Use a macro for array copies

2.0.x
Scott Lahteine 8 years ago
parent e141f3a03f
commit 87b03b16bd

@ -1567,8 +1567,8 @@ inline void line_to_destination(float fr_mm_s) {
} }
inline void line_to_destination() { line_to_destination(feedrate_mm_s); } inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); } inline void set_current_to_destination() { COPY(current_position, destination); }
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); } inline void set_destination_to_current() { COPY(destination, current_position); }
#if IS_KINEMATIC #if IS_KINEMATIC
/** /**
@ -3583,7 +3583,7 @@ inline void gcode_G28() {
HOMEAXIS(X); HOMEAXIS(X);
// Consider the active extruder to be parked // Consider the active extruder to be parked
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position)); COPY(raised_parked_position, current_position);
delayed_move_time = 0; delayed_move_time = 0;
active_extruder_parked = true; active_extruder_parked = true;
@ -4383,7 +4383,7 @@ inline void gcode_G28() {
#endif #endif
float converted[XYZ]; float converted[XYZ];
memcpy(converted, current_position, sizeof(converted)); COPY(converted, current_position);
planner.abl_enabled = true; planner.abl_enabled = true;
planner.unapply_leveling(converted); // use conversion machinery planner.unapply_leveling(converted); // use conversion machinery
@ -4405,7 +4405,7 @@ inline void gcode_G28() {
} }
// The rotated XY and corrected Z are now current_position // The rotated XY and corrected Z are now current_position
memcpy(current_position, converted, sizeof(converted)); COPY(current_position, converted);
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
@ -7965,7 +7965,7 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n
break; break;
case DXC_AUTO_PARK_MODE: case DXC_AUTO_PARK_MODE:
// record raised toolhead position for use by unpark // record raised toolhead position for use by unpark
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position)); COPY(raised_parked_position, current_position);
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT; raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
#if ENABLED(max_software_endstops) #if ENABLED(max_software_endstops)
NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]); NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
@ -9332,7 +9332,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
planner.unapply_leveling(cartes); planner.unapply_leveling(cartes);
#endif #endif
if (axis == ALL_AXES) if (axis == ALL_AXES)
memcpy(current_position, cartes, sizeof(cartes)); COPY(current_position, cartes);
else else
current_position[axis] = cartes[axis]; current_position[axis] = cartes[axis];
} }
@ -9367,14 +9367,14 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
// Split at the left/front border of the right/top square // Split at the left/front border of the right/top square
int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
if (cx2 != cx1 && TEST(x_splits, gcx)) { if (cx2 != cx1 && TEST(x_splits, gcx)) {
memcpy(end, destination, sizeof(end)); COPY(end, destination);
destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx)); destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = MBL_SEGMENT_END(Y); destination[Y_AXIS] = MBL_SEGMENT_END(Y);
CBI(x_splits, gcx); CBI(x_splits, gcx);
} }
else if (cy2 != cy1 && TEST(y_splits, gcy)) { else if (cy2 != cy1 && TEST(y_splits, gcy)) {
memcpy(end, destination, sizeof(end)); COPY(end, destination);
destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy)); destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = MBL_SEGMENT_END(X); destination[X_AXIS] = MBL_SEGMENT_END(X);
@ -9394,7 +9394,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
mesh_line_to_destination(fr_mm_s, x_splits, y_splits); mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
// Restore destination from stack // Restore destination from stack
memcpy(destination, end, sizeof(end)); COPY(destination, end);
mesh_line_to_destination(fr_mm_s, x_splits, y_splits); mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
} }
@ -9430,14 +9430,14 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
// Split at the left/front border of the right/top square // Split at the left/front border of the right/top square
int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
if (cx2 != cx1 && TEST(x_splits, gcx)) { if (cx2 != cx1 && TEST(x_splits, gcx)) {
memcpy(end, destination, sizeof(end)); COPY(end, destination);
destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx); destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = LINE_SEGMENT_END(Y); destination[Y_AXIS] = LINE_SEGMENT_END(Y);
CBI(x_splits, gcx); CBI(x_splits, gcx);
} }
else if (cy2 != cy1 && TEST(y_splits, gcy)) { else if (cy2 != cy1 && TEST(y_splits, gcy)) {
memcpy(end, destination, sizeof(end)); COPY(end, destination);
destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy); destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = LINE_SEGMENT_END(X); destination[X_AXIS] = LINE_SEGMENT_END(X);
@ -9457,7 +9457,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits); bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
// Restore destination from stack // Restore destination from stack
memcpy(destination, end, sizeof(end)); COPY(destination, end);
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits); bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
} }
@ -9552,7 +9552,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
// Get the logical current position as starting point // Get the logical current position as starting point
float logical[XYZE]; float logical[XYZE];
memcpy(logical, current_position, sizeof(logical)); COPY(logical, current_position);
#define DELTA_VAR logical #define DELTA_VAR logical
@ -10527,7 +10527,7 @@ void setup() {
#if DISABLED(NO_WORKSPACE_OFFSETS) #if DISABLED(NO_WORKSPACE_OFFSETS)
// Initialize current position based on home_offset // Initialize current position based on home_offset
memcpy(current_position, home_offset, sizeof(home_offset)); COPY(current_position, home_offset);
#else #else
ZERO(current_position); ZERO(current_position);
#endif #endif

@ -79,6 +79,7 @@
#define NUMERIC_SIGNED(a) (NUMERIC(a) || (a) == '-') #define NUMERIC_SIGNED(a) (NUMERIC(a) || (a) == '-')
#define COUNT(a) (sizeof(a)/sizeof(*a)) #define COUNT(a) (sizeof(a)/sizeof(*a))
#define ZERO(a) memset(a,0,sizeof(a)) #define ZERO(a) memset(a,0,sizeof(a))
#define COPY(a,b) memcpy(a,b,min(sizeof(a),sizeof(b)))
// Macros for initializing arrays // Macros for initializing arrays
#define ARRAY_6(v1, v2, v3, v4, v5, v6, ...) { v1, v2, v3, v4, v5, v6 } #define ARRAY_6(v1, v2, v3, v4, v5, v6, ...) { v1, v2, v3, v4, v5, v6 }

@ -1298,7 +1298,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
block->flag |= BLOCK_FLAG_RECALCULATE | (block->nominal_speed <= v_allowable ? BLOCK_FLAG_NOMINAL_LENGTH : 0); block->flag |= BLOCK_FLAG_RECALCULATE | (block->nominal_speed <= v_allowable ? BLOCK_FLAG_NOMINAL_LENGTH : 0);
// Update previous path unit_vector and nominal speed // Update previous path unit_vector and nominal speed
memcpy(previous_speed, current_speed, sizeof(previous_speed)); COPY(previous_speed, current_speed);
previous_nominal_speed = block->nominal_speed; previous_nominal_speed = block->nominal_speed;
previous_safe_speed = safe_speed; previous_safe_speed = safe_speed;
@ -1360,7 +1360,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
block_buffer_head = next_buffer_head; block_buffer_head = next_buffer_head;
// Update the position (only when a move was queued) // Update the position (only when a move was queued)
memcpy(position, target, sizeof(position)); COPY(position, target);
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
position_float[X_AXIS] = a; position_float[X_AXIS] = a;
position_float[Y_AXIS] = b; position_float[Y_AXIS] = b;

Loading…
Cancel
Save