Merge pull request #4100 from thinkyhead/rc_z_deploy

Use deploy/stow with FIX_MOUNTED_PROBE too
2.0.x
Scott Lahteine 9 years ago committed by GitHub
commit 71534dc11f

@ -90,13 +90,35 @@ script:
- opt_enable PIDTEMPBED - opt_enable PIDTEMPBED
- build_marlin - build_marlin
# #
# Test a Servo Probe without leveling # Test a "Fix Mounted" Probe
#
- restore_configs
- opt_enable FIX_MOUNTED_PROBE
- build_marlin
#
# ...with AUTO_BED_LEVELING_FEATURE & DEBUG_LEVELING_FEATURE
#
- opt_enable AUTO_BED_LEVELING_FEATURE DEBUG_LEVELING_FEATURE
- build_marlin
#
# Test a Mechanical Probe
#
- restore_configs
- opt_enable MECHANICAL_PROBE
- build_marlin
#
# ...with AUTO_BED_LEVELING_FEATURE & DEBUG_LEVELING_FEATURE
#
- opt_enable AUTO_BED_LEVELING_FEATURE DEBUG_LEVELING_FEATURE
- build_marlin
#
# Test a Servo Probe
# #
- restore_configs - restore_configs
- opt_enable NUM_SERVOS Z_ENDSTOP_SERVO_NR Z_SERVO_ANGLES DEACTIVATE_SERVOS_AFTER_MOVE - opt_enable NUM_SERVOS Z_ENDSTOP_SERVO_NR Z_SERVO_ANGLES DEACTIVATE_SERVOS_AFTER_MOVE
- build_marlin - build_marlin
# #
# Test AUTO_BED_LEVELING_FEATURE & DEBUG_LEVELING_FEATURE with a Servo Probe # ...with AUTO_BED_LEVELING_FEATURE & DEBUG_LEVELING_FEATURE
# #
- opt_enable AUTO_BED_LEVELING_FEATURE DEBUG_LEVELING_FEATURE - opt_enable AUTO_BED_LEVELING_FEATURE DEBUG_LEVELING_FEATURE
- build_marlin - build_marlin

@ -1570,6 +1570,18 @@ inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); } inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); } inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
//
// Prepare to do endstop or probe moves
// with custom feedrates.
//
// - Save current feedrates
// - Reset the rate multiplier
// - Enable the endstops
// - Reset the command timeout
//
// clean_up_after_endstop_move() restores
// feedrates, sets endstops back to global state.
//
static void setup_for_endstop_move() { static void setup_for_endstop_move() {
saved_feedrate = feedrate; saved_feedrate = feedrate;
saved_feedrate_multiplier = feedrate_multiplier; saved_feedrate_multiplier = feedrate_multiplier;
@ -1583,6 +1595,16 @@ static void setup_for_endstop_move() {
#if HAS_BED_PROBE #if HAS_BED_PROBE
static void clean_up_after_endstop_move() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > endstops.not_homing()");
#endif
endstops.not_homing();
feedrate = saved_feedrate;
feedrate_multiplier = saved_feedrate_multiplier;
refresh_cmd_timeout();
}
#if ENABLED(DELTA) #if ENABLED(DELTA)
/** /**
* Calculate delta, start a line, and set current_position to destination * Calculate delta, start a line, and set current_position to destination
@ -1655,6 +1677,10 @@ static void setup_for_endstop_move() {
feedrate = old_feedrate; feedrate = old_feedrate;
} }
inline void do_blocking_move_to_x(float x) {
do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
}
inline void do_blocking_move_to_z(float z) { inline void do_blocking_move_to_z(float z) {
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
} }
@ -1684,174 +1710,7 @@ static void setup_for_endstop_move() {
#endif #endif
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if HAS_BED_PROBE
#if ENABLED(AUTO_BED_LEVELING_GRID)
#if DISABLED(DELTA)
static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
//planner.bed_level_matrix.debug("bed level before");
#if ENABLED(DEBUG_LEVELING_FEATURE)
planner.bed_level_matrix.set_to_identity();
if (DEBUGGING(LEVELING)) {
vector_3 uncorrected_position = planner.adjusted_position();
DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
}
#endif
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = planner.adjusted_position();
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
#endif
sync_plan_position();
}
#endif // !DELTA
#else // !AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
planner.bed_level_matrix.set_to_identity();
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
if (planeNormal.z < 0) {
planeNormal.x = -planeNormal.x;
planeNormal.y = -planeNormal.y;
planeNormal.z = -planeNormal.z;
}
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = planner.adjusted_position();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
vector_3 uncorrected_position = corrected_position;
DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
}
#endif
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
#endif
sync_plan_position();
}
#endif // !AUTO_BED_LEVELING_GRID
static void run_z_probe() {
float old_feedrate = feedrate;
/**
* To prevent stepper_inactive_time from running out and
* EXTRUDER_RUNOUT_PREVENT from extruding
*/
refresh_cmd_timeout();
#if ENABLED(DELTA)
float start_z = current_position[Z_AXIS];
long start_steps = stepper.position(Z_AXIS);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
#endif
// move down slowly until you find the bed
feedrate = homing_feedrate[Z_AXIS] / 4;
destination[Z_AXIS] = -10;
prepare_move_to_destination_raw(); // this will also set_current_to_destination
stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags
/**
* We have to let the planner know where we are right now as it
* is not where we said to go.
*/
long stop_steps = stepper.position(Z_AXIS);
float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
current_position[Z_AXIS] = mm;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
#endif
sync_plan_position_delta();
#else // !DELTA
planner.bed_level_matrix.set_to_identity();
feedrate = homing_feedrate[Z_AXIS];
// Move down until the Z probe (or endstop?) is triggered
float zPosition = -(Z_MAX_LENGTH + 10);
line_to_z(zPosition);
stepper.synchronize();
// Tell the planner where we ended up - Get this from the stepper handler
zPosition = stepper.get_axis_position_mm(Z_AXIS);
planner.set_position_mm(
current_position[X_AXIS], current_position[Y_AXIS], zPosition,
current_position[E_AXIS]
);
// move up the retract distance
zPosition += home_bump_mm(Z_AXIS);
line_to_z(zPosition);
stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags
// move back down slowly to find bed
set_homing_bump_feedrate(Z_AXIS);
zPosition -= home_bump_mm(Z_AXIS) * 2;
line_to_z(zPosition);
stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags
// Get the current stepper position after bumping an endstop
current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
sync_plan_position();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
#endif
#endif // !DELTA
feedrate = old_feedrate;
}
inline void do_blocking_move_to_xy(float x, float y) {
do_blocking_move_to(x, y, current_position[Z_AXIS]);
}
inline void do_blocking_move_to_x(float x) {
do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
}
inline void raise_z_after_probing() { inline void raise_z_after_probing() {
#if Z_RAISE_AFTER_PROBING > 0 #if Z_RAISE_AFTER_PROBING > 0
@ -1861,18 +1720,54 @@ static void setup_for_endstop_move() {
do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
#endif #endif
} }
#endif
static void clean_up_after_endstop_move() { #if ENABLED(Z_PROBE_SLED)
#ifndef SLED_DOCKING_OFFSET
#define SLED_DOCKING_OFFSET 0
#endif
/**
* Method to dock/undock a sled designed by Charles Bell.
*
* dock[in] If true, move to MAX_X and engage the electromagnet
* offset[in] The additional distance to move to adjust docking location
*/
static void dock_sled(bool dock, int offset = 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()"); if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("dock_sled(", dock);
SERIAL_ECHOLNPGM(")");
}
#endif #endif
endstops.not_homing();
feedrate = saved_feedrate; if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
feedrate_multiplier = saved_feedrate_multiplier; axis_unhomed_error(true);
refresh_cmd_timeout(); return;
}
if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
float oldXpos = current_position[X_AXIS]; // save x position
if (dock) {
raise_z_after_probing(); // raise Z
// Dock sled a bit closer to ensure proper capturing
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
digitalWrite(SLED_PIN, LOW); // turn off magnet
}
else {
float z_loc = current_position[Z_AXIS];
if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
digitalWrite(SLED_PIN, HIGH); // turn on magnet
}
do_blocking_move_to_x(oldXpos); // return to position before docking
} }
#if HAS_BED_PROBE #endif // Z_PROBE_SLED
#if HAS_BED_PROBE
static void deploy_z_probe() { static void deploy_z_probe() {
@ -1882,7 +1777,11 @@ static void setup_for_endstop_move() {
if (endstops.z_probe_enabled) return; if (endstops.z_probe_enabled) return;
#if HAS_Z_SERVO_ENDSTOP #if ENABLED(Z_PROBE_SLED)
dock_sled(false);
#elif HAS_Z_SERVO_ENDSTOP
// Make room for Z Servo // Make room for Z Servo
raise_z_for_servo(Z_RAISE_BEFORE_PROBING); raise_z_for_servo(Z_RAISE_BEFORE_PROBING);
@ -1964,101 +1863,284 @@ static void setup_for_endstop_move() {
stop(); stop();
} }
#endif // Z_PROBE_ALLEN_KEY #elif ENABLED(FIX_MOUNTED_PROBE)
// Nothing to be done. Just enable_z_probe below...
#endif
endstops.enable_z_probe();
}
static void stow_z_probe() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
#endif
if (!endstops.z_probe_enabled) return;
#if ENABLED(Z_PROBE_SLED)
dock_sled(true);
#elif HAS_Z_SERVO_ENDSTOP
// Make room for the servo
raise_z_for_servo(Z_RAISE_AFTER_PROBING);
// Change the Z servo angle
STOW_Z_SERVO();
#elif ENABLED(Z_PROBE_ALLEN_KEY)
float old_feedrate = feedrate;
// Move up for safety
feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
#if Z_RAISE_AFTER_PROBING > 0
destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
prepare_move_to_destination_raw(); // this will also set_current_to_destination
#endif
// Move to the start position to initiate retraction
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
prepare_move_to_destination_raw();
// Move the nozzle down to push the Z probe into retracted position
if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
prepare_move_to_destination_raw();
// Move up for safety
if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
prepare_move_to_destination_raw();
// Home XY for safety
feedrate = homing_feedrate[X_AXIS] / 2;
destination[X_AXIS] = 0;
destination[Y_AXIS] = 0;
prepare_move_to_destination_raw(); // this will also set_current_to_destination
feedrate = old_feedrate;
stepper.synchronize();
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
if (!z_probe_endstop)
#else
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if (!z_min_endstop)
#endif
{
if (IsRunning()) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
}
stop();
}
#elif ENABLED(FIX_MOUNTED_PROBE)
// Nothing to do here. Just clear endstops.z_probe_enabled
#endif
endstops.enable_z_probe(false);
}
#endif // HAS_BED_PROBE
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
#if ENABLED(AUTO_BED_LEVELING_GRID)
#if DISABLED(DELTA)
static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
//planner.bed_level_matrix.debug("bed level before");
#if ENABLED(DEBUG_LEVELING_FEATURE)
planner.bed_level_matrix.set_to_identity();
if (DEBUGGING(LEVELING)) {
vector_3 uncorrected_position = planner.adjusted_position();
DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
}
#endif
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = planner.adjusted_position();
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
#endif
sync_plan_position();
}
#endif // !DELTA
#else // !AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
planner.bed_level_matrix.set_to_identity();
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
if (planeNormal.z < 0) {
planeNormal.x = -planeNormal.x;
planeNormal.y = -planeNormal.y;
planeNormal.z = -planeNormal.z;
}
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = planner.adjusted_position();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
vector_3 uncorrected_position = corrected_position;
DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
}
#endif
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
#if ENABLED(FIX_MOUNTED_PROBE) #if ENABLED(DEBUG_LEVELING_FEATURE)
// Nothing to be done. Just enable_z_probe below... if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
#endif #endif
endstops.enable_z_probe(); sync_plan_position();
}
} #endif // !AUTO_BED_LEVELING_GRID
static void stow_z_probe() { #endif // AUTO_BED_LEVELING_FEATURE
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
#endif
if (!endstops.z_probe_enabled) return; #if HAS_BED_PROBE
#if HAS_Z_SERVO_ENDSTOP static void run_z_probe() {
// Make room for the servo float old_feedrate = feedrate;
raise_z_for_servo(Z_RAISE_AFTER_PROBING);
// Change the Z servo angle /**
STOW_Z_SERVO(); * To prevent stepper_inactive_time from running out and
* EXTRUDER_RUNOUT_PREVENT from extruding
*/
refresh_cmd_timeout();
#elif ENABLED(Z_PROBE_ALLEN_KEY) #if ENABLED(DELTA)
float old_feedrate = feedrate; float start_z = current_position[Z_AXIS];
long start_steps = stepper.position(Z_AXIS);
// Move up for safety #if ENABLED(DEBUG_LEVELING_FEATURE)
feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE; if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
#endif
#if Z_RAISE_AFTER_PROBING > 0 // move down slowly until you find the bed
destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING; feedrate = homing_feedrate[Z_AXIS] / 4;
prepare_move_to_destination_raw(); // this will also set_current_to_destination destination[Z_AXIS] = -10;
prepare_move_to_destination_raw(); // this will also set_current_to_destination
stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags
/**
* We have to let the planner know where we are right now as it
* is not where we said to go.
*/
long stop_steps = stepper.position(Z_AXIS);
float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
current_position[Z_AXIS] = mm;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
#endif #endif
// Move to the start position to initiate retraction sync_plan_position_delta();
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
prepare_move_to_destination_raw();
// Move the nozzle down to push the Z probe into retracted position #else // !DELTA
if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
prepare_move_to_destination_raw();
// Move up for safety #if ENABLED(AUTO_BED_LEVELING_FEATURE)
if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE) planner.bed_level_matrix.set_to_identity();
feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE; #endif
if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
prepare_move_to_destination_raw();
// Home XY for safety feedrate = homing_feedrate[Z_AXIS];
feedrate = homing_feedrate[X_AXIS] / 2;
destination[X_AXIS] = 0;
destination[Y_AXIS] = 0;
prepare_move_to_destination_raw(); // this will also set_current_to_destination
feedrate = old_feedrate; // Move down until the Z probe (or endstop?) is triggered
float zPosition = -(Z_MAX_LENGTH + 10);
line_to_z(zPosition);
stepper.synchronize();
// Tell the planner where we ended up - Get this from the stepper handler
zPosition = stepper.get_axis_position_mm(Z_AXIS);
planner.set_position_mm(
current_position[X_AXIS], current_position[Y_AXIS], zPosition,
current_position[E_AXIS]
);
// move up the retract distance
zPosition += home_bump_mm(Z_AXIS);
line_to_z(zPosition);
stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags
// move back down slowly to find bed
set_homing_bump_feedrate(Z_AXIS);
zPosition -= home_bump_mm(Z_AXIS) * 2;
line_to_z(zPosition);
stepper.synchronize(); stepper.synchronize();
endstops.hit_on_purpose(); // clear endstop hit flags
#if ENABLED(Z_MIN_PROBE_ENDSTOP) // Get the current stepper position after bumping an endstop
bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING); current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
if (!z_probe_endstop) sync_plan_position();
#else
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); #if ENABLED(DEBUG_LEVELING_FEATURE)
if (!z_min_endstop) if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
#endif #endif
{
if (IsRunning()) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
}
stop();
}
#elif ENABLED(FIX_MOUNTED_PROBE)
// Nothing to do here. Just clear endstops.z_probe_enabled
#endif
endstops.enable_z_probe(false); #endif // !DELTA
feedrate = old_feedrate;
}
#endif // HAS_BED_PROBE
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
inline void do_blocking_move_to_xy(float x, float y) {
do_blocking_move_to(x, y, current_position[Z_AXIS]);
} }
#endif // HAS_BED_PROBE
enum ProbeAction { enum ProbeAction {
ProbeStay = 0, ProbeStay = 0,
@ -2226,55 +2308,6 @@ static void setup_for_endstop_move() {
} }
#endif #endif
#if ENABLED(Z_PROBE_SLED)
#ifndef SLED_DOCKING_OFFSET
#define SLED_DOCKING_OFFSET 0
#endif
/**
* Method to dock/undock a sled designed by Charles Bell.
*
* dock[in] If true, move to MAX_X and engage the electromagnet
* offset[in] The additional distance to move to adjust docking location
*/
static void dock_sled(bool dock, int offset = 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("dock_sled(", dock);
SERIAL_ECHOLNPGM(")");
}
#endif
if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
axis_unhomed_error(true);
return;
}
if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
float oldXpos = current_position[X_AXIS]; // save x position
if (dock) {
raise_z_after_probing(); // raise Z
// Dock sled a bit closer to ensure proper capturing
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
digitalWrite(SLED_PIN, LOW); // turn off magnet
}
else {
float z_loc = current_position[Z_AXIS];
if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
digitalWrite(SLED_PIN, HIGH); // turn on magnet
}
do_blocking_move_to_x(oldXpos); // return to position before docking
endstops.enable_z_probe(!dock); // logically disable docked probe
}
#endif // Z_PROBE_SLED
/** /**
* Home an individual axis * Home an individual axis
*/ */
@ -2303,24 +2336,13 @@ static void homeaxis(AxisEnum axis) {
current_position[axis] = 0; current_position[axis] = 0;
sync_plan_position(); sync_plan_position();
#if ENABLED(Z_PROBE_SLED)
#define _Z_DEPLOY (dock_sled(false))
#define _Z_STOW (dock_sled(true))
#elif ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_Z_SERVO_ENDSTOP || ENABLED(FIX_MOUNTED_PROBE))
#define _Z_DEPLOY (deploy_z_probe())
#define _Z_STOW (stow_z_probe())
#elif HAS_Z_SERVO_ENDSTOP
#define _Z_DEPLOY do{ raise_z_for_servo(Z_RAISE_BEFORE_PROBING); DEPLOY_Z_SERVO(); endstops.z_probe_enabled = true; }while(0)
#define _Z_STOW do{ raise_z_for_servo(Z_RAISE_AFTER_PROBING); STOW_Z_SERVO(); endstops.z_probe_enabled = false; }while(0)
#endif
// Homing Z towards the bed? Deploy the Z probe or endstop. // Homing Z towards the bed? Deploy the Z probe or endstop.
#if HAS_Z_SERVO_ENDSTOP || ENABLED(Z_PROBE_SLED) || ENABLED(FIX_MOUNTED_PROBE) #if HAS_BED_PROBE
if (axis == Z_AXIS && axis_home_dir < 0) { if (axis == Z_AXIS && axis_home_dir < 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > " STRINGIFY(_Z_DEPLOY)); if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > deploy_z_probe()");
#endif #endif
_Z_DEPLOY; deploy_z_probe();
} }
#endif #endif
@ -2438,12 +2460,12 @@ static void homeaxis(AxisEnum axis) {
axis_homed[axis] = true; axis_homed[axis] = true;
// Put away the Z probe // Put away the Z probe
#if HAS_Z_SERVO_ENDSTOP || ENABLED(Z_PROBE_SLED) || ENABLED(FIX_MOUNTED_PROBE) #if HAS_BED_PROBE
if (axis == Z_AXIS && axis_home_dir < 0) { if (axis == Z_AXIS && axis_home_dir < 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > " STRINGIFY(_Z_STOW)); if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" > stow_z_probe()");
#endif #endif
_Z_STOW; stow_z_probe();
} }
#endif #endif
@ -3465,9 +3487,7 @@ inline void gcode_G28() {
#endif // !DELTA #endif // !DELTA
} }
#if ENABLED(Z_PROBE_SLED) #if HAS_BED_PROBE
dock_sled(false); // engage (un-dock) the Z probe
#elif ENABLED(FIX_MOUNTED_PROBE) || ENABLED(MECHANICAL_PROBE) || ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && HAS_Z_SERVO_ENDSTOP)
deploy_z_probe(); deploy_z_probe();
#endif #endif
@ -3718,14 +3738,7 @@ inline void gcode_G28() {
#endif // !AUTO_BED_LEVELING_GRID #endif // !AUTO_BED_LEVELING_GRID
#if ENABLED(DELTA) #if DISABLED(DELTA)
// Allen Key Probe for Delta
#if ENABLED(Z_PROBE_ALLEN_KEY) || HAS_Z_SERVO_ENDSTOP
stow_z_probe();
#else
raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
#endif
#else // !DELTA
if (verbose_level > 0) if (verbose_level > 0)
planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:"); planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
@ -3785,7 +3798,7 @@ inline void gcode_G28() {
#if HAS_Z_SERVO_ENDSTOP || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) #if HAS_Z_SERVO_ENDSTOP || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
+ Z_RAISE_AFTER_PROBING + Z_RAISE_AFTER_PROBING
#endif #endif
; ;
// current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home" // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
sync_plan_position(); sync_plan_position();
@ -3793,19 +3806,16 @@ inline void gcode_G28() {
if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
#endif #endif
} }
// Sled assembly for Cartesian bots
#if ENABLED(Z_PROBE_SLED)
dock_sled(true); // dock the sled
#elif !HAS_Z_SERVO_ENDSTOP && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
// Raise Z axis for non-delta and non servo based probes
raise_z_after_probing();
#endif
#endif // !DELTA #endif // !DELTA
#if ENABLED(MECHANICAL_PROBE) #if DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED) && !HAS_Z_SERVO_ENDSTOP
raise_z_after_probing();
#endif
#if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(MECHANICAL_PROBE)
stow_z_probe(); stow_z_probe();
#else
endstops.enable_z_probe(false);
#endif #endif
#ifdef Z_PROBE_END_SCRIPT #ifdef Z_PROBE_END_SCRIPT
@ -3816,9 +3826,6 @@ inline void gcode_G28() {
} }
#endif #endif
enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT)); enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
#if HAS_BED_PROBE
endstops.enable_z_probe(false);
#endif
stepper.synchronize(); stepper.synchronize();
#endif #endif
@ -3835,38 +3842,40 @@ inline void gcode_G28() {
KEEPALIVE_STATE(IN_HANDLER); KEEPALIVE_STATE(IN_HANDLER);
} }
#if DISABLED(Z_PROBE_SLED) // could be avoided #endif //AUTO_BED_LEVELING_FEATURE
/** #if HAS_BED_PROBE
* G30: Do a single Z probe at the current XY
*/
inline void gcode_G30() {
deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
stepper.synchronize(); /**
// TODO: clear the leveling matrix or the planner will be set incorrectly * G30: Do a single Z probe at the current XY
setup_for_endstop_move(); // Too late. Must be done before deploying. */
inline void gcode_G30() {
run_z_probe(); setup_for_endstop_move();
SERIAL_PROTOCOLPGM("Bed X: "); deploy_z_probe();
SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
SERIAL_EOL;
clean_up_after_endstop_move(); // Too early. must be done after the stowing. stepper.synchronize();
stow_z_probe(); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here. // TODO: clear the leveling matrix or the planner will be set incorrectly
run_z_probe(); // clears the ABL non-delta matrix only
report_current_position(); SERIAL_PROTOCOLPGM("Bed X: ");
} SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
SERIAL_EOL;
#endif //!Z_PROBE_SLED stow_z_probe();
#endif //AUTO_BED_LEVELING_FEATURE clean_up_after_endstop_move();
report_current_position();
}
#endif // HAS_BED_PROBE
/** /**
* G92: Set current position to given X Y Z E * G92: Set current position to given X Y Z E
@ -6872,24 +6881,24 @@ void process_next_command() {
break; break;
#endif #endif
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if HAS_BED_PROBE
#if DISABLED(Z_PROBE_SLED)
case 30: // G30 Single Z probe case 30: // G30 Single Z probe
gcode_G30(); gcode_G30();
break; break;
#else // Z_PROBE_SLED #if ENABLED(Z_PROBE_SLED)
case 31: // G31: dock the sled case 31: // G31: dock the sled
stow_z_probe();
break;
case 32: // G32: undock the sled case 32: // G32: undock the sled
dock_sled(codenum == 31); deploy_z_probe();
break; break;
#endif // Z_PROBE_SLED #endif // Z_PROBE_SLED
#endif // AUTO_BED_LEVELING_FEATURE #endif // HAS_BED_PROBE
case 90: // G90 case 90: // G90
relative_mode = false; relative_mode = false;

Loading…
Cancel
Save