|
|
@ -129,16 +129,18 @@ const float homing_feedrate_mm_s[4] PROGMEM = {
|
|
|
|
// Cartesian conversion result goes here:
|
|
|
|
// Cartesian conversion result goes here:
|
|
|
|
float cartes[XYZ];
|
|
|
|
float cartes[XYZ];
|
|
|
|
|
|
|
|
|
|
|
|
// Until kinematics.cpp is created, create this here
|
|
|
|
|
|
|
|
#if IS_KINEMATIC
|
|
|
|
#if IS_KINEMATIC
|
|
|
|
float delta[ABC];
|
|
|
|
float delta[ABC];
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if HAS_SCARA_OFFSET
|
|
|
|
|
|
|
|
float scara_home_offset[ABC];
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
/**
|
|
|
|
* The workspace can be offset by some commands, or
|
|
|
|
* The workspace can be offset by some commands, or
|
|
|
|
* these offsets may be omitted to save on computation.
|
|
|
|
* these offsets may be omitted to save on computation.
|
|
|
|
*/
|
|
|
|
*/
|
|
|
|
#if HAS_WORKSPACE_OFFSET
|
|
|
|
|
|
|
|
#if HAS_POSITION_SHIFT
|
|
|
|
#if HAS_POSITION_SHIFT
|
|
|
|
// The distance that XYZ has been offset by G92. Reset by G28.
|
|
|
|
// The distance that XYZ has been offset by G92. Reset by G28.
|
|
|
|
float position_shift[XYZ] = { 0 };
|
|
|
|
float position_shift[XYZ] = { 0 };
|
|
|
@ -152,7 +154,6 @@ float cartes[XYZ];
|
|
|
|
// The above two are combined to save on computes
|
|
|
|
// The above two are combined to save on computes
|
|
|
|
float workspace_offset[XYZ] = { 0 };
|
|
|
|
float workspace_offset[XYZ] = { 0 };
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if OLDSCHOOL_ABL
|
|
|
|
#if OLDSCHOOL_ABL
|
|
|
|
float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
|
|
|
|
float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
|
|
|
@ -454,15 +455,14 @@ void bracket_probe_move(const bool before) {
|
|
|
|
void setup_for_endstop_or_probe_move() { bracket_probe_move(true); }
|
|
|
|
void setup_for_endstop_or_probe_move() { bracket_probe_move(true); }
|
|
|
|
void clean_up_after_endstop_or_probe_move() { bracket_probe_move(false); }
|
|
|
|
void clean_up_after_endstop_or_probe_move() { bracket_probe_move(false); }
|
|
|
|
|
|
|
|
|
|
|
|
// Software Endstops are based on the configured limits.
|
|
|
|
|
|
|
|
float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
|
|
|
|
|
|
|
|
soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
|
|
|
|
|
|
|
|
|
// Software Endstops are based on the configured limits.
|
|
|
|
|
|
|
|
bool soft_endstops_enabled = true;
|
|
|
|
bool soft_endstops_enabled = true;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Software Endstops are based on the configured limits.
|
|
|
|
|
|
|
|
float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
|
|
|
|
|
|
|
|
soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
|
|
|
|
|
|
|
|
|
|
|
|
#if IS_KINEMATIC
|
|
|
|
#if IS_KINEMATIC
|
|
|
|
float soft_endstop_radius, soft_endstop_radius_2;
|
|
|
|
float soft_endstop_radius, soft_endstop_radius_2;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
@ -504,6 +504,79 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
|
|
* Software endstops can be used to monitor the open end of
|
|
|
|
|
|
|
|
* an axis that has a hardware endstop on the other end. Or
|
|
|
|
|
|
|
|
* they can prevent axes from moving past endstops and grinding.
|
|
|
|
|
|
|
|
*
|
|
|
|
|
|
|
|
* To keep doing their job as the coordinate system changes,
|
|
|
|
|
|
|
|
* the software endstop positions must be refreshed to remain
|
|
|
|
|
|
|
|
* at the same positions relative to the machine.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
void update_software_endstops(const AxisEnum axis) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (axis == X_AXIS) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// In Dual X mode hotend_offset[X] is T1's home position
|
|
|
|
|
|
|
|
const float dual_max_x = MAX(hotend_offset[X_AXIS][1], X2_MAX_POS);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (active_extruder != 0) {
|
|
|
|
|
|
|
|
// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
|
|
|
|
|
|
|
|
soft_endstop_min[X_AXIS] = X2_MIN_POS;
|
|
|
|
|
|
|
|
soft_endstop_max[X_AXIS] = dual_max_x;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
else if (dxc_is_duplicating()) {
|
|
|
|
|
|
|
|
// In Duplication Mode, T0 can move as far left as X1_MIN_POS
|
|
|
|
|
|
|
|
// but not so far to the right that T1 would move past the end
|
|
|
|
|
|
|
|
soft_endstop_min[X_AXIS] = X1_MIN_POS;
|
|
|
|
|
|
|
|
soft_endstop_max[X_AXIS] = MIN(X1_MAX_POS, dual_max_x - duplicate_extruder_x_offset);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
else {
|
|
|
|
|
|
|
|
// In other modes, T0 can move from X1_MIN_POS to X1_MAX_POS
|
|
|
|
|
|
|
|
soft_endstop_min[X_AXIS] = X1_MIN_POS;
|
|
|
|
|
|
|
|
soft_endstop_max[X_AXIS] = X1_MAX_POS;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#elif ENABLED(DELTA)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
soft_endstop_min[axis] = base_min_pos(axis);
|
|
|
|
|
|
|
|
soft_endstop_max[axis] = (axis == Z_AXIS ? delta_height
|
|
|
|
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
|
|
|
|
- zprobe_zoffset + Z_PROBE_OFFSET_FROM_EXTRUDER
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
: base_max_pos(axis));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
switch (axis) {
|
|
|
|
|
|
|
|
case X_AXIS:
|
|
|
|
|
|
|
|
case Y_AXIS:
|
|
|
|
|
|
|
|
// Get a minimum radius for clamping
|
|
|
|
|
|
|
|
soft_endstop_radius = MIN(ABS(MAX(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]);
|
|
|
|
|
|
|
|
soft_endstop_radius_2 = sq(soft_endstop_radius);
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Z_AXIS:
|
|
|
|
|
|
|
|
delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
|
|
|
|
|
|
|
|
default: break;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
soft_endstop_min[axis] = base_min_pos(axis);
|
|
|
|
|
|
|
|
soft_endstop_max[axis] = base_max_pos(axis);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
|
|
|
|
SERIAL_ECHOPAIR("For ", axis_codes[axis]);
|
|
|
|
|
|
|
|
SERIAL_ECHOPAIR(" axis:\n soft_endstop_min = ", soft_endstop_min[axis]);
|
|
|
|
|
|
|
|
SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#if !UBL_SEGMENTED
|
|
|
|
#if !UBL_SEGMENTED
|
|
|
@ -1156,7 +1229,7 @@ void set_axis_is_at_home(const AxisEnum axis) {
|
|
|
|
|
|
|
|
|
|
|
|
#if HAS_POSITION_SHIFT
|
|
|
|
#if HAS_POSITION_SHIFT
|
|
|
|
position_shift[axis] = 0;
|
|
|
|
position_shift[axis] = 0;
|
|
|
|
update_software_endstops(axis);
|
|
|
|
update_workspace_offset(axis);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
@ -1506,89 +1579,18 @@ void homeaxis(const AxisEnum axis) {
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
} // homeaxis()
|
|
|
|
} // homeaxis()
|
|
|
|
|
|
|
|
|
|
|
|
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
|
|
|
|
#if HAS_WORKSPACE_OFFSET
|
|
|
|
|
|
|
|
void update_workspace_offset(const AxisEnum axis) {
|
|
|
|
/**
|
|
|
|
|
|
|
|
* Software endstops can be used to monitor the open end of
|
|
|
|
|
|
|
|
* an axis that has a hardware endstop on the other end. Or
|
|
|
|
|
|
|
|
* they can prevent axes from moving past endstops and grinding.
|
|
|
|
|
|
|
|
*
|
|
|
|
|
|
|
|
* To keep doing their job as the coordinate system changes,
|
|
|
|
|
|
|
|
* the software endstop positions must be refreshed to remain
|
|
|
|
|
|
|
|
* at the same positions relative to the machine.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
void update_software_endstops(const AxisEnum axis) {
|
|
|
|
|
|
|
|
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
|
|
|
|
|
|
|
|
workspace_offset[axis] = home_offset[axis] + position_shift[axis];
|
|
|
|
workspace_offset[axis] = home_offset[axis] + position_shift[axis];
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
|
|
|
|
if (axis == X_AXIS) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// In Dual X mode hotend_offset[X] is T1's home position
|
|
|
|
|
|
|
|
const float dual_max_x = MAX(hotend_offset[X_AXIS][1], X2_MAX_POS);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (active_extruder != 0) {
|
|
|
|
|
|
|
|
// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
|
|
|
|
|
|
|
|
soft_endstop_min[X_AXIS] = X2_MIN_POS;
|
|
|
|
|
|
|
|
soft_endstop_max[X_AXIS] = dual_max_x;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
else if (dxc_is_duplicating()) {
|
|
|
|
|
|
|
|
// In Duplication Mode, T0 can move as far left as X1_MIN_POS
|
|
|
|
|
|
|
|
// but not so far to the right that T1 would move past the end
|
|
|
|
|
|
|
|
soft_endstop_min[X_AXIS] = X1_MIN_POS;
|
|
|
|
|
|
|
|
soft_endstop_max[X_AXIS] = MIN(X1_MAX_POS, dual_max_x - duplicate_extruder_x_offset);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
else {
|
|
|
|
|
|
|
|
// In other modes, T0 can move from X1_MIN_POS to X1_MAX_POS
|
|
|
|
|
|
|
|
soft_endstop_min[X_AXIS] = X1_MIN_POS;
|
|
|
|
|
|
|
|
soft_endstop_max[X_AXIS] = X1_MAX_POS;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#elif ENABLED(DELTA)
|
|
|
|
|
|
|
|
soft_endstop_min[axis] = base_min_pos(axis);
|
|
|
|
|
|
|
|
soft_endstop_max[axis] = (axis == Z_AXIS ? delta_height
|
|
|
|
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
|
|
|
|
- zprobe_zoffset + Z_PROBE_OFFSET_FROM_EXTRUDER
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
: base_max_pos(axis));
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
soft_endstop_min[axis] = base_min_pos(axis);
|
|
|
|
|
|
|
|
soft_endstop_max[axis] = base_max_pos(axis);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
SERIAL_ECHOPAIR("For ", axis_codes[axis]);
|
|
|
|
SERIAL_ECHOPAIR("For ", axis_codes[axis]);
|
|
|
|
#if HAS_HOME_OFFSET
|
|
|
|
|
|
|
|
SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
|
|
|
|
SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
|
|
|
|
#endif
|
|
|
|
SERIAL_ECHOLNPAIR("\n position_shift = ", position_shift[axis]);
|
|
|
|
#if HAS_POSITION_SHIFT
|
|
|
|
|
|
|
|
SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
|
|
|
|
|
|
|
|
SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
|
|
|
switch (axis) {
|
|
|
|
|
|
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
|
|
|
|
|
case X_AXIS:
|
|
|
|
|
|
|
|
case Y_AXIS:
|
|
|
|
|
|
|
|
// Get a minimum radius for clamping
|
|
|
|
|
|
|
|
soft_endstop_radius = MIN(ABS(MAX(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]);
|
|
|
|
|
|
|
|
soft_endstop_radius_2 = sq(soft_endstop_radius);
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
case Z_AXIS:
|
|
|
|
|
|
|
|
delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
|
|
|
|
|
|
|
|
default: break;
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE || DELTA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if HAS_M206_COMMAND
|
|
|
|
#if HAS_M206_COMMAND
|
|
|
|
/**
|
|
|
|
/**
|
|
|
@ -1597,6 +1599,6 @@ void homeaxis(const AxisEnum axis) {
|
|
|
|
*/
|
|
|
|
*/
|
|
|
|
void set_home_offset(const AxisEnum axis, const float v) {
|
|
|
|
void set_home_offset(const AxisEnum axis, const float v) {
|
|
|
|
home_offset[axis] = v;
|
|
|
|
home_offset[axis] = v;
|
|
|
|
update_software_endstops(axis);
|
|
|
|
update_workspace_offset(axis);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif // HAS_M206_COMMAND
|
|
|
|
#endif // HAS_M206_COMMAND
|
|
|
|