77,7 @@ typedef uint32_t timer_t;
void HAL_timer_init(void); void HAL_timer_init(void);
void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency); void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency);
static FORCE_INLINE void HAL_timer_set_count(const uint8_t timer_num, const timer_t count) { static FORCE_INLINE void HAL_timer_set_count(const uint8_t timer_num, const hal_timer_t count) {
switch (timer_num) { switch (timer_num) {
case 0: case 0:
LPC_TIM0->MR0 = count; LPC_TIM0->MR0 = count;
@ -92,7 +92,7 @@ static FORCE_INLINE void HAL_timer_set_count(const uint8_t timer_num, const time
} }
} }
static FORCE_INLINE timer_t HAL_timer_get_count(const uint8_t timer_num) { static FORCE_INLINE hal_timer_t HAL_timer_get_count(const uint8_t timer_num) {
switch (timer_num) { switch (timer_num) {
case 0: return LPC_TIM0->MR0; case 0: return LPC_TIM0->MR0;
case 1: return LPC_TIM1->MR0; case 1: return LPC_TIM1->MR0;
@ -100,7 +100,7 @@ static FORCE_INLINE timer_t HAL_timer_get_count(const uint8_t timer_num) {
return 0; return 0;
} }
static FORCE_INLINE timer_t HAL_timer_get_current_count(const uint8_t timer_num) { static FORCE_INLINE hal_timer_t HAL_timer_get_current_count(const uint8_t timer_num) {
switch (timer_num) { switch (timer_num) {
case 0: return LPC_TIM0->TC; case 0: return LPC_TIM0->TC;
case 1: return LPC_TIM1->TC; case 1: return LPC_TIM1->TC;

@ -43,7 +43,7 @@
*/ */
#define FORCE_INLINE __attribute__((always_inline)) inline #define FORCE_INLINE __attribute__((always_inline)) inline
typedef uint16_t timer_t; typedef uint16_t hal_timer_t;
#define HAL_TIMER_TYPE_MAX 0xFFFF #define HAL_TIMER_TYPE_MAX 0xFFFF
#define STEP_TIMER_NUM 5 // index of timer to use for stepper #define STEP_TIMER_NUM 5 // index of timer to use for stepper
@ -126,8 +126,8 @@ static FORCE_INLINE void HAL_timer_set_count (uint8_t timer_num, uint32_t count)
} }
} }
static FORCE_INLINE timer_t HAL_timer_get_count (uint8_t timer_num) { static FORCE_INLINE hal_timer_t HAL_timer_get_count (uint8_t timer_num) {
timer_t temp; hal_timer_t temp;
switch (timer_num) { switch (timer_num) {
case STEP_TIMER_NUM: case STEP_TIMER_NUM:
temp = StepperTimer.getCompare(STEP_TIMER_CHAN); temp = StepperTimer.getCompare(STEP_TIMER_CHAN);
@ -142,8 +142,8 @@ static FORCE_INLINE timer_t HAL_timer_get_count (uint8_t timer_num) {
return temp; return temp;
} }
static FORCE_INLINE timer_t HAL_timer_get_current_count(uint8_t timer_num) { static FORCE_INLINE hal_timer_t HAL_timer_get_current_count(uint8_t timer_num) {
timer_t temp; hal_timer_t temp;
switch (timer_num) { switch (timer_num) {
case STEP_TIMER_NUM: case STEP_TIMER_NUM:
temp = StepperTimer.getCount(); temp = StepperTimer.getCount();

@ -51,39 +51,39 @@
void setup_endstop_interrupts(void) { void setup_endstop_interrupts(void) {
#if HAS_X_MAX #if HAS_X_MAX
pinMode(X_MAX_PIN, INPUT); SET_INPUT(X_MAX_PIN);
attachInterrupt(X_MAX_PIN, endstop_ISR, CHANGE); // assign it attachInterrupt(X_MAX_PIN, endstop_ISR, CHANGE); // assign it
#endif #endif
#if HAS_X_MIN #if HAS_X_MIN
pinMode(X_MIN_PIN, INPUT); SET_INPUT(X_MIN_PIN);
attachInterrupt(X_MIN_PIN, endstop_ISR, CHANGE); attachInterrupt(X_MIN_PIN, endstop_ISR, CHANGE);
#endif #endif
#if HAS_Y_MAX #if HAS_Y_MAX
pinMode(Y_MAX_PIN, INPUT); SET_INPUT(Y_MAX_PIN);
attachInterrupt(Y_MAX_PIN, endstop_ISR, CHANGE); attachInterrupt(Y_MAX_PIN, endstop_ISR, CHANGE);
#endif #endif
#if HAS_Y_MIN #if HAS_Y_MIN
pinMode(Y_MIN_PIN, INPUT); SET_INPUT(Y_MIN_PIN);
attachInterrupt(Y_MIN_PIN, endstop_ISR, CHANGE); attachInterrupt(Y_MIN_PIN, endstop_ISR, CHANGE);
#endif #endif
#if HAS_Z_MAX #if HAS_Z_MAX
pinMode(Z_MAX_PIN, INPUT); SET_INPUT(Z_MAX_PIN);
attachInterrupt(Z_MAX_PIN, endstop_ISR, CHANGE); attachInterrupt(Z_MAX_PIN, endstop_ISR, CHANGE);
#endif #endif
#if HAS_Z_MIN #if HAS_Z_MIN
pinMode(Z_MIN_PIN, INPUT); SET_INPUT(Z_MIN_PIN);
attachInterrupt(Z_MIN_PIN, endstop_ISR, CHANGE); attachInterrupt(Z_MIN_PIN, endstop_ISR, CHANGE);
#endif #endif
#if HAS_Z2_MAX #if HAS_Z2_MAX
pinMode(Z2_MAX_PIN, INPUT); SET_INPUT(Z2_MAX_PIN);
attachInterrupt(Z2_MAX_PIN, endstop_ISR, CHANGE); attachInterrupt(Z2_MAX_PIN, endstop_ISR, CHANGE);
#endif #endif
#if HAS_Z2_MIN #if HAS_Z2_MIN
pinMode(Z2_MIN_PIN, INPUT); SET_INPUT(Z2_MIN_PIN);
attachInterrupt(Z2_MIN_PIN, endstop_ISR, CHANGE); attachInterrupt(Z2_MIN_PIN, endstop_ISR, CHANGE);
#endif #endif
#if HAS_Z_MIN_PROBE_PIN #if HAS_Z_MIN_PROBE_PIN
pinMode(Z_MIN_PROBE_PIN, INPUT); SET_INPUT(Z_MIN_PROBE_PIN);
attachInterrupt(Z_MIN_PROBE_PIN, endstop_ISR, CHANGE); attachInterrupt(Z_MIN_PROBE_PIN, endstop_ISR, CHANGE);
#endif #endif
} }

@ -40,7 +40,7 @@
#define FORCE_INLINE __attribute__((always_inline)) inline #define FORCE_INLINE __attribute__((always_inline)) inline
typedef uint32_t timer_t; typedef uint32_t hal_timer_t;
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFF #define HAL_TIMER_TYPE_MAX 0xFFFFFFFF
#define STEP_TIMER_NUM 0 #define STEP_TIMER_NUM 0
@ -82,7 +82,7 @@ static FORCE_INLINE void HAL_timer_set_count(const uint8_t timer_num, const uint
} }
} }
static FORCE_INLINE timer_t HAL_timer_get_count(const uint8_t timer_num) { static FORCE_INLINE hal_timer_t HAL_timer_get_count(const uint8_t timer_num) {
switch(timer_num) { switch(timer_num) {
case 0: return FTM0_C0V; case 0: return FTM0_C0V;
case 1: return FTM1_C0V; case 1: return FTM1_C0V;

@ -44,12 +44,12 @@ uint8_t eeprom_read_byte(uint8_t* pos) {
eeprom_temp[0] = CMD_READ; eeprom_temp[0] = CMD_READ;
eeprom_temp[1] = ((unsigned)pos>>8) & 0xFF; // addr High eeprom_temp[1] = ((unsigned)pos>>8) & 0xFF; // addr High
eeprom_temp[2] = (unsigned)pos& 0xFF; // addr Low eeprom_temp[2] = (unsigned)pos& 0xFF; // addr Low
digitalWrite(SPI_EEPROM1_CS, HIGH); WRITE(SPI_EEPROM1_CS, HIGH);
digitalWrite(SPI_EEPROM1_CS, LOW); WRITE(SPI_EEPROM1_CS, LOW);
spiSend(SPI_CHAN_EEPROM1, eeprom_temp, 3); spiSend(SPI_CHAN_EEPROM1, eeprom_temp, 3);
v = spiRec(SPI_CHAN_EEPROM1); v = spiRec(SPI_CHAN_EEPROM1);
digitalWrite(SPI_EEPROM1_CS, HIGH); WRITE(SPI_EEPROM1_CS, HIGH);
return v; return v;
} }
@ -62,14 +62,14 @@ void eeprom_read_block(void* dest, const void* eeprom_address, size_t n) {
eeprom_temp[0] = CMD_READ; eeprom_temp[0] = CMD_READ;
eeprom_temp[1] = ((unsigned)eeprom_address>>8) & 0xFF; // addr High eeprom_temp[1] = ((unsigned)eeprom_address>>8) & 0xFF; // addr High
eeprom_temp[2] = (unsigned)eeprom_address& 0xFF; // addr Low eeprom_temp[2] = (unsigned)eeprom_address& 0xFF; // addr Low
digitalWrite(SPI_EEPROM1_CS, HIGH); WRITE(SPI_EEPROM1_CS, HIGH);
digitalWrite(SPI_EEPROM1_CS, LOW); WRITE(SPI_EEPROM1_CS, LOW);
spiSend(SPI_CHAN_EEPROM1, eeprom_temp, 3); spiSend(SPI_CHAN_EEPROM1, eeprom_temp, 3);
uint8_t *p_dest = (uint8_t *)dest; uint8_t *p_dest = (uint8_t *)dest;
while (n--) while (n--)
*p_dest++ = spiRec(SPI_CHAN_EEPROM1); *p_dest++ = spiRec(SPI_CHAN_EEPROM1);
digitalWrite(SPI_EEPROM1_CS, HIGH); WRITE(SPI_EEPROM1_CS, HIGH);
} }
void eeprom_write_byte(uint8_t* pos, uint8_t value) { void eeprom_write_byte(uint8_t* pos, uint8_t value) {
@ -77,20 +77,20 @@ void eeprom_write_byte(uint8_t* pos, uint8_t value) {
/*write enable*/ /*write enable*/
eeprom_temp[0] = CMD_WREN; eeprom_temp[0] = CMD_WREN;
digitalWrite(SPI_EEPROM1_CS, LOW); WRITE(SPI_EEPROM1_CS, LOW);
spiSend(SPI_CHAN_EEPROM1, eeprom_temp, 1); spiSend(SPI_CHAN_EEPROM1, eeprom_temp, 1);
digitalWrite(SPI_EEPROM1_CS, HIGH); WRITE(SPI_EEPROM1_CS, HIGH);
delay(1); delay(1);
/*write addr*/ /*write addr*/
eeprom_temp[0] = CMD_WRITE; eeprom_temp[0] = CMD_WRITE;
eeprom_temp[1] = ((unsigned)pos>>8) & 0xFF; //addr High eeprom_temp[1] = ((unsigned)pos>>8) & 0xFF; //addr High
eeprom_temp[2] = (unsigned)pos & 0xFF; //addr Low eeprom_temp[2] = (unsigned)pos & 0xFF; //addr Low
digitalWrite(SPI_EEPROM1_CS, LOW); WRITE(SPI_EEPROM1_CS, LOW);
spiSend(SPI_CHAN_EEPROM1, eeprom_temp, 3); spiSend(SPI_CHAN_EEPROM1, eeprom_temp, 3);
spiSend(SPI_CHAN_EEPROM1, value); spiSend(SPI_CHAN_EEPROM1, value);
digitalWrite(SPI_EEPROM1_CS, HIGH); WRITE(SPI_EEPROM1_CS, HIGH);
delay(7); // wait for page write to complete delay(7); // wait for page write to complete
} }
@ -99,20 +99,20 @@ void eeprom_update_block(const void* src, void* eeprom_address, size_t n) {
/*write enable*/ /*write enable*/
eeprom_temp[0] = CMD_WREN; eeprom_temp[0] = CMD_WREN;
digitalWrite(SPI_EEPROM1_CS, LOW); WRITE(SPI_EEPROM1_CS, LOW);
spiSend(SPI_CHAN_EEPROM1, eeprom_temp, 1); spiSend(SPI_CHAN_EEPROM1, eeprom_temp, 1);
digitalWrite(SPI_EEPROM1_CS, HIGH); WRITE(SPI_EEPROM1_CS, HIGH);
delay(1); delay(1);
/*write addr*/ /*write addr*/
eeprom_temp[0] = CMD_WRITE; eeprom_temp[0] = CMD_WRITE;
eeprom_temp[1] = ((unsigned)eeprom_address>>8) & 0xFF; //addr High eeprom_temp[1] = ((unsigned)eeprom_address>>8) & 0xFF; //addr High
eeprom_temp[2] = (unsigned)eeprom_address & 0xFF; //addr Low eeprom_temp[2] = (unsigned)eeprom_address & 0xFF; //addr Low
digitalWrite(SPI_EEPROM1_CS, LOW); WRITE(SPI_EEPROM1_CS, LOW);
spiSend(SPI_CHAN_EEPROM1, eeprom_temp, 3); spiSend(SPI_CHAN_EEPROM1, eeprom_temp, 3);
spiSend(SPI_CHAN_EEPROM1, (const uint8_t*)src, n); spiSend(SPI_CHAN_EEPROM1, (const uint8_t*)src, n);
digitalWrite(SPI_EEPROM1_CS, HIGH); WRITE(SPI_EEPROM1_CS, HIGH);
delay(7); // wait for page write to complete delay(7); // wait for page write to complete
} }

@ -13,100 +13,85 @@
#include "../../Marlin.h" #include "../../Marlin.h"
#include "../../module/stepper.h" #include "../../module/stepper.h"
dac084s085::dac084s085() { dac084s085::dac084s085() { }
return ;
}
void dac084s085::begin() { void dac084s085::begin() {
uint8_t externalDac_buf[2] = {0x20,0x00};//all off uint8_t externalDac_buf[] = { 0x20, 0x00 }; // all off
// All SPI chip-select HIGH // All SPI chip-select HIGH
pinMode(DAC0_SYNC, OUTPUT); SET_OUTPUT(DAC0_SYNC);
digitalWrite( DAC0_SYNC , HIGH );
#if EXTRUDERS > 1 #if EXTRUDERS > 1
pinMode(DAC1_SYNC, OUTPUT); SET_OUTPUT(DAC1_SYNC);
digitalWrite( DAC1_SYNC , HIGH );
#endif #endif
digitalWrite( SPI_EEPROM1_CS , HIGH ); cshigh();
digitalWrite( SPI_EEPROM2_CS , HIGH );
digitalWrite( SPI_FLASH_CS , HIGH );
digitalWrite( SS_PIN , HIGH );
spiBegin(); spiBegin();
//init onboard DAC //init onboard DAC
delayMicroseconds(2U); delayMicroseconds(2U);
digitalWrite( DAC0_SYNC , LOW ); WRITE(DAC0_SYNC, LOW);
delayMicroseconds(2U); delayMicroseconds(2U);
digitalWrite( DAC0_SYNC , HIGH ); WRITE(DAC0_SYNC, HIGH);
delayMicroseconds(2U); delayMicroseconds(2U);
digitalWrite( DAC0_SYNC , LOW ); WRITE(DAC0_SYNC, LOW);
spiSend(SPI_CHAN_DAC,externalDac_buf , 2); spiSend(SPI_CHAN_DAC, externalDac_buf, COUNT(externalDac_buf));
digitalWrite( DAC0_SYNC , HIGH ); WRITE(DAC0_SYNC, HIGH);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
//init Piggy DAC //init Piggy DAC
delayMicroseconds(2U); delayMicroseconds(2U);
digitalWrite( DAC1_SYNC , LOW ); WRITE(DAC1_SYNC, LOW);
delayMicroseconds(2U); delayMicroseconds(2U);
digitalWrite( DAC1_SYNC , HIGH ); WRITE(DAC1_SYNC, HIGH);
delayMicroseconds(2U); delayMicroseconds(2U);
digitalWrite( DAC1_SYNC , LOW ); WRITE(DAC1_SYNC, LOW);
spiSend(SPI_CHAN_DAC,externalDac_buf , 2); spiSend(SPI_CHAN_DAC, externalDac_buf, COUNT(externalDac_buf));
digitalWrite( DAC1_SYNC , HIGH ); WRITE(DAC1_SYNC, HIGH);
#endif #endif
return; return;
} }
void dac084s085::setValue(uint8_t channel, uint8_t value) { void dac084s085::setValue(const uint8_t channel, const uint8_t value) {
if(channel >= 7) // max channel (X,Y,Z,E0,E1,E2,E3) if (channel >= 7) return; // max channel (X,Y,Z,E0,E1,E2,E3)
return;
if(value > 255) value = 255;
uint8_t externalDac_buf[2] = {0x10,0x00};
if(channel > 3) const uint8_t externalDac_buf[] = {
externalDac_buf[0] |= (7 - channel << 6); 0x10 | ((channel > 3 ? 7 : 3) - channel << 6) | (value >> 4),
else 0x00 | (value << 4)
externalDac_buf[0] |= (3 - channel << 6); };
externalDac_buf[0] |= (value >> 4);
externalDac_buf[1] |= (value << 4);
// All SPI chip-select HIGH // All SPI chip-select HIGH
digitalWrite( DAC0_SYNC , HIGH ); cshigh();
#if EXTRUDERS > 1
digitalWrite( DAC1_SYNC , HIGH );
#endif
digitalWrite( SPI_EEPROM1_CS , HIGH );
digitalWrite( SPI_EEPROM2_CS , HIGH );
digitalWrite( SPI_FLASH_CS , HIGH );
digitalWrite( SS_PIN , HIGH );
if (channel > 3) { // DAC Piggy E1,E2,E3 if (channel > 3) { // DAC Piggy E1,E2,E3
WRITE(DAC1_SYNC, LOW);
digitalWrite(DAC1_SYNC , LOW);
delayMicroseconds(2U); delayMicroseconds(2U);
digitalWrite(DAC1_SYNC , HIGH); WRITE(DAC1_SYNC, HIGH);
delayMicroseconds(2U); delayMicroseconds(2U);
digitalWrite(DAC1_SYNC , LOW); WRITE(DAC1_SYNC, LOW);
} }
else { // DAC onboard X,Y,Z,E0 else { // DAC onboard X,Y,Z,E0
WRITE(DAC0_SYNC, LOW);
digitalWrite(DAC0_SYNC , LOW);
delayMicroseconds(2U); delayMicroseconds(2U);
digitalWrite(DAC0_SYNC , HIGH); WRITE(DAC0_SYNC, HIGH);
delayMicroseconds(2U); delayMicroseconds(2U);
digitalWrite(DAC0_SYNC , LOW); WRITE(DAC0_SYNC, LOW);
} }
delayMicroseconds(2U); delayMicroseconds(2U);
spiSend(SPI_CHAN_DAC,externalDac_buf , 2); spiSend(SPI_CHAN_DAC, externalDac_buf, COUNT(externalDac_buf));
}
return; void dac084s085::cshigh() {
WRITE(DAC0_SYNC, HIGH);
#if EXTRUDERS > 1
WRITE(DAC1_SYNC, HIGH);
#endif
WRITE(SPI_EEPROM1_CS, HIGH);
WRITE(SPI_EEPROM2_CS, HIGH);
WRITE(SPI_FLASH_CS, HIGH);
WRITE(SS_PIN, HIGH);
} }
#endif // MB(ALLIGATOR) #endif // MB(ALLIGATOR)

@ -5,7 +5,9 @@ class dac084s085 {
public: public:
dac084s085(); dac084s085();
static void begin(void); static void begin(void);
static void setValue(uint8_t channel, uint8_t value); static void setValue(const uint8_t channel, const uint8_t value);
private:
static void cshigh();
}; };
#endif // DAC084S085_H #endif // DAC084S085_H

@ -120,9 +120,9 @@ volatile uint32_t Stepper::step_events_completed = 0; // The number of step even
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
constexpr timer_t ADV_NEVER = HAL_TIMER_TYPE_MAX; constexpr hal_timer_t ADV_NEVER = HAL_TIMER_TYPE_MAX;
timer_t Stepper::nextMainISR = 0, hal_timer_t Stepper::nextMainISR = 0,
Stepper::nextAdvanceISR = ADV_NEVER, Stepper::nextAdvanceISR = ADV_NEVER,
Stepper::eISR_Rate = ADV_NEVER; Stepper::eISR_Rate = ADV_NEVER;
@ -137,9 +137,9 @@ volatile uint32_t Stepper::step_events_completed = 0; // The number of step even
* This fix isn't perfect and may lose steps - but better than locking up completely * This fix isn't perfect and may lose steps - but better than locking up completely
* in future the planner should slow down if advance stepping rate would be too high * in future the planner should slow down if advance stepping rate would be too high
*/ */
FORCE_INLINE timer_t adv_rate(const int steps, const timer_t timer, const uint8_t loops) { FORCE_INLINE hal_timer_t adv_rate(const int steps, const hal_timer_t timer, const uint8_t loops) {
if (steps) { if (steps) {
const timer_t rate = (timer * loops) / abs(steps); const hal_timer_t rate = (timer * loops) / abs(steps);
//return constrain(rate, 1, ADV_NEVER - 1) //return constrain(rate, 1, ADV_NEVER - 1)
return rate ? rate : 1; return rate ? rate : 1;
} }
@ -157,9 +157,9 @@ volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
long Stepper::counter_m[MIXING_STEPPERS]; long Stepper::counter_m[MIXING_STEPPERS];
#endif #endif
timer_t Stepper::acc_step_rate; // needed for deceleration start point hal_timer_t Stepper::acc_step_rate; // needed for deceleration start point
uint8_t Stepper::step_loops, Stepper::step_loops_nominal; uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
timer_t Stepper::OCR1A_nominal; hal_timer_t Stepper::OCR1A_nominal;
volatile long Stepper::endstops_trigsteps[XYZ]; volatile long Stepper::endstops_trigsteps[XYZ];
@ -341,7 +341,7 @@ HAL_STEP_TIMER_ISR {
void Stepper::isr() { void Stepper::isr() {
timer_t ocr_val; hal_timer_t ocr_val;
#define ENDSTOP_NOMINAL_OCR_VAL 1500 * HAL_TICKS_PER_US // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch #define ENDSTOP_NOMINAL_OCR_VAL 1500 * HAL_TICKS_PER_US // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
#define OCR_VAL_TOLERANCE 500 * HAL_TICKS_PER_US // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms #define OCR_VAL_TOLERANCE 500 * HAL_TICKS_PER_US // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
@ -677,7 +677,7 @@ void Stepper::isr() {
NOMORE(acc_step_rate, current_block->nominal_rate); NOMORE(acc_step_rate, current_block->nominal_rate);
// step_rate to timer interval // step_rate to timer interval
const timer_t timer = calc_timer(acc_step_rate); const hal_timer_t timer = calc_timer(acc_step_rate);
SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
_NEXT_ISR(ocr_val); _NEXT_ISR(ocr_val);
@ -699,7 +699,7 @@ void Stepper::isr() {
#endif // LIN_ADVANCE #endif // LIN_ADVANCE
} }
else if (step_events_completed > (uint32_t)current_block->decelerate_after) { else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
timer_t step_rate; hal_timer_t step_rate;
#ifdef CPU_32_BIT #ifdef CPU_32_BIT
MultiU32X24toH32(step_rate, deceleration_time, current_block->acceleration_rate); MultiU32X24toH32(step_rate, deceleration_time, current_block->acceleration_rate);
#else #else
@ -714,7 +714,7 @@ void Stepper::isr() {
step_rate = current_block->final_rate; step_rate = current_block->final_rate;
// step_rate to timer interval // step_rate to timer interval
const timer_t timer = calc_timer(step_rate); const hal_timer_t timer = calc_timer(step_rate);
SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
_NEXT_ISR(ocr_val); _NEXT_ISR(ocr_val);
@ -754,7 +754,7 @@ void Stepper::isr() {
#if DISABLED(LIN_ADVANCE) #if DISABLED(LIN_ADVANCE)
#ifdef CPU_32_BIT #ifdef CPU_32_BIT
// Make sure stepper interrupt does not monopolise CPU by adjusting count to give about 8 us room // Make sure stepper interrupt does not monopolise CPU by adjusting count to give about 8 us room
timer_t stepper_timer_count = HAL_timer_get_count(STEP_TIMER_NUM), hal_timer_t stepper_timer_count = HAL_timer_get_count(STEP_TIMER_NUM),
stepper_timer_current_count = HAL_timer_get_current_count(STEP_TIMER_NUM) + 8 * HAL_TICKS_PER_US; stepper_timer_current_count = HAL_timer_get_current_count(STEP_TIMER_NUM) + 8 * HAL_TICKS_PER_US;
HAL_timer_set_count(STEP_TIMER_NUM, max(stepper_timer_count, stepper_timer_current_count)); HAL_timer_set_count(STEP_TIMER_NUM, max(stepper_timer_count, stepper_timer_current_count));
#else #else

@ -97,7 +97,7 @@ class Stepper {
static volatile uint32_t step_events_completed; // The number of step events executed in the current block static volatile uint32_t step_events_completed; // The number of step events executed in the current block
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
static timer_t nextMainISR, nextAdvanceISR, eISR_Rate; static hal_timer_t nextMainISR, nextAdvanceISR, eISR_Rate;
#define _NEXT_ISR(T) nextMainISR = T #define _NEXT_ISR(T) nextMainISR = T
static volatile int e_steps[E_STEPPERS]; static volatile int e_steps[E_STEPPERS];
@ -112,9 +112,9 @@ class Stepper {
static long acceleration_time, deceleration_time; static long acceleration_time, deceleration_time;
//unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; //unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static timer_t acc_step_rate; // needed for deceleration start point static hal_timer_t acc_step_rate; // needed for deceleration start point
static uint8_t step_loops, step_loops_nominal; static uint8_t step_loops, step_loops_nominal;
static timer_t OCR1A_nominal; static hal_timer_t OCR1A_nominal;
static volatile long endstops_trigsteps[XYZ]; static volatile long endstops_trigsteps[XYZ];
static volatile long endstops_stepsTotal, endstops_stepsDone; static volatile long endstops_stepsTotal, endstops_stepsDone;
@ -277,8 +277,8 @@ class Stepper {
private: private:
static FORCE_INLINE timer_t calc_timer(timer_t step_rate) { static FORCE_INLINE hal_timer_t calc_timer(hal_timer_t step_rate) {
timer_t timer; hal_timer_t timer;
NOMORE(step_rate, MAX_STEP_FREQUENCY); NOMORE(step_rate, MAX_STEP_FREQUENCY);

Loading…
Cancel
Save