Merge pull request #1408 from thinkyhead/cleanup_servo

Formatting cleanup of quiet sources
2.0.x
Scott Lahteine 10 years ago
commit 7378a7fef4

@ -44,6 +44,7 @@
#include "Configuration.h" #include "Configuration.h"
#ifdef NUM_SERVOS #ifdef NUM_SERVOS
#include <avr/interrupt.h> #include <avr/interrupt.h>
#include <Arduino.h> #include <Arduino.h>
@ -52,7 +53,6 @@
#define usToTicks(_us) (( clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8) // 12 Aug 2009 #define usToTicks(_us) (( clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8) // 12 Aug 2009
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds #define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009 #define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009
//#define NBR_TIMERS (MAX_SERVOS / SERVOS_PER_TIMER) //#define NBR_TIMERS (MAX_SERVOS / SERVOS_PER_TIMER)
@ -74,24 +74,23 @@ uint8_t ServoCount = 0; // the total number
/************ static functions common to all instances ***********************/ /************ static functions common to all instances ***********************/
static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA) static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA) {
{ if (Channel[timer] < 0)
if( Channel[timer] < 0 )
*TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer *TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
else{ else {
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true ) if (SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive)
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated
} }
Channel[timer]++; // increment to the next channel Channel[timer]++; // increment to the next channel
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) { if (SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
*OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks; *OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks;
if(SERVO(timer,Channel[timer]).Pin.isActive == true) // check if activated if (SERVO(timer,Channel[timer]).Pin.isActive) // check if activated
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
} }
else { else {
// finished all channels so wait for the refresh period to expire before starting over // finished all channels so wait for the refresh period to expire before starting over
if( ((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL) ) // allow a few ticks to ensure the next OCR1A not missed if ( ((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL) ) // allow a few ticks to ensure the next OCR1A not missed
*OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL); *OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
else else
*OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed *OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed
@ -100,142 +99,126 @@ static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t
} }
#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform #ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
// Interrupt handlers for Arduino
#if defined(_useTimer1)
SIGNAL (TIMER1_COMPA_vect)
{
handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif
#if defined(_useTimer3) // Interrupt handlers for Arduino
SIGNAL (TIMER3_COMPA_vect) #if defined(_useTimer1)
{ SIGNAL (TIMER1_COMPA_vect) { handle_interrupts(_timer1, &TCNT1, &OCR1A); }
handle_interrupts(_timer3, &TCNT3, &OCR3A); #endif
}
#endif
#if defined(_useTimer4) #if defined(_useTimer3)
SIGNAL (TIMER4_COMPA_vect) SIGNAL (TIMER3_COMPA_vect) { handle_interrupts(_timer3, &TCNT3, &OCR3A); }
{ #endif
handle_interrupts(_timer4, &TCNT4, &OCR4A);
}
#endif
#if defined(_useTimer5) #if defined(_useTimer4)
SIGNAL (TIMER5_COMPA_vect) SIGNAL (TIMER4_COMPA_vect) { handle_interrupts(_timer4, &TCNT4, &OCR4A); }
{ #endif
handle_interrupts(_timer5, &TCNT5, &OCR5A);
}
#endif
#elif defined WIRING #if defined(_useTimer5)
// Interrupt handlers for Wiring SIGNAL (TIMER5_COMPA_vect) { handle_interrupts(_timer5, &TCNT5, &OCR5A); }
#if defined(_useTimer1) #endif
void Timer1Service()
{
handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif
#if defined(_useTimer3)
void Timer3Service()
{
handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif
#endif
#else //!WIRING
static void initISR(timer16_Sequence_t timer) // Interrupt handlers for Wiring
{ #if defined(_useTimer1)
#if defined (_useTimer1) void Timer1Service() { handle_interrupts(_timer1, &TCNT1, &OCR1A); }
if(timer == _timer1) { #endif
#if defined(_useTimer3)
void Timer3Service() { handle_interrupts(_timer3, &TCNT3, &OCR3A); }
#endif
#endif //!WIRING
static void initISR(timer16_Sequence_t timer) {
#if defined(_useTimer1)
if (timer == _timer1) {
TCCR1A = 0; // normal counting mode TCCR1A = 0; // normal counting mode
TCCR1B = _BV(CS11); // set prescaler of 8 TCCR1B = _BV(CS11); // set prescaler of 8
TCNT1 = 0; // clear the timer count TCNT1 = 0; // clear the timer count
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__) #if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
TIFR |= _BV(OCF1A); // clear any pending interrupts; TIFR |= _BV(OCF1A); // clear any pending interrupts;
TIMSK |= _BV(OCIE1A) ; // enable the output compare interrupt TIMSK |= _BV(OCIE1A); // enable the output compare interrupt
#else #else
// here if not ATmega8 or ATmega128 // here if not ATmega8 or ATmega128
TIFR1 |= _BV(OCF1A); // clear any pending interrupts; TIFR1 |= _BV(OCF1A); // clear any pending interrupts;
TIMSK1 |= _BV(OCIE1A) ; // enable the output compare interrupt TIMSK1 |= _BV(OCIE1A); // enable the output compare interrupt
#endif #endif
#if defined(WIRING) #if defined(WIRING)
timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service); timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
#endif #endif
} }
#endif #endif
#if defined (_useTimer3) #if defined(_useTimer3)
if(timer == _timer3) { if (timer == _timer3) {
TCCR3A = 0; // normal counting mode TCCR3A = 0; // normal counting mode
TCCR3B = _BV(CS31); // set prescaler of 8 TCCR3B = _BV(CS31); // set prescaler of 8
TCNT3 = 0; // clear the timer count TCNT3 = 0; // clear the timer count
#if defined(__AVR_ATmega128__) #if defined(__AVR_ATmega128__)
TIFR |= _BV(OCF3A); // clear any pending interrupts; TIFR |= _BV(OCF3A); // clear any pending interrupts;
ETIMSK |= _BV(OCIE3A); // enable the output compare interrupt ETIMSK |= _BV(OCIE3A); // enable the output compare interrupt
#else #else
TIFR3 = _BV(OCF3A); // clear any pending interrupts; TIFR3 = _BV(OCF3A); // clear any pending interrupts;
TIMSK3 = _BV(OCIE3A) ; // enable the output compare interrupt TIMSK3 = _BV(OCIE3A) ; // enable the output compare interrupt
#endif #endif
#if defined(WIRING) #if defined(WIRING)
timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
#endif #endif
} }
#endif #endif
#if defined (_useTimer4) #if defined(_useTimer4)
if(timer == _timer4) { if (timer == _timer4) {
TCCR4A = 0; // normal counting mode TCCR4A = 0; // normal counting mode
TCCR4B = _BV(CS41); // set prescaler of 8 TCCR4B = _BV(CS41); // set prescaler of 8
TCNT4 = 0; // clear the timer count TCNT4 = 0; // clear the timer count
TIFR4 = _BV(OCF4A); // clear any pending interrupts; TIFR4 = _BV(OCF4A); // clear any pending interrupts;
TIMSK4 = _BV(OCIE4A) ; // enable the output compare interrupt TIMSK4 = _BV(OCIE4A) ; // enable the output compare interrupt
} }
#endif #endif
#if defined (_useTimer5) #if defined(_useTimer5)
if(timer == _timer5) { if (timer == _timer5) {
TCCR5A = 0; // normal counting mode TCCR5A = 0; // normal counting mode
TCCR5B = _BV(CS51); // set prescaler of 8 TCCR5B = _BV(CS51); // set prescaler of 8
TCNT5 = 0; // clear the timer count TCNT5 = 0; // clear the timer count
TIFR5 = _BV(OCF5A); // clear any pending interrupts; TIFR5 = _BV(OCF5A); // clear any pending interrupts;
TIMSK5 = _BV(OCIE5A) ; // enable the output compare interrupt TIMSK5 = _BV(OCIE5A) ; // enable the output compare interrupt
} }
#endif #endif
} }
static void finISR(timer16_Sequence_t timer) static void finISR(timer16_Sequence_t timer) {
{ // Disable use of the given timer
//disable use of the given timer #if defined(WIRING)
#if defined WIRING // Wiring if (timer == _timer1) {
if(timer == _timer1) { #if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__) TIMSK1
TIMSK1 &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
#else #else
TIMSK &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt TIMSK
#endif #endif
&= ~_BV(OCIE1A); // disable timer 1 output compare interrupt
timerDetach(TIMER1OUTCOMPAREA_INT); timerDetach(TIMER1OUTCOMPAREA_INT);
} }
else if(timer == _timer3) { else if (timer == _timer3) {
#if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__) #if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
TIMSK3 &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt TIMSK3
#else #else
ETIMSK &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt ETIMSK
#endif #endif
&= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
timerDetach(TIMER3OUTCOMPAREA_INT); timerDetach(TIMER3OUTCOMPAREA_INT);
} }
#else #else //!WIRING
//For arduino - in future: call here to a currently undefined function to reset the timer // For arduino - in future: call here to a currently undefined function to reset the timer
#endif #endif
} }
static boolean isTimerActive(timer16_Sequence_t timer) static boolean isTimerActive(timer16_Sequence_t timer) {
{
// returns true if any servo is active on this timer // returns true if any servo is active on this timer
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) { for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
if(SERVO(timer,channel).Pin.isActive == true) if (SERVO(timer,channel).Pin.isActive)
return true; return true;
} }
return false; return false;
@ -244,70 +227,59 @@ static boolean isTimerActive(timer16_Sequence_t timer)
/****************** end of static functions ******************************/ /****************** end of static functions ******************************/
Servo::Servo() Servo::Servo() {
{ if ( ServoCount < MAX_SERVOS) {
if( ServoCount < MAX_SERVOS) {
this->servoIndex = ServoCount++; // assign a servo index to this instance this->servoIndex = ServoCount++; // assign a servo index to this instance
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009 servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
} }
else else
this->servoIndex = INVALID_SERVO ; // too many servos this->servoIndex = INVALID_SERVO; // too many servos
} }
uint8_t Servo::attach(int pin) uint8_t Servo::attach(int pin) {
{
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH); return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
} }
uint8_t Servo::attach(int pin, int min, int max) uint8_t Servo::attach(int pin, int min, int max) {
{ if (this->servoIndex < MAX_SERVOS ) {
if(this->servoIndex < MAX_SERVOS ) { #if defined(ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
if (pin > 0) this->pin = pin; else pin = this->pin; if (pin > 0) this->pin = pin; else pin = this->pin;
#endif #endif
pinMode( pin, OUTPUT) ; // set servo pin to output pinMode(pin, OUTPUT); // set servo pin to output
servos[this->servoIndex].Pin.nbr = pin; servos[this->servoIndex].Pin.nbr = pin;
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128 // todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS this->min = (MIN_PULSE_WIDTH - min) / 4; //resolution of min/max is 4 uS
this->max = (MAX_PULSE_WIDTH - max)/4; this->max = (MAX_PULSE_WIDTH - max) / 4;
// initialize the timer if it has not already been initialized // initialize the timer if it has not already been initialized
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if(isTimerActive(timer) == false) if (!isTimerActive(timer)) initISR(timer);
initISR(timer);
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
} }
return this->servoIndex ; return this->servoIndex;
} }
void Servo::detach() void Servo::detach() {
{
servos[this->servoIndex].Pin.isActive = false; servos[this->servoIndex].Pin.isActive = false;
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex); timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if(isTimerActive(timer) == false) { if (!isTimerActive(timer)) finISR(timer);
finISR(timer);
}
} }
void Servo::write(int value) void Servo::write(int value) {
{ if (value < MIN_PULSE_WIDTH) { // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if(value < MIN_PULSE_WIDTH) if (value < 0) value = 0;
{ // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds) if (value > 180) value = 180;
if(value < 0) value = 0;
if(value > 180) value = 180;
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX()); value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
} }
this->writeMicroseconds(value); this->writeMicroseconds(value);
} }
void Servo::writeMicroseconds(int value) void Servo::writeMicroseconds(int value) {
{
// calculate and store the values for the given channel // calculate and store the values for the given channel
byte channel = this->servoIndex; byte channel = this->servoIndex;
if( (channel < MAX_SERVOS) ) // ensure channel is valid if (channel < MAX_SERVOS) { // ensure channel is valid
{ if (value < SERVO_MIN()) // ensure pulse width is valid
if( value < SERVO_MIN() ) // ensure pulse width is valid
value = SERVO_MIN(); value = SERVO_MIN();
else if( value > SERVO_MAX() ) else if (value > SERVO_MAX())
value = SERVO_MAX(); value = SERVO_MAX();
value = value - TRIM_DURATION; value = value - TRIM_DURATION;
@ -320,25 +292,13 @@ void Servo::writeMicroseconds(int value)
} }
} }
int Servo::read() // return the value as degrees // return the value as degrees
{ int Servo::read() { return map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180); }
return map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
}
int Servo::readMicroseconds()
{
unsigned int pulsewidth;
if( this->servoIndex != INVALID_SERVO )
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION ; // 12 aug 2009
else
pulsewidth = 0;
return pulsewidth; int Servo::readMicroseconds() {
return (this->servoIndex == INVALID_SERVO) ? 0 : ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION;
} }
bool Servo::attached() bool Servo::attached() { return servos[this->servoIndex].Pin.isActive; }
{
return servos[this->servoIndex].Pin.isActive ;
}
#endif #endif

@ -58,35 +58,36 @@
// Say which 16 bit timers can be used and in what order // Say which 16 bit timers can be used and in what order
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define _useTimer5 #define _useTimer5
//#define _useTimer1 //#define _useTimer1
#define _useTimer3 #define _useTimer3
#define _useTimer4 #define _useTimer4
//typedef enum { _timer5, _timer1, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t ; //typedef enum { _timer5, _timer1, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer5, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t ; typedef enum { _timer5, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t ;
#elif defined(__AVR_ATmega32U4__) #elif defined(__AVR_ATmega32U4__)
//#define _useTimer1 //#define _useTimer1
#define _useTimer3 #define _useTimer3
//typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t ; //typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ; typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ;
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__) #elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#define _useTimer3 #define _useTimer3
//#define _useTimer1 //#define _useTimer1
//typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ; //typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ; typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ;
#elif defined(__AVR_ATmega128__) ||defined(__AVR_ATmega1281__) || defined(__AVR_ATmega1284P__) ||defined(__AVR_ATmega2561__) #elif defined(__AVR_ATmega128__) ||defined(__AVR_ATmega1281__) || defined(__AVR_ATmega1284P__) ||defined(__AVR_ATmega2561__)
#define _useTimer3 #define _useTimer3
//#define _useTimer1 //#define _useTimer1
//typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ; //typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ; typedef enum { _timer3, _Nbr_16timers } timer16_Sequence_t ;
#else // everything else #else // everything else
//#define _useTimer1 //#define _useTimer1
//typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t ; //typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t ;
typedef enum { _Nbr_16timers } timer16_Sequence_t ; typedef enum { _Nbr_16timers } timer16_Sequence_t ;
#endif #endif
#define Servo_VERSION 2 // software version of this library #define Servo_VERSION 2 // software version of this library
@ -104,16 +105,15 @@ typedef enum { _Nbr_16timers } timer16_Sequence_t ;
typedef struct { typedef struct {
uint8_t nbr :6 ; // a pin number from 0 to 63 uint8_t nbr :6 ; // a pin number from 0 to 63
uint8_t isActive :1 ; // true if this channel is enabled, pin not pulsed if false uint8_t isActive :1 ; // true if this channel is enabled, pin not pulsed if false
} ServoPin_t ; } ServoPin_t;
typedef struct { typedef struct {
ServoPin_t Pin; ServoPin_t Pin;
unsigned int ticks; unsigned int ticks;
} servo_t; } servo_t;
class Servo class Servo {
{ public:
public:
Servo(); Servo();
uint8_t attach(int pin); // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if failure uint8_t attach(int pin); // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if failure
uint8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes. uint8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes.
@ -123,10 +123,10 @@ public:
int read(); // returns current pulse width as an angle between 0 and 180 degrees int read(); // returns current pulse width as an angle between 0 and 180 degrees
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release) int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
bool attached(); // return true if this servo is attached, otherwise false bool attached(); // return true if this servo is attached, otherwise false
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
int pin; // store the hardware pin of the servo int pin; // store the hardware pin of the servo
#endif #endif
private: private:
uint8_t servoIndex; // index into the channel data for this servo uint8_t servoIndex; // index into the channel data for this servo
int8_t min; // minimum is this value times 4 added to MIN_PULSE_WIDTH int8_t min; // minimum is this value times 4 added to MIN_PULSE_WIDTH
int8_t max; // maximum is this value times 4 added to MAX_PULSE_WIDTH int8_t max; // maximum is this value times 4 added to MAX_PULSE_WIDTH

Loading…
Cancel
Save