Sync with non-gen6 version

2.0.x
Erik van der Zalm 13 years ago
parent b5f6482dce
commit 8e017b81ab

@ -78,10 +78,9 @@ bool axis_relative_modes[] = {false, false, false, false};
// X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot. // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
float acceleration = 2000; // Normal acceleration mm/s^2 float acceleration = 2000; // Normal acceleration mm/s^2
float retract_acceleration = 7000; // Normal acceleration mm/s^2 float retract_acceleration = 7000; // Normal acceleration mm/s^2
float max_jerk = 20*60; float max_xy_jerk = 20.0*60;
float max_z_jerk = 0.4*60;
long max_acceleration_units_per_sq_second[] = {7000,7000,100,10000}; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts long max_acceleration_units_per_sq_second[] = {7000,7000,100,10000}; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts
// Not used long max_travel_acceleration_units_per_sq_second[] = {500,500,50,500}; // X, Y, Z max acceleration in mm/s^2 for travel moves
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature // The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109 // If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109

@ -86,12 +86,13 @@ typedef struct {
float nominal_speed; // The nominal speed for this block in mm/min float nominal_speed; // The nominal speed for this block in mm/min
float millimeters; // The total travel of this block in mm float millimeters; // The total travel of this block in mm
float entry_speed; float entry_speed;
float acceleration; // acceleration mm/sec^2
// Settings for the trapezoid generator // Settings for the trapezoid generator
long nominal_rate; // The nominal step rate for this block in step_events/sec long nominal_rate; // The nominal step rate for this block in step_events/sec
volatile long initial_rate; // The jerk-adjusted step rate at start of block volatile long initial_rate; // The jerk-adjusted step rate at start of block
volatile long final_rate; // The minimal rate at exit volatile long final_rate; // The minimal rate at exit
long acceleration; // acceleration mm/sec^2 long acceleration_st; // acceleration steps/sec^2
volatile char busy; volatile char busy;
} block_t; } block_t;
@ -104,4 +105,3 @@ void plan_set_position(float x, float y, float z, float e);
void st_wake_up(); void st_wake_up();
void st_synchronize(); void st_synchronize();

@ -33,7 +33,7 @@
#include "Marlin.h" #include "Marlin.h"
#include "speed_lookuptable.h" #include "speed_lookuptable.h"
char version_string[] = "0.9.3"; char version_string[] = "0.9.8";
#ifdef SDSUPPORT #ifdef SDSUPPORT
#include "SdFat.h" #include "SdFat.h"
@ -1167,10 +1167,9 @@ void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit
if(final_rate < 120) final_rate=120; if(final_rate < 120) final_rate=120;
// Calculate the acceleration steps // Calculate the acceleration steps
long acceleration = block->acceleration; long acceleration = block->acceleration_st;
long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration); long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);
long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration); long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);
// Calculate the size of Plateau of Nominal Rate. // Calculate the size of Plateau of Nominal Rate.
long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps; long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
@ -1214,15 +1213,15 @@ inline float max_allowable_speed(float acceleration, float target_velocity, floa
inline float junction_jerk(block_t *before, block_t *after) { inline float junction_jerk(block_t *before, block_t *after) {
return(sqrt( return(sqrt(
pow((before->speed_x-after->speed_x), 2)+ pow((before->speed_x-after->speed_x), 2)+
pow((before->speed_y-after->speed_y), 2)+ pow((before->speed_y-after->speed_y), 2)));
pow((before->speed_z-after->speed_z)*axis_steps_per_unit[Z_AXIS]/axis_steps_per_unit[X_AXIS], 2)));
} }
// Return the safe speed which is max_jerk/2, e.g. the // Return the safe speed which is max_jerk/2, e.g. the
// speed under which you cannot exceed max_jerk no matter what you do. // speed under which you cannot exceed max_jerk no matter what you do.
float safe_speed(block_t *block) { float safe_speed(block_t *block) {
float safe_speed; float safe_speed;
safe_speed = max_jerk/2; safe_speed = max_xy_jerk/2;
if(abs(block->speed_z) > max_z_jerk/2) safe_speed = max_z_jerk/2;
if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed; if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed;
return safe_speed; return safe_speed;
} }
@ -1250,12 +1249,15 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n
if((previous->steps_x == 0) && (previous->steps_y == 0)) { if((previous->steps_x == 0) && (previous->steps_y == 0)) {
entry_speed = safe_speed(current); entry_speed = safe_speed(current);
} }
else if (jerk > max_jerk) { else if (jerk > max_xy_jerk) {
entry_speed = (max_jerk/jerk) * entry_speed; entry_speed = (max_xy_jerk/jerk) * entry_speed;
}
if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {
entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;
} }
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly. // If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
if (entry_speed > exit_speed) { if (entry_speed > exit_speed) {
float max_entry_speed = max_allowable_speed(-acceleration,exit_speed, current->millimeters); float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);
if (max_entry_speed < entry_speed) { if (max_entry_speed < entry_speed) {
entry_speed = max_entry_speed; entry_speed = max_entry_speed;
} }
@ -1275,16 +1277,16 @@ void planner_reverse_pass() {
block_t *block[3] = { block_t *block[3] = {
NULL, NULL, NULL }; NULL, NULL, NULL };
while(block_index != block_buffer_tail) { while(block_index != block_buffer_tail) {
block_index--;
if(block_index < 0) {
block_index = BLOCK_BUFFER_SIZE-1;
}
block[2]= block[1]; block[2]= block[1];
block[1]= block[0]; block[1]= block[0];
block[0] = &block_buffer[block_index]; block[0] = &block_buffer[block_index];
planner_reverse_pass_kernel(block[0], block[1], block[2]); planner_reverse_pass_kernel(block[0], block[1], block[2]);
block_index--;
if(block_index < 0) {
block_index = BLOCK_BUFFER_SIZE-1;
} }
planner_reverse_pass_kernel(NULL, block[0], block[1]); }
// planner_reverse_pass_kernel(NULL, block[0], block[1]);
} }
// The kernel called by planner_recalculate() when scanning the plan from first to last entry. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
@ -1298,7 +1300,7 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
// speed accordingly. Remember current->entry_factor equals the exit factor of // speed accordingly. Remember current->entry_factor equals the exit factor of
// the previous block. // the previous block.
if(previous->entry_speed < current->entry_speed) { if(previous->entry_speed < current->entry_speed) {
float max_entry_speed = max_allowable_speed(-acceleration, previous->entry_speed, previous->millimeters); float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters);
if (max_entry_speed < current->entry_speed) { if (max_entry_speed < current->entry_speed) {
current->entry_speed = max_entry_speed; current->entry_speed = max_entry_speed;
} }
@ -1451,6 +1453,12 @@ void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
return; return;
}; };
//enable active axes
if(block->steps_x != 0) enable_x();
if(block->steps_y != 0) enable_y();
if(block->steps_z != 0) enable_z();
if(block->steps_e != 0) enable_e();
float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS]; float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]; float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]; float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
@ -1502,17 +1510,18 @@ void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
block->acceleration = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2 block->acceleration = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
} }
else { else {
block->acceleration = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2 block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
// Limit acceleration per axis // Limit acceleration per axis
if((block->acceleration * block->steps_x / block->step_event_count) > axis_steps_per_sqr_second[X_AXIS]) if((block->acceleration_st * block->steps_x / block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
block->acceleration = axis_steps_per_sqr_second[X_AXIS]; block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
if((block->acceleration * block->steps_y / block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS]) if((block->acceleration_st * block->steps_y / block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
block->acceleration = axis_steps_per_sqr_second[Y_AXIS]; block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
if((block->acceleration * block->steps_e / block->step_event_count) > axis_steps_per_sqr_second[E_AXIS]) if((block->acceleration_st * block->steps_e / block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
block->acceleration = axis_steps_per_sqr_second[E_AXIS]; block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
if((block->acceleration * block->steps_z / block->step_event_count) > axis_steps_per_sqr_second[Z_AXIS]) if(((block->acceleration_st / block->step_event_count) * block->steps_z ) > axis_steps_per_sqr_second[Z_AXIS])
block->acceleration = axis_steps_per_sqr_second[Z_AXIS]; block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
} }
block->acceleration = block->acceleration_st * travel_per_step;
#ifdef ADVANCE #ifdef ADVANCE
// Calculate advance rate // Calculate advance rate
@ -1521,7 +1530,7 @@ void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
block->advance = 0; block->advance = 0;
} }
else { else {
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration); long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
(block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536; (block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
block->advance = advance; block->advance = advance;
@ -1554,12 +1563,6 @@ void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
block->direction_bits |= (1<<E_AXIS); block->direction_bits |= (1<<E_AXIS);
} }
//enable active axes
if(block->steps_x != 0) enable_x();
if(block->steps_y != 0) enable_y();
if(block->steps_z != 0) enable_z();
if(block->steps_e != 0) enable_e();
// Move buffer head // Move buffer head
block_buffer_head = next_buffer_head; block_buffer_head = next_buffer_head;
@ -1729,6 +1732,7 @@ inline void trapezoid_generator_reset() {
final_advance = current_block->final_advance; final_advance = current_block->final_advance;
deceleration_time = 0; deceleration_time = 0;
advance_rate = current_block->advance_rate; advance_rate = current_block->advance_rate;
// step_rate to timer interval // step_rate to timer interval
acc_step_rate = initial_rate; acc_step_rate = initial_rate;
acceleration_time = calc_timer(acc_step_rate); acceleration_time = calc_timer(acc_step_rate);

Loading…
Cancel
Save