Convert custom maths to inlines (#10728)

2.0.x
Scott Lahteine 7 years ago committed by GitHub
parent 8f3d313086
commit 883b0c9880
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -23,92 +23,95 @@
#ifndef _MATH_AVR_H_ #ifndef _MATH_AVR_H_
#define _MATH_AVR_H_ #define _MATH_AVR_H_
#define a(CODE) " " CODE "\n\t"
/** /**
* Optimized math functions for AVR * Optimized math functions for AVR
*/ */
// intRes = longIn1 * longIn2 >> 24 // intRes = longIn1 * longIn2 >> 24
// uses: // uses:
// r26 to store 0 // A[tmp] to store 0
// r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result. // B[tmp] to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
// note that the lower two bytes and the upper byte of the 48bit result are not calculated. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
// this can cause the result to be out by one as the lower bytes may cause carries into the upper ones. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
// B0 A0 are bits 24-39 and are the returned value // B A are bits 24-39 and are the returned value
// C1 B1 A1 is longIn1 // C B A is longIn1
// D2 C2 B2 A2 is longIn2 // D C B A is longIn2
// //
#define MultiU24X32toH16(intRes, longIn1, longIn2) \ static FORCE_INLINE uint16_t MultiU24X32toH16(uint32_t longIn1, uint32_t longIn2) {
asm volatile ( \ register uint8_t tmp1;
A("clr r26") \ register uint8_t tmp2;
A("mul %A1, %B2") \ register uint16_t intRes;
A("mov r27, r1") \ __asm__ __volatile__(
A("mul %B1, %C2") \ A("clr %[tmp1]")
A("movw %A0, r0") \ A("mul %A[longIn1], %B[longIn2]")
A("mul %C1, %C2") \ A("mov %[tmp2], r1")
A("add %B0, r0") \ A("mul %B[longIn1], %C[longIn2]")
A("mul %C1, %B2") \ A("movw %A[intRes], r0")
A("add %A0, r0") \ A("mul %C[longIn1], %C[longIn2]")
A("adc %B0, r1") \ A("add %B[intRes], r0")
A("mul %A1, %C2") \ A("mul %C[longIn1], %B[longIn2]")
A("add r27, r0") \ A("add %A[intRes], r0")
A("adc %A0, r1") \ A("adc %B[intRes], r1")
A("adc %B0, r26") \ A("mul %A[longIn1], %C[longIn2]")
A("mul %B1, %B2") \ A("add %[tmp2], r0")
A("add r27, r0") \ A("adc %A[intRes], r1")
A("adc %A0, r1") \ A("adc %B[intRes], %[tmp1]")
A("adc %B0, r26") \ A("mul %B[longIn1], %B[longIn2]")
A("mul %C1, %A2") \ A("add %[tmp2], r0")
A("add r27, r0") \ A("adc %A[intRes], r1")
A("adc %A0, r1") \ A("adc %B[intRes], %[tmp1]")
A("adc %B0, r26") \ A("mul %C[longIn1], %A[longIn2]")
A("mul %B1, %A2") \ A("add %[tmp2], r0")
A("add r27, r1") \ A("adc %A[intRes], r1")
A("adc %A0, r26") \ A("adc %B[intRes], %[tmp1]")
A("adc %B0, r26") \ A("mul %B[longIn1], %A[longIn2]")
A("lsr r27") \ A("add %[tmp2], r1")
A("adc %A0, r26") \ A("adc %A[intRes], %[tmp1]")
A("adc %B0, r26") \ A("adc %B[intRes], %[tmp1]")
A("mul %D2, %A1") \ A("lsr %[tmp2]")
A("add %A0, r0") \ A("adc %A[intRes], %[tmp1]")
A("adc %B0, r1") \ A("adc %B[intRes], %[tmp1]")
A("mul %D2, %B1") \ A("mul %D[longIn2], %A[longIn1]")
A("add %B0, r0") \ A("add %A[intRes], r0")
A("clr r1") \ A("adc %B[intRes], r1")
: \ A("mul %D[longIn2], %B[longIn1]")
"=&r" (intRes) \ A("add %B[intRes], r0")
: \ A("clr r1")
"d" (longIn1), \ : [intRes] "=&r" (intRes),
"d" (longIn2) \ [tmp1] "=&r" (tmp1),
: \ [tmp2] "=&r" (tmp2)
"r26" , "r27" \ : [longIn1] "d" (longIn1),
) [longIn2] "d" (longIn2)
: "cc"
);
return intRes;
}
// intRes = intIn1 * intIn2 >> 16 // intRes = intIn1 * intIn2 >> 16
// uses: // uses:
// r26 to store 0 // r26 to store 0
// r27 to store the byte 1 of the 24 bit result // r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \ static FORCE_INLINE uint16_t MultiU16X8toH16(uint8_t charIn1, uint16_t intIn2) {
asm volatile ( \ register uint8_t tmp;
A("clr r26") \ register uint16_t intRes;
A("mul %A1, %B2") \ __asm__ __volatile__ (
A("movw %A0, r0") \ A("clr %[tmp]")
A("mul %A1, %A2") \ A("mul %[charIn1], %B[intIn2]")
A("add %A0, r1") \ A("movw %A[intRes], r0")
A("adc %B0, r26") \ A("mul %[charIn1], %A[intIn2]")
A("lsr r0") \ A("add %A[intRes], r1")
A("adc %A0, r26") \ A("adc %B[intRes], %[tmp]")
A("adc %B0, r26") \ A("lsr r0")
A("clr r1") \ A("adc %A[intRes], %[tmp]")
: \ A("adc %B[intRes], %[tmp]")
"=&r" (intRes) \ A("clr r1")
: \ : [intRes] "=&r" (intRes),
"d" (charIn1), \ [tmp] "=&r" (tmp)
"d" (intIn2) \ : [charIn1] "d" (charIn1),
: \ [intIn2] "d" (intIn2)
"r26" \ : "cc"
) );
return intRes;
}
#endif // _MATH_AVR_H_ #endif // _MATH_AVR_H_

@ -23,11 +23,13 @@
#ifndef MATH_32BIT_H #ifndef MATH_32BIT_H
#define MATH_32BIT_H #define MATH_32BIT_H
#include "../core/macros.h"
/** /**
* Math helper functions for 32 bit CPUs * Math helper functions for 32 bit CPUs
*/ */
static FORCE_INLINE uint32_t MultiU32X24toH32(uint32_t longIn1, uint32_t longIn2) {
#define MultiU32X32toH32(intRes, longIn1, longIn2) intRes = ((uint64_t)longIn1 * longIn2 + 0x80000000) >> 32 return ((uint64_t)longIn1 * longIn2 + 0x00800000) >> 24;
#define MultiU32X24toH32(intRes, longIn1, longIn2) intRes = ((uint64_t)longIn1 * longIn2 + 0x00800000) >> 24 }
#endif // MATH_32BIT_H #endif // MATH_32BIT_H

@ -1158,6 +1158,12 @@ HAL_STEP_TIMER_ISR {
HAL_timer_isr_epilogue(STEP_TIMER_NUM); HAL_timer_isr_epilogue(STEP_TIMER_NUM);
} }
#ifdef CPU_32_BIT
#define STEP_MULTIPLY(A,B) MultiU32X24toH32(A, B);
#else
#define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B);
#endif
void Stepper::isr() { void Stepper::isr() {
#define ENDSTOP_NOMINAL_OCR_VAL 1500 * HAL_TICKS_PER_US // Check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch #define ENDSTOP_NOMINAL_OCR_VAL 1500 * HAL_TICKS_PER_US // Check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
@ -1525,14 +1531,7 @@ void Stepper::isr() {
? _eval_bezier_curve(acceleration_time) ? _eval_bezier_curve(acceleration_time)
: current_block->cruise_rate; : current_block->cruise_rate;
#else #else
#ifdef CPU_32_BIT acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate;
MultiU32X24toH32(acc_step_rate, acceleration_time, current_block->acceleration_rate);
#else
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
#endif
acc_step_rate += current_block->initial_rate;
// upper limit
NOMORE(acc_step_rate, current_block->nominal_rate); NOMORE(acc_step_rate, current_block->nominal_rate);
#endif #endif
@ -1576,18 +1575,14 @@ void Stepper::isr() {
#else #else
// Using the old trapezoidal control // Using the old trapezoidal control
#ifdef CPU_32_BIT step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate);
MultiU32X24toH32(step_rate, deceleration_time, current_block->acceleration_rate);
#else
MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
#endif
if (step_rate < acc_step_rate) { // Still decelerating? if (step_rate < acc_step_rate) { // Still decelerating?
step_rate = acc_step_rate - step_rate; step_rate = acc_step_rate - step_rate;
NOLESS(step_rate, current_block->final_rate); NOLESS(step_rate, current_block->final_rate);
} }
else else
step_rate = current_block->final_rate; step_rate = current_block->final_rate;
#endif #endif
// step_rate to timer interval // step_rate to timer interval

@ -340,24 +340,24 @@ class Stepper {
#ifdef CPU_32_BIT #ifdef CPU_32_BIT
// In case of high-performance processor, it is able to calculate in real-time // In case of high-performance processor, it is able to calculate in real-time
const uint32_t MIN_TIME_PER_STEP = (HAL_STEPPER_TIMER_RATE) / ((STEP_DOUBLER_FREQUENCY) * 2); const uint32_t min_time_per_step = (HAL_STEPPER_TIMER_RATE) / ((STEP_DOUBLER_FREQUENCY) * 2);
timer = uint32_t(HAL_STEPPER_TIMER_RATE) / step_rate; timer = uint32_t(HAL_STEPPER_TIMER_RATE) / step_rate;
NOLESS(timer, MIN_TIME_PER_STEP); // (STEP_DOUBLER_FREQUENCY * 2 kHz - this should never happen) NOLESS(timer, min_time_per_step); // (STEP_DOUBLER_FREQUENCY * 2 kHz - this should never happen)
#else #else
NOLESS(step_rate, F_CPU / 500000); NOLESS(step_rate, F_CPU / 500000);
step_rate -= F_CPU / 500000; // Correct for minimal speed step_rate -= F_CPU / 500000; // Correct for minimal speed
if (step_rate >= (8 * 256)) { // higher step rate if (step_rate >= (8 * 256)) { // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0]; uint8_t tmp_step_rate = (step_rate & 0x00FF);
unsigned char tmp_step_rate = (step_rate & 0x00FF); uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0];
unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2); uint16_t gain = (uint16_t)pgm_read_word_near(table_address + 2);
MultiU16X8toH16(timer, tmp_step_rate, gain); timer = MultiU16X8toH16(tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer; timer = (uint16_t)pgm_read_word_near(table_address) - timer;
} }
else { // lower step rates else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0]; uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0];
table_address += ((step_rate) >> 1) & 0xFFFC; table_address += ((step_rate) >> 1) & 0xFFFC;
timer = (unsigned short)pgm_read_word_near(table_address); timer = (uint16_t)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3); timer -= (((uint16_t)pgm_read_word_near(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3);
} }
if (timer < 100) { // (20kHz - this should never happen) if (timer < 100) { // (20kHz - this should never happen)
timer = 100; timer = 100;

Loading…
Cancel
Save