More 2nd extruder implementation. (Not usable)

Advance (not tested)
2.0.x
Erik van der Zalm 13 years ago
parent 0bc9daa4f7
commit 6b86f15686

@ -223,11 +223,11 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200*8/3,760*1.1} // default steps per unit for ultimaker #define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200*8/3,760*1.1} // default steps per unit for ultimaker
//#define DEFAULT_AXIS_STEPS_PER_UNIT {40, 40, 3333.92, 67} //sells mendel with v9 extruder //#define DEFAULT_AXIS_STEPS_PER_UNIT {40, 40, 3333.92, 67} //sells mendel with v9 extruder
#define DEFAULT_MAX_FEEDRATE {500, 500, 5, 200000} // (mm/sec) #define DEFAULT_MAX_FEEDRATE {500, 500, 5, 45} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot. #define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves #define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts #define DEFAULT_RETRACT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate #define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 0.0 #define DEFAULT_MINTRAVELFEEDRATE 0.0

@ -489,11 +489,20 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); } if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); }
if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); } if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); }
block->active_extruder = extruder;
//enable active axes //enable active axes
if(block->steps_x != 0) enable_x(); if(block->steps_x != 0) enable_x();
if(block->steps_y != 0) enable_y(); if(block->steps_y != 0) enable_y();
if(block->steps_z != 0) enable_z(); if(block->steps_z != 0) enable_z();
if(block->steps_e != 0) enable_e(); if(extruder == 0) {
if(block->steps_e != 0) enable_e();
}
#if (EXTRUDERS > 1)
if(extruder == 1) {
if(block->steps_e != 0) enable_e1();
}
#endif
float delta_mm[4]; float delta_mm[4];
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS]; delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
@ -713,7 +722,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
else { else {
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st); long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
(block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536; (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
block->advance = advance; block->advance = advance;
if(acc_dist == 0) { if(acc_dist == 0) {
block->advance_rate = 0; block->advance_rate = 0;

@ -37,11 +37,12 @@ typedef struct {
long decelerate_after; // The index of the step event on which to start decelerating long decelerate_after; // The index of the step event on which to start decelerating
long acceleration_rate; // The acceleration rate used for acceleration calculation long acceleration_rate; // The acceleration rate used for acceleration calculation
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h) unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
unsigned char active_extruder; // Selects the active extruder
#ifdef ADVANCE #ifdef ADVANCE
// long advance_rate; long advance_rate;
// volatile long initial_advance; volatile long initial_advance;
// volatile long final_advance; volatile long final_advance;
// float advance; float advance;
#endif #endif
// Fields used by the motion planner to manage acceleration // Fields used by the motion planner to manage acceleration

@ -383,8 +383,9 @@ ISR(TIMER1_COMPA_vect)
} }
#endif //!ADVANCE #endif //!ADVANCE
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
MSerial.checkRx(); MSerial.checkRx(); // Check for serial chars.
/*
#ifdef ADVANCE
counter_e += current_block->steps_e; counter_e += current_block->steps_e;
if (counter_e > 0) { if (counter_e > 0) {
counter_e -= current_block->step_event_count; counter_e -= current_block->step_event_count;
@ -399,14 +400,10 @@ ISR(TIMER1_COMPA_vect)
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
} }
} }
*/
/*
// Do E steps + advance steps // Do E steps + advance steps
CRITICAL_SECTION_START;
e_steps += ((advance >> 16) - old_advance); e_steps += ((advance >> 16) - old_advance);
CRITICAL_SECTION_END;
old_advance = advance >> 16; old_advance = advance >> 16;
*/ #endif //ADVANCE
counter_x += current_block->steps_x; counter_x += current_block->steps_x;
if (counter_x > 0) { if (counter_x > 0) {
@ -461,7 +458,9 @@ ISR(TIMER1_COMPA_vect)
OCR1A = timer; OCR1A = timer;
acceleration_time += timer; acceleration_time += timer;
#ifdef ADVANCE #ifdef ADVANCE
advance += advance_rate; for(int8_t i=0; i < step_loops; i++) {
advance += advance_rate;
}
#endif #endif
} }
else if (step_events_completed > current_block->decelerate_after) { else if (step_events_completed > current_block->decelerate_after) {
@ -483,7 +482,9 @@ ISR(TIMER1_COMPA_vect)
OCR1A = timer; OCR1A = timer;
deceleration_time += timer; deceleration_time += timer;
#ifdef ADVANCE #ifdef ADVANCE
advance -= advance_rate; for(int8_t i=0; i < step_loops; i++) {
advance -= advance_rate;
}
if(advance < final_advance) if(advance < final_advance)
advance = final_advance; advance = final_advance;
#endif //ADVANCE #endif //ADVANCE
@ -506,22 +507,24 @@ ISR(TIMER1_COMPA_vect)
// Timer 0 is shared with millies // Timer 0 is shared with millies
ISR(TIMER0_COMPA_vect) ISR(TIMER0_COMPA_vect)
{ {
// Critical section needed because Timer 1 interrupt has higher priority. old_OCR0A += 25; // ~10kHz interrupt
// The pin set functions are placed on trategic position to comply with the stepper driver timing. OCR0A = old_OCR0A;
WRITE(E_STEP_PIN, LOW);
// Set E direction (Depends on E direction + advance) // Set E direction (Depends on E direction + advance)
if (e_steps < 0) { for(unsigned char i=0; i<4;) {
WRITE(E_DIR_PIN,INVERT_E_DIR); WRITE(E_STEP_PIN, LOW);
e_steps++; if (e_steps == 0) break;
WRITE(E_STEP_PIN, HIGH); i++;
} if (e_steps < 0) {
if (e_steps > 0) { WRITE(E_DIR_PIN,INVERT_E_DIR);
WRITE(E_DIR_PIN,!INVERT_E_DIR); e_steps++;
e_steps--; WRITE(E_STEP_PIN, HIGH);
WRITE(E_STEP_PIN, HIGH); }
if (e_steps > 0) {
WRITE(E_DIR_PIN,!INVERT_E_DIR);
e_steps--;
WRITE(E_STEP_PIN, HIGH);
}
} }
old_OCR0A += 25; // 10kHz interrupt
OCR0A = old_OCR0A;
} }
#endif // ADVANCE #endif // ADVANCE
@ -638,6 +641,10 @@ void st_init()
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
#ifdef ADVANCE #ifdef ADVANCE
#if defined(TCCR0A) && defined(WGM01)
TCCR0A &= ~(1<<WGM01);
TCCR0A &= ~(1<<WGM00);
#endif
e_steps = 0; e_steps = 0;
TIMSK0 |= (1<<OCIE0A); TIMSK0 |= (1<<OCIE0A);
#endif //ADVANCE #endif //ADVANCE

Loading…
Cancel
Save