|
|
|
@ -8043,28 +8043,59 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|
|
|
|
* small incremental moves for DELTA or SCARA.
|
|
|
|
|
*/
|
|
|
|
|
inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) {
|
|
|
|
|
|
|
|
|
|
// Get the top feedrate of the move in the XY plane
|
|
|
|
|
float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
|
|
|
|
|
|
|
|
|
|
// If the move is only in Z don't split up the move.
|
|
|
|
|
// This shortcut cannot be used if planar bed leveling
|
|
|
|
|
// is in use, but is fine with mesh-based bed leveling
|
|
|
|
|
if (logical[X_AXIS] == current_position[X_AXIS] && logical[Y_AXIS] == current_position[Y_AXIS]) {
|
|
|
|
|
inverse_kinematics(logical);
|
|
|
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Get the distance moved in XYZ
|
|
|
|
|
float difference[NUM_AXIS];
|
|
|
|
|
LOOP_XYZE(i) difference[i] = logical[i] - current_position[i];
|
|
|
|
|
|
|
|
|
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
|
|
|
|
|
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
|
|
|
|
|
if (UNEAR_ZERO(cartesian_mm)) return false;
|
|
|
|
|
float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
|
|
|
|
|
|
|
|
|
|
// Minimum number of seconds to move the given distance
|
|
|
|
|
float seconds = cartesian_mm / _feedrate_mm_s;
|
|
|
|
|
int steps = max(1, int(delta_segments_per_second * seconds));
|
|
|
|
|
float inv_steps = 1.0/steps;
|
|
|
|
|
|
|
|
|
|
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
|
|
|
|
|
// SERIAL_ECHOPAIR(" seconds=", seconds);
|
|
|
|
|
// SERIAL_ECHOLNPAIR(" steps=", steps);
|
|
|
|
|
// The number of segments-per-second times the duration
|
|
|
|
|
// gives the number of segments we should produce
|
|
|
|
|
uint16_t segments = delta_segments_per_second * seconds;
|
|
|
|
|
|
|
|
|
|
for (int s = 1; s <= steps; s++) {
|
|
|
|
|
#if IS_SCARA
|
|
|
|
|
NOMORE(segments, cartesian_mm * 2);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
float fraction = float(s) * inv_steps;
|
|
|
|
|
NOLESS(segments, 1);
|
|
|
|
|
|
|
|
|
|
// Each segment produces this much of the move
|
|
|
|
|
float inv_segments = 1.0 / segments,
|
|
|
|
|
segment_distance[XYZE] = {
|
|
|
|
|
difference[X_AXIS] * inv_segments,
|
|
|
|
|
difference[Y_AXIS] * inv_segments,
|
|
|
|
|
difference[Z_AXIS] * inv_segments,
|
|
|
|
|
difference[E_AXIS] * inv_segments
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
|
|
|
|
|
// SERIAL_ECHOPAIR(" seconds=", seconds);
|
|
|
|
|
// SERIAL_ECHOLNPAIR(" segments=", segments);
|
|
|
|
|
|
|
|
|
|
LOOP_XYZE(i)
|
|
|
|
|
logical[i] = current_position[i] + difference[i] * fraction;
|
|
|
|
|
// Set the target to the current position to start
|
|
|
|
|
LOOP_XYZE(i) logical[i] = current_position[i];
|
|
|
|
|
|
|
|
|
|
// Send all the segments to the planner
|
|
|
|
|
for (uint16_t s = 0; s < segments; s++) {
|
|
|
|
|
LOOP_XYZE(i) logical[i] += segment_distance[i];
|
|
|
|
|
inverse_kinematics(logical);
|
|
|
|
|
|
|
|
|
|
//DEBUG_POS("prepare_kinematic_move_to", logical);
|
|
|
|
|