Merge pull request #1428 from thinkyhead/issue_1388_eeprom

Make EEPROM storage consistent
2.0.x
Scott Lahteine 10 years ago
commit 7df9ca051c

@ -1,33 +1,99 @@
/**
* ConfigurationStore.cpp
*
* Configuration and EEPROM storage
*
* V15 EEPROM Layout:
*
* ver
* axis_steps_per_unit (x4)
* max_feedrate (x4)
* max_acceleration_units_per_sq_second (x4)
* acceleration
* retract_acceleration
* minimumfeedrate
* mintravelfeedrate
* minsegmenttime
* max_xy_jerk
* max_z_jerk
* max_e_jerk
* add_homing (x3)
*
* DELTA:
* endstop_adj (x3)
* delta_radius
* delta_diagonal_rod
* delta_segments_per_second
*
* ULTIPANEL:
* plaPreheatHotendTemp
* plaPreheatHPBTemp
* plaPreheatFanSpeed
* absPreheatHotendTemp
* absPreheatHPBTemp
* absPreheatFanSpeed
* zprobe_zoffset
*
* PIDTEMP:
* Kp[0], Ki[0], Kd[0], Kc[0]
* Kp[1], Ki[1], Kd[1], Kc[1]
* Kp[2], Ki[2], Kd[2], Kc[2]
* Kp[3], Ki[3], Kd[3], Kc[3]
*
* DOGLCD:
* lcd_contrast
*
* SCARA:
* axis_scaling (x3)
*
* FWRETRACT:
* autoretract_enabled
* retract_length
* retract_length_swap
* retract_feedrate
* retract_zlift
* retract_recover_length
* retract_recover_length_swap
* retract_recover_feedrate
*
* volumetric_enabled
*
* filament_size (x4)
*
*/
#include "Marlin.h" #include "Marlin.h"
#include "language.h"
#include "planner.h" #include "planner.h"
#include "temperature.h" #include "temperature.h"
#include "ultralcd.h" #include "ultralcd.h"
#include "ConfigurationStore.h" #include "ConfigurationStore.h"
void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
{ uint8_t c;
do while(size--) {
{
eeprom_write_byte((unsigned char*)pos, *value); eeprom_write_byte((unsigned char*)pos, *value);
c = eeprom_read_byte((unsigned char*)pos);
if (c != *value) {
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
}
pos++; pos++;
value++; value++;
}while(--size); };
} }
#define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value)) void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) do {
{
do
{
*value = eeprom_read_byte((unsigned char*)pos); *value = eeprom_read_byte((unsigned char*)pos);
pos++; pos++;
value++; value++;
} while (--size); } while (--size);
} }
#define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
#define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value)) #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))
//======================================================================================
//======================================================================================
#define DUMMY_PID_VALUE 3000.0f
#define EEPROM_OFFSET 100 #define EEPROM_OFFSET 100
@ -38,11 +104,12 @@ void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size)
// wrong data being written to the variables. // wrong data being written to the variables.
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order. // ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
#define EEPROM_VERSION "V14" #define EEPROM_VERSION "V15"
#ifdef EEPROM_SETTINGS #ifdef EEPROM_SETTINGS
void Config_StoreSettings()
{ void Config_StoreSettings() {
float dummy = 0.0f;
char ver[4] = "000"; char ver[4] = "000";
int i = EEPROM_OFFSET; int i = EEPROM_OFFSET;
EEPROM_WRITE_VAR(i, ver); // invalidate data first EEPROM_WRITE_VAR(i, ver); // invalidate data first
@ -58,16 +125,22 @@ void Config_StoreSettings()
EEPROM_WRITE_VAR(i, max_z_jerk); EEPROM_WRITE_VAR(i, max_z_jerk);
EEPROM_WRITE_VAR(i, max_e_jerk); EEPROM_WRITE_VAR(i, max_e_jerk);
EEPROM_WRITE_VAR(i, add_homing); EEPROM_WRITE_VAR(i, add_homing);
#ifdef DELTA #ifdef DELTA
EEPROM_WRITE_VAR(i,endstop_adj); EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
EEPROM_WRITE_VAR(i,delta_radius); EEPROM_WRITE_VAR(i, delta_radius); // 1 float
EEPROM_WRITE_VAR(i,delta_diagonal_rod); EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float
EEPROM_WRITE_VAR(i,delta_segments_per_second); EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
#endif//DELTA #else
dummy = 0.0f;
for (int q=6; q--;) EEPROM_WRITE_VAR(i, dummy);
#endif
#ifndef ULTIPANEL #ifndef ULTIPANEL
int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED; int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
int absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED; absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
#endif//ULTIPANEL #endif // !ULTIPANEL
EEPROM_WRITE_VAR(i, plaPreheatHotendTemp); EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
EEPROM_WRITE_VAR(i, plaPreheatHPBTemp); EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
EEPROM_WRITE_VAR(i, plaPreheatFanSpeed); EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
@ -75,250 +148,101 @@ void Config_StoreSettings()
EEPROM_WRITE_VAR(i, absPreheatHPBTemp); EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
EEPROM_WRITE_VAR(i, absPreheatFanSpeed); EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
EEPROM_WRITE_VAR(i, zprobe_zoffset); EEPROM_WRITE_VAR(i, zprobe_zoffset);
for (int e = 0; e < 4; e++) {
#ifdef PIDTEMP #ifdef PIDTEMP
float dummy = 0.0f; if (e < EXTRUDERS) {
for (int e = 0; e < 4; e++)
{
if (e < EXTRUDERS)
{
EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e)); EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e)); EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e)); EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e)); EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
#else//PID_ADD_EXTRUSION_RATE #else
dummy = 1.0f; // 1.0 = default kc dummy = 1.0f; // 1.0 = default kc
EEPROM_WRITE_VAR(dummmy); EEPROM_WRITE_VAR(dummmy);
#endif//PID_ADD_EXTRUSION_RATE #endif
} }
else else {
#else // !PIDTEMP
{ {
dummy = 3000.0f; #endif // !PIDTEMP
dummy = DUMMY_PID_VALUE;
EEPROM_WRITE_VAR(i, dummy); EEPROM_WRITE_VAR(i, dummy);
dummy = 0.0f; dummy = 0.0f;
EEPROM_WRITE_VAR(i,dummy); for (int q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
EEPROM_WRITE_VAR(i,dummy);
EEPROM_WRITE_VAR(i,dummy);
}
} }
#else//PIDTEMP
float dummy = 3000.0f; } // Extruders Loop
EEPROM_WRITE_VAR(i,dummy);
dummy = 0.0f;
EEPROM_WRITE_VAR(i,dummy);
EEPROM_WRITE_VAR(i,dummy);
EEPROM_WRITE_VAR(i,dummy);
#endif//PIDTEMP
#ifndef DOGLCD #ifndef DOGLCD
int lcd_contrast = 32; int lcd_contrast = 32;
#endif//DOGLCD #endif
EEPROM_WRITE_VAR(i, lcd_contrast); EEPROM_WRITE_VAR(i, lcd_contrast);
#ifdef SCARA #ifdef SCARA
EEPROM_WRITE_VAR(i,axis_scaling); // Add scaling for SCARA EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
#endif//SCARA #else
dummy = 1.0f;
EEPROM_WRITE_VAR(i, dummy);
#endif
#ifdef FWRETRACT #ifdef FWRETRACT
EEPROM_WRITE_VAR(i, autoretract_enabled); EEPROM_WRITE_VAR(i, autoretract_enabled);
EEPROM_WRITE_VAR(i, retract_length); EEPROM_WRITE_VAR(i, retract_length);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
EEPROM_WRITE_VAR(i, retract_length_swap); EEPROM_WRITE_VAR(i, retract_length_swap);
#endif//EXTRUDERS > 1 #else
dummy = 0.0f;
EEPROM_WRITE_VAR(i, dummy);
#endif
EEPROM_WRITE_VAR(i, retract_feedrate); EEPROM_WRITE_VAR(i, retract_feedrate);
EEPROM_WRITE_VAR(i, retract_zlift); EEPROM_WRITE_VAR(i, retract_zlift);
EEPROM_WRITE_VAR(i, retract_recover_length); EEPROM_WRITE_VAR(i, retract_recover_length);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
EEPROM_WRITE_VAR(i, retract_recover_length_swap); EEPROM_WRITE_VAR(i, retract_recover_length_swap);
#endif//EXTRUDERS > 1 #else
dummy = 0.0f;
EEPROM_WRITE_VAR(i, dummy);
#endif
EEPROM_WRITE_VAR(i, retract_recover_feedrate); EEPROM_WRITE_VAR(i, retract_recover_feedrate);
#endif // FWRETRACT #endif // FWRETRACT
// Save filament sizes
EEPROM_WRITE_VAR(i, volumetric_enabled); EEPROM_WRITE_VAR(i, volumetric_enabled);
EEPROM_WRITE_VAR(i, filament_size[0]);
#if EXTRUDERS > 1
EEPROM_WRITE_VAR(i, filament_size[1]);
#if EXTRUDERS > 2
EEPROM_WRITE_VAR(i, filament_size[2]);
#if EXTRUDERS > 3
EEPROM_WRITE_VAR(i, filament_size[3]);
#endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2
#endif //EXTRUDERS > 1
char ver2[4]=EEPROM_VERSION; // Save filament sizes
i=EEPROM_OFFSET; for (int q = 0; q < 4; q++) {
EEPROM_WRITE_VAR(i,ver2); // validate data if (q < EXTRUDERS) dummy = filament_size[q];
SERIAL_ECHO_START; EEPROM_WRITE_VAR(i, dummy);
SERIAL_ECHOLNPGM("Settings Stored");
} }
#endif //EEPROM_SETTINGS
#ifndef DISABLE_M503
void Config_PrintSettings()
{ // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Steps per unit:");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M92 X",axis_steps_per_unit[X_AXIS]);
SERIAL_ECHOPAIR(" Y",axis_steps_per_unit[Y_AXIS]);
SERIAL_ECHOPAIR(" Z",axis_steps_per_unit[Z_AXIS]);
SERIAL_ECHOPAIR(" E",axis_steps_per_unit[E_AXIS]);
SERIAL_ECHOLN("");
SERIAL_ECHO_START; int storageSize = i;
#ifdef SCARA
SERIAL_ECHOLNPGM("Scaling factors:");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M365 X",axis_scaling[X_AXIS]);
SERIAL_ECHOPAIR(" Y",axis_scaling[Y_AXIS]);
SERIAL_ECHOPAIR(" Z",axis_scaling[Z_AXIS]);
SERIAL_ECHOLN("");
SERIAL_ECHO_START; char ver2[4] = EEPROM_VERSION;
#endif//SCARA int j = EEPROM_OFFSET;
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):"); EEPROM_WRITE_VAR(j, ver2); // validate data
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M203 X", max_feedrate[X_AXIS]);
SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]);
SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]);
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M201 X" ,max_acceleration_units_per_sq_second[X_AXIS] );
SERIAL_ECHOPAIR(" Y" , max_acceleration_units_per_sq_second[Y_AXIS] );
SERIAL_ECHOPAIR(" Z" ,max_acceleration_units_per_sq_second[Z_AXIS] );
SERIAL_ECHOPAIR(" E" ,max_acceleration_units_per_sq_second[E_AXIS]);
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Acceleration: S=acceleration, T=retract acceleration");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M204 S",acceleration );
SERIAL_ECHOPAIR(" T" ,retract_acceleration);
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M205 S",minimumfeedrate );
SERIAL_ECHOPAIR(" T" ,mintravelfeedrate );
SERIAL_ECHOPAIR(" B" ,minsegmenttime );
SERIAL_ECHOPAIR(" X" ,max_xy_jerk );
SERIAL_ECHOPAIR(" Z" ,max_z_jerk);
SERIAL_ECHOPAIR(" E" ,max_e_jerk);
SERIAL_ECHOLN("");
// Report storage size
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Home offset (mm):"); SERIAL_ECHOPAIR("Settings Stored (", (unsigned long)i);
SERIAL_ECHO_START; SERIAL_ECHOLNPGM(" bytes)");
SERIAL_ECHOPAIR(" M206 X",add_homing[X_AXIS] );
SERIAL_ECHOPAIR(" Y" ,add_homing[Y_AXIS] );
SERIAL_ECHOPAIR(" Z" ,add_homing[Z_AXIS] );
SERIAL_ECHOLN("");
#ifdef DELTA
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Endstop adjustement (mm):");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M666 X",endstop_adj[X_AXIS] );
SERIAL_ECHOPAIR(" Y" ,endstop_adj[Y_AXIS] );
SERIAL_ECHOPAIR(" Z" ,endstop_adj[Z_AXIS] );
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Delta settings: L=delta_diagonal_rod, R=delta_radius, S=delta_segments_per_second");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M665 L",delta_diagonal_rod );
SERIAL_ECHOPAIR(" R" ,delta_radius );
SERIAL_ECHOPAIR(" S" ,delta_segments_per_second );
SERIAL_ECHOLN("");
#endif//DELTA
#ifdef PIDTEMP
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("PID settings:");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp,0)); // for compatibility with hosts, only echos values for E0
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
SERIAL_ECHOLN("");
#endif//PIDTEMP
#ifdef FWRETRACT
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M207 S",retract_length);
SERIAL_ECHOPAIR(" F" ,retract_feedrate*60);
SERIAL_ECHOPAIR(" Z" ,retract_zlift);
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M208 S",retract_recover_length);
SERIAL_ECHOPAIR(" F", retract_recover_feedrate*60);
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M209 S", (unsigned long)(autoretract_enabled ? 1 : 0));
SERIAL_ECHOLN("");
#if EXTRUDERS > 1
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Multi-extruder settings:");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" Swap retract length (mm): ", retract_length_swap);
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" Swap rec. addl. length (mm): ", retract_recover_length_swap);
SERIAL_ECHOLN("");
#endif//EXTRUDERS > 1
#endif//FWRETRACT
SERIAL_ECHO_START;
if (volumetric_enabled) {
SERIAL_ECHOLNPGM("Filament settings:");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
SERIAL_ECHOLN("");
#if EXTRUDERS > 1
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
SERIAL_ECHOLN("");
#if EXTRUDERS > 2
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
SERIAL_ECHOLN("");
#if EXTRUDERS > 3
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
SERIAL_ECHOLN("");
#endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2
#endif //EXTRUDERS > 1
} else {
SERIAL_ECHOLNPGM("Filament settings: Disabled");
}
#ifdef CUSTOM_M_CODES
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
SERIAL_ECHO_START;
SERIAL_ECHO(" M");
SERIAL_ECHO(CUSTOM_M_CODE_SET_Z_PROBE_OFFSET);
SERIAL_ECHOPAIR(" Z",-zprobe_zoffset);
SERIAL_ECHOLN("");
#endif
} }
#endif//DISABLE_M503
void Config_RetrieveSettings() {
#ifdef EEPROM_SETTINGS
void Config_RetrieveSettings()
{
int i = EEPROM_OFFSET; int i = EEPROM_OFFSET;
char stored_ver[4]; char stored_ver[4];
char ver[4] = EEPROM_VERSION; char ver[4] = EEPROM_VERSION;
EEPROM_READ_VAR(i, stored_ver); //read stored version EEPROM_READ_VAR(i, stored_ver); //read stored version
// SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]"); // SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
if (strncmp(ver,stored_ver,3) == 0)
{ if (strncmp(ver, stored_ver, 3) != 0) {
Config_ResetDefault();
}
else {
float dummy = 0;
// version number match // version number match
EEPROM_READ_VAR(i, axis_steps_per_unit); EEPROM_READ_VAR(i, axis_steps_per_unit);
EEPROM_READ_VAR(i, max_feedrate); EEPROM_READ_VAR(i, max_feedrate);
@ -336,16 +260,21 @@ void Config_RetrieveSettings()
EEPROM_READ_VAR(i, max_z_jerk); EEPROM_READ_VAR(i, max_z_jerk);
EEPROM_READ_VAR(i, max_e_jerk); EEPROM_READ_VAR(i, max_e_jerk);
EEPROM_READ_VAR(i, add_homing); EEPROM_READ_VAR(i, add_homing);
#ifdef DELTA #ifdef DELTA
EEPROM_READ_VAR(i,endstop_adj); EEPROM_READ_VAR(i, endstop_adj); // 3 floats
EEPROM_READ_VAR(i,delta_radius); EEPROM_READ_VAR(i, delta_radius); // 1 float
EEPROM_READ_VAR(i,delta_diagonal_rod); EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float
EEPROM_READ_VAR(i,delta_segments_per_second); EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float
#endif//DELTA #else
for (int q=6; q--;) EEPROM_READ_VAR(i, dummy);
#endif
#ifndef ULTIPANEL #ifndef ULTIPANEL
int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed; int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
int absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed; absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
#endif//ULTIPANEL #endif
EEPROM_READ_VAR(i, plaPreheatHotendTemp); EEPROM_READ_VAR(i, plaPreheatHotendTemp);
EEPROM_READ_VAR(i, plaPreheatHPBTemp); EEPROM_READ_VAR(i, plaPreheatHPBTemp);
EEPROM_READ_VAR(i, plaPreheatFanSpeed); EEPROM_READ_VAR(i, plaPreheatFanSpeed);
@ -353,109 +282,97 @@ void Config_RetrieveSettings()
EEPROM_READ_VAR(i, absPreheatHPBTemp); EEPROM_READ_VAR(i, absPreheatHPBTemp);
EEPROM_READ_VAR(i, absPreheatFanSpeed); EEPROM_READ_VAR(i, absPreheatFanSpeed);
EEPROM_READ_VAR(i, zprobe_zoffset); EEPROM_READ_VAR(i, zprobe_zoffset);
#ifdef PIDTEMP #ifdef PIDTEMP
float dummy = 0.0f; for (int e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
for (int e = 0; e < 4; e++) // 4 = max extruders supported by marlin EEPROM_READ_VAR(i, dummy);
{ if (e < EXTRUDERS && dummy != DUMMY_PID_VALUE) {
if (e < EXTRUDERS)
{
// do not need to scale PID values as the values in EEPROM are already scaled // do not need to scale PID values as the values in EEPROM are already scaled
EEPROM_READ_VAR(i,PID_PARAM(Kp,e)); PID_PARAM(Kp, e) = dummy;
EEPROM_READ_VAR(i, PID_PARAM(Ki, e)); EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
EEPROM_READ_VAR(i, PID_PARAM(Kd, e)); EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
EEPROM_READ_VAR(i, PID_PARAM(Kc, e)); EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
#else//PID_ADD_EXTRUSION_RATE #else
EEPROM_READ_VAR(i, dummy); EEPROM_READ_VAR(i, dummy);
#endif//PID_ADD_EXTRUSION_RATE #endif
} }
else else {
{ for (int q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
} }
} }
#else//PIDTEMP #else // !PIDTEMP
// 4 x 3 = 12 slots for PID parameters // 4 x 4 = 16 slots for PID parameters
float dummy = 0.0f; for (int q=16; q--;) EEPROM_READ_VAR(i, dummy); // 4x Kp, Ki, Kd, Kc
EEPROM_READ_VAR(i,dummy); #endif // !PIDTEMP
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
#endif//PIDTEMP
#ifndef DOGLCD #ifndef DOGLCD
int lcd_contrast; int lcd_contrast;
#endif//DOGLCD #endif
EEPROM_READ_VAR(i, lcd_contrast); EEPROM_READ_VAR(i, lcd_contrast);
#ifdef SCARA #ifdef SCARA
EEPROM_READ_VAR(i,axis_scaling); EEPROM_READ_VAR(i, axis_scaling); // 3 floats
#endif//SCARA #else
EEPROM_READ_VAR(i, dummy);
#endif
#ifdef FWRETRACT #ifdef FWRETRACT
EEPROM_READ_VAR(i, autoretract_enabled); EEPROM_READ_VAR(i, autoretract_enabled);
EEPROM_READ_VAR(i, retract_length); EEPROM_READ_VAR(i, retract_length);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
EEPROM_READ_VAR(i, retract_length_swap); EEPROM_READ_VAR(i, retract_length_swap);
#endif//EXTRUDERS > 1 #else
EEPROM_READ_VAR(i, dummy);
#endif
EEPROM_READ_VAR(i, retract_feedrate); EEPROM_READ_VAR(i, retract_feedrate);
EEPROM_READ_VAR(i, retract_zlift); EEPROM_READ_VAR(i, retract_zlift);
EEPROM_READ_VAR(i, retract_recover_length); EEPROM_READ_VAR(i, retract_recover_length);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
EEPROM_READ_VAR(i, retract_recover_length_swap); EEPROM_READ_VAR(i, retract_recover_length_swap);
#endif//EXTRUDERS > 1 #else
EEPROM_READ_VAR(i, dummy);
#endif
EEPROM_READ_VAR(i, retract_recover_feedrate); EEPROM_READ_VAR(i, retract_recover_feedrate);
#endif // FWRETRACT #endif // FWRETRACT
EEPROM_READ_VAR(i, volumetric_enabled); EEPROM_READ_VAR(i, volumetric_enabled);
EEPROM_READ_VAR(i, filament_size[0]);
#if EXTRUDERS > 1 for (int q = 0; q < 4; q++) {
EEPROM_READ_VAR(i, filament_size[1]); EEPROM_READ_VAR(i, dummy);
#if EXTRUDERS > 2 if (q < EXTRUDERS) filament_size[q] = dummy;
EEPROM_READ_VAR(i, filament_size[2]); }
#if EXTRUDERS > 3
EEPROM_READ_VAR(i, filament_size[3]);
#endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2
#endif //EXTRUDERS > 1
calculate_volumetric_multipliers(); calculate_volumetric_multipliers();
// Call updatePID (similar to when we have processed M301) // Call updatePID (similar to when we have processed M301)
updatePID(); updatePID();
// Report settings retrieved and length
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Stored settings retrieved"); SERIAL_ECHO(ver);
} SERIAL_ECHOPAIR(" stored settings retrieved (", (unsigned long)i);
else SERIAL_ECHOLNPGM(" bytes)");
{
Config_ResetDefault();
} }
#ifdef EEPROM_CHITCHAT #ifdef EEPROM_CHITCHAT
Config_PrintSettings(); Config_PrintSettings();
#endif//EEPROM_CHITCHAT #endif
} }
#endif // EEPROM_SETTINGS #endif // EEPROM_SETTINGS
void Config_ResetDefault() void Config_ResetDefault() {
{
float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT; float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
float tmp2[] = DEFAULT_MAX_FEEDRATE; float tmp2[] = DEFAULT_MAX_FEEDRATE;
long tmp3[] = DEFAULT_MAX_ACCELERATION; long tmp3[] = DEFAULT_MAX_ACCELERATION;
for (short i=0;i<4;i++) for (int i = 0; i < NUM_AXIS; i++) {
{
axis_steps_per_unit[i] = tmp1[i]; axis_steps_per_unit[i] = tmp1[i];
max_feedrate[i] = tmp2[i]; max_feedrate[i] = tmp2[i];
max_acceleration_units_per_sq_second[i] = tmp3[i]; max_acceleration_units_per_sq_second[i] = tmp3[i];
#ifdef SCARA #ifdef SCARA
if (i < sizeof(axis_scaling) / sizeof(*axis_scaling))
axis_scaling[i] = 1; axis_scaling[i] = 1;
#endif//SCARA #endif
} }
// steps per sq second need to be updated to agree with the units per sq second // steps per sq second need to be updated to agree with the units per sq second
@ -470,13 +387,15 @@ void Config_ResetDefault()
max_z_jerk = DEFAULT_ZJERK; max_z_jerk = DEFAULT_ZJERK;
max_e_jerk = DEFAULT_EJERK; max_e_jerk = DEFAULT_EJERK;
add_homing[X_AXIS] = add_homing[Y_AXIS] = add_homing[Z_AXIS] = 0; add_homing[X_AXIS] = add_homing[Y_AXIS] = add_homing[Z_AXIS] = 0;
#ifdef DELTA #ifdef DELTA
endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0; endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
delta_radius = DELTA_RADIUS; delta_radius = DELTA_RADIUS;
delta_diagonal_rod = DELTA_DIAGONAL_ROD; delta_diagonal_rod = DELTA_DIAGONAL_ROD;
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
recalc_delta_settings(delta_radius, delta_diagonal_rod); recalc_delta_settings(delta_radius, delta_diagonal_rod);
#endif//DELTA #endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP; plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP; plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
@ -484,26 +403,29 @@ void Config_ResetDefault()
absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP; absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP; absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED; absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
#endif//ULTIPANEL #endif
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER; zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
#endif//ENABLE_AUTO_BED_LEVELING #endif
#ifdef DOGLCD #ifdef DOGLCD
lcd_contrast = DEFAULT_LCD_CONTRAST; lcd_contrast = DEFAULT_LCD_CONTRAST;
#endif//DOGLCD #endif
#ifdef PIDTEMP #ifdef PIDTEMP
#ifdef PID_PARAMS_PER_EXTRUDER #ifdef PID_PARAMS_PER_EXTRUDER
for (int e = 0; e < EXTRUDERS; e++) for (int e = 0; e < EXTRUDERS; e++)
#else // PID_PARAMS_PER_EXTRUDER #else
int e = 0; // only need to write once int e = 0; // only need to write once
#endif // PID_PARAMS_PER_EXTRUDER #endif
{ {
PID_PARAM(Kp, e) = DEFAULT_Kp; PID_PARAM(Kp, e) = DEFAULT_Kp;
PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki); PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd); PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
PID_PARAM(Kc, e) = DEFAULT_Kc; PID_PARAM(Kc, e) = DEFAULT_Kc;
#endif//PID_ADD_EXTRUSION_RATE #endif
} }
// call updatePID (similar to when we have processed M301) // call updatePID (similar to when we have processed M301)
updatePID(); updatePID();
@ -514,15 +436,15 @@ void Config_ResetDefault()
retract_length = RETRACT_LENGTH; retract_length = RETRACT_LENGTH;
#if EXTRUDERS > 1 #if EXTRUDERS > 1
retract_length_swap = RETRACT_LENGTH_SWAP; retract_length_swap = RETRACT_LENGTH_SWAP;
#endif//EXTRUDERS > 1 #endif
retract_feedrate = RETRACT_FEEDRATE; retract_feedrate = RETRACT_FEEDRATE;
retract_zlift = RETRACT_ZLIFT; retract_zlift = RETRACT_ZLIFT;
retract_recover_length = RETRACT_RECOVER_LENGTH; retract_recover_length = RETRACT_RECOVER_LENGTH;
#if EXTRUDERS > 1 #if EXTRUDERS > 1
retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
#endif//EXTRUDERS > 1 #endif
retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
#endif//FWRETRACT #endif
volumetric_enabled = false; volumetric_enabled = false;
filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA; filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA;
@ -532,12 +454,213 @@ void Config_ResetDefault()
filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA; filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA;
#if EXTRUDERS > 3 #if EXTRUDERS > 3
filament_size[3] = DEFAULT_NOMINAL_FILAMENT_DIA; filament_size[3] = DEFAULT_NOMINAL_FILAMENT_DIA;
#endif //EXTRUDERS > 3 #endif
#endif //EXTRUDERS > 2 #endif
#endif //EXTRUDERS > 1 #endif
calculate_volumetric_multipliers(); calculate_volumetric_multipliers();
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded"); SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
}
#ifndef DISABLE_M503
void Config_PrintSettings(bool forReplay) {
// Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Steps per unit:");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M92 X", axis_steps_per_unit[X_AXIS]);
SERIAL_ECHOPAIR(" Y", axis_steps_per_unit[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", axis_steps_per_unit[Z_AXIS]);
SERIAL_ECHOPAIR(" E", axis_steps_per_unit[E_AXIS]);
SERIAL_EOL;
SERIAL_ECHO_START;
#ifdef SCARA
if (!forReplay) {
SERIAL_ECHOLNPGM("Scaling factors:");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M365 X", axis_scaling[X_AXIS]);
SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
SERIAL_EOL;
SERIAL_ECHO_START;
#endif // SCARA
if (!forReplay) {
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M203 X", max_feedrate[X_AXIS]);
SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]);
SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]);
SERIAL_EOL;
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M201 X", max_acceleration_units_per_sq_second[X_AXIS] );
SERIAL_ECHOPAIR(" Y", max_acceleration_units_per_sq_second[Y_AXIS] );
SERIAL_ECHOPAIR(" Z", max_acceleration_units_per_sq_second[Z_AXIS] );
SERIAL_ECHOPAIR(" E", max_acceleration_units_per_sq_second[E_AXIS]);
SERIAL_EOL;
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Acceleration: S=acceleration, T=retract acceleration");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M204 S", acceleration );
SERIAL_ECHOPAIR(" T", retract_acceleration);
SERIAL_EOL;
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M205 S", minimumfeedrate );
SERIAL_ECHOPAIR(" T", mintravelfeedrate );
SERIAL_ECHOPAIR(" B", minsegmenttime );
SERIAL_ECHOPAIR(" X", max_xy_jerk );
SERIAL_ECHOPAIR(" Z", max_z_jerk);
SERIAL_ECHOPAIR(" E", max_e_jerk);
SERIAL_EOL;
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Home offset (mm):");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M206 X", add_homing[X_AXIS] );
SERIAL_ECHOPAIR(" Y", add_homing[Y_AXIS] );
SERIAL_ECHOPAIR(" Z", add_homing[Z_AXIS] );
SERIAL_EOL;
#ifdef DELTA
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Endstop adjustement (mm):");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS] );
SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS] );
SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS] );
SERIAL_EOL;
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Delta settings: L=delta_diagonal_rod, R=delta_radius, S=delta_segments_per_second");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod );
SERIAL_ECHOPAIR(" R", delta_radius );
SERIAL_ECHOPAIR(" S", delta_segments_per_second );
SERIAL_EOL;
#endif // DELTA
#ifdef PIDTEMP
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("PID settings:");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echos values for E0
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
SERIAL_EOL;
#endif // PIDTEMP
#ifdef FWRETRACT
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M207 S", retract_length);
SERIAL_ECHOPAIR(" F", retract_feedrate*60);
SERIAL_ECHOPAIR(" Z", retract_zlift);
SERIAL_EOL;
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
SERIAL_ECHO_START;
} }
SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
SERIAL_ECHOPAIR(" F", retract_recover_feedrate*60);
SERIAL_EOL;
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M209 S", (unsigned long)(autoretract_enabled ? 1 : 0));
SERIAL_EOL;
#if EXTRUDERS > 1
if (!forReplay) {
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Multi-extruder settings:");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" Swap retract length (mm): ", retract_length_swap);
SERIAL_EOL;
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" Swap rec. addl. length (mm): ", retract_recover_length_swap);
SERIAL_EOL;
}
#endif // EXTRUDERS > 1
#endif // FWRETRACT
SERIAL_ECHO_START;
if (volumetric_enabled) {
if (!forReplay) {
SERIAL_ECHOLNPGM("Filament settings:");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
SERIAL_EOL;
#if EXTRUDERS > 1
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
SERIAL_EOL;
#if EXTRUDERS > 2
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
SERIAL_EOL;
#if EXTRUDERS > 3
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
SERIAL_EOL;
#endif
#endif
#endif
} else {
if (!forReplay) {
SERIAL_ECHOLNPGM("Filament settings: Disabled");
}
}
#ifdef CUSTOM_M_CODES
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
SERIAL_ECHO_START;
}
SERIAL_ECHO(" M");
SERIAL_ECHO(CUSTOM_M_CODE_SET_Z_PROBE_OFFSET);
SERIAL_ECHOPAIR(" Z", -zprobe_zoffset);
SERIAL_EOL;
#endif
}
#endif // !DISABLE_M503

@ -6,9 +6,9 @@
void Config_ResetDefault(); void Config_ResetDefault();
#ifndef DISABLE_M503 #ifndef DISABLE_M503
void Config_PrintSettings(); void Config_PrintSettings(bool forReplay=false);
#else #else
FORCE_INLINE void Config_PrintSettings() {} FORCE_INLINE void Config_PrintSettings(bool forReplay=false) {}
#endif #endif
#ifdef EEPROM_SETTINGS #ifdef EEPROM_SETTINGS
@ -19,4 +19,4 @@ FORCE_INLINE void Config_StoreSettings() {}
FORCE_INLINE void Config_RetrieveSettings() { Config_ResetDefault(); Config_PrintSettings(); } FORCE_INLINE void Config_RetrieveSettings() { Config_ResetDefault(); Config_PrintSettings(); }
#endif #endif
#endif//CONFIG_STORE_H #endif // __CONFIG_STORE_H

@ -86,6 +86,8 @@ extern const char echomagic[] PROGMEM;
#define SERIAL_ECHOPAIR(name,value) (serial_echopair_P(PSTR(name),(value))) #define SERIAL_ECHOPAIR(name,value) (serial_echopair_P(PSTR(name),(value)))
#define SERIAL_EOL SERIAL_ECHOLN("")
void serial_echopair_P(const char *s_P, float v); void serial_echopair_P(const char *s_P, float v);
void serial_echopair_P(const char *s_P, double v); void serial_echopair_P(const char *s_P, double v);
void serial_echopair_P(const char *s_P, unsigned long v); void serial_echopair_P(const char *s_P, unsigned long v);

@ -164,7 +164,7 @@
// M500 - stores parameters in EEPROM // M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
// M503 - print the current settings (from memory not from EEPROM) // M503 - print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
// M665 - set delta configurations // M665 - set delta configurations
@ -3581,7 +3581,7 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
break; break;
case 503: // M503 print settings currently in memory case 503: // M503 print settings currently in memory
{ {
Config_PrintSettings(); Config_PrintSettings(code_seen('S') && code_value == 0);
} }
break; break;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED

@ -155,6 +155,8 @@
#define MSG_BABYSTEPPING_Z "Babystepping Z" #define MSG_BABYSTEPPING_Z "Babystepping Z"
#define MSG_SERIAL_ERROR_MENU_STRUCTURE "Error in menu structure" #define MSG_SERIAL_ERROR_MENU_STRUCTURE "Error in menu structure"
#define MSG_ERR_EEPROM_WRITE "Error writing to EEPROM!"
// LCD Menu Messages // LCD Menu Messages
#include LANGUAGE_INCLUDE #include LANGUAGE_INCLUDE

Loading…
Cancel
Save