Various updates for TMC support

2.0.x
Scott Lahteine 7 years ago
parent 2c2cf5e856
commit 6a043eee55

@ -65,7 +65,7 @@ Ctrl_status sd_mmc_spi_usb_read_10(uint32_t addr, uint16_t nb_sector) {
#ifdef DEBUG_MMC #ifdef DEBUG_MMC
char buffer[80]; char buffer[80];
sprintf(buffer, "SDRD: %d @ 0x%08x\n", nb_sector, addr); sprintf(buffer, "SDRD: %d @ 0x%08x\n", nb_sector, addr);
MYSERIAL.print(buffer); MYSERIAL0.print(buffer);
#endif #endif
// Start reading // Start reading
@ -99,7 +99,7 @@ Ctrl_status sd_mmc_spi_usb_write_10(uint32_t addr, uint16_t nb_sector) {
#ifdef DEBUG_MMC #ifdef DEBUG_MMC
char buffer[80]; char buffer[80];
sprintf(buffer, "SDWR: %d @ 0x%08x\n", nb_sector, addr); sprintf(buffer, "SDWR: %d @ 0x%08x\n", nb_sector, addr);
MYSERIAL.print(buffer); MYSERIAL0.print(buffer);
#endif #endif
if (!card.getSd2Card().writeStart(addr, nb_sector)) if (!card.getSd2Card().writeStart(addr, nb_sector))

@ -67,13 +67,13 @@ enum DebugFlags {
#ifdef USBCON #ifdef USBCON
#include <HardwareSerial.h> #include <HardwareSerial.h>
#if ENABLED(BLUETOOTH) #if ENABLED(BLUETOOTH)
#define MYSERIAL bluetoothSerial #define MYSERIAL0 bluetoothSerial
#else #else
#define MYSERIAL Serial #define MYSERIAL0 Serial
#endif // BLUETOOTH #endif // BLUETOOTH
#else #else
#include "../HAL/HAL_AVR/MarlinSerial.h" #include "../HAL/HAL_AVR/MarlinSerial.h"
#define MYSERIAL customizedSerial #define MYSERIAL0 customizedSerial
#endif #endif
#elif defined(ARDUINO_ARCH_SAM) #elif defined(ARDUINO_ARCH_SAM)
// To pull the Serial port definitions and overrides // To pull the Serial port definitions and overrides

@ -1,39 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef TMC_MACROS_H
#define TMC_MACROS_H
// Trinamic Stepper Drivers
#define HAS_TRINAMIC (ENABLED(HAVE_TMC2130) || ENABLED(HAVE_TMC2208) || ENABLED(IS_TRAMS))
#define X_IS_TRINAMIC (ENABLED( X_IS_TMC2130) || ENABLED( X_IS_TMC2208) || ENABLED(IS_TRAMS))
#define X2_IS_TRINAMIC (ENABLED(X2_IS_TMC2130) || ENABLED(X2_IS_TMC2208))
#define Y_IS_TRINAMIC (ENABLED( Y_IS_TMC2130) || ENABLED( Y_IS_TMC2208) || ENABLED(IS_TRAMS))
#define Y2_IS_TRINAMIC (ENABLED(Y2_IS_TMC2130) || ENABLED(Y2_IS_TMC2208))
#define Z_IS_TRINAMIC (ENABLED( Z_IS_TMC2130) || ENABLED( Z_IS_TMC2208) || ENABLED(IS_TRAMS))
#define Z2_IS_TRINAMIC (ENABLED(Z2_IS_TMC2130) || ENABLED(Z2_IS_TMC2208))
#define E0_IS_TRINAMIC (ENABLED(E0_IS_TMC2130) || ENABLED(E0_IS_TMC2208) || ENABLED(IS_TRAMS))
#define E1_IS_TRINAMIC (ENABLED(E1_IS_TMC2130) || ENABLED(E1_IS_TMC2208))
#define E2_IS_TRINAMIC (ENABLED(E2_IS_TMC2130) || ENABLED(E2_IS_TMC2208))
#define E3_IS_TRINAMIC (ENABLED(E3_IS_TMC2130) || ENABLED(E3_IS_TMC2208))
#define E4_IS_TRINAMIC (ENABLED(E4_IS_TMC2130) || ENABLED(E4_IS_TMC2208))
#endif

@ -32,6 +32,10 @@
#include "../libs/duration_t.h" #include "../libs/duration_t.h"
#include "../gcode/gcode.h" #include "../gcode/gcode.h"
#if ENABLED(TMC_DEBUG)
#include "../module/planner.h"
#endif
bool report_tmc_status = false; bool report_tmc_status = false;
char extended_axis_codes[11][3] = { "X", "X2", "Y", "Y2", "Z", "Z2", "E0", "E1", "E2", "E3", "E4" }; char extended_axis_codes[11][3] = { "X", "X2", "Y", "Y2", "Z", "Z2", "E0", "E1", "E2", "E3", "E4" };
@ -51,7 +55,7 @@ char extended_axis_codes[11][3] = { "X", "X2", "Y", "Y2", "Z", "Z2", "E0", "E1",
}; };
#if ENABLED(HAVE_TMC2130) #if ENABLED(HAVE_TMC2130)
static uint32_t get_pwm_scale(TMC2130Stepper &st) { return st.PWM_SCALE(); } static uint32_t get_pwm_scale(TMC2130Stepper &st) { return st.PWM_SCALE(); }
static uint8_t get_status_response(TMC2130Stepper &st) { return st.status_response&0xF; } static uint8_t get_status_response(TMC2130Stepper &st) { return st.status_response & 0xF; }
static TMC_driver_data get_driver_data(TMC2130Stepper &st) { static TMC_driver_data get_driver_data(TMC2130Stepper &st) {
constexpr uint32_t OTPW_bm = 0x4000000UL; constexpr uint32_t OTPW_bm = 0x4000000UL;
constexpr uint8_t OTPW_bp = 26; constexpr uint8_t OTPW_bp = 26;
@ -61,9 +65,9 @@ char extended_axis_codes[11][3] = { "X", "X2", "Y", "Y2", "Z", "Z2", "E0", "E1",
constexpr uint8_t DRIVER_ERROR_bp = 1; constexpr uint8_t DRIVER_ERROR_bp = 1;
TMC_driver_data data; TMC_driver_data data;
data.drv_status = st.DRV_STATUS(); data.drv_status = st.DRV_STATUS();
data.is_otpw = (data.drv_status & OTPW_bm)>>OTPW_bp; data.is_otpw = (data.drv_status & OTPW_bm) >> OTPW_bp;
data.is_ot = (data.drv_status & OT_bm)>>OT_bp; data.is_ot = (data.drv_status & OT_bm) >> OT_bp;
data.is_error = (st.status_response & DRIVER_ERROR_bm)>>DRIVER_ERROR_bp; data.is_error = (st.status_response & DRIVER_ERROR_bm) >> DRIVER_ERROR_bp;
return data; return data;
} }
#endif #endif
@ -84,35 +88,35 @@ char extended_axis_codes[11][3] = { "X", "X2", "Y", "Y2", "Z", "Z2", "E0", "E1",
constexpr uint8_t OT_bp = 1; constexpr uint8_t OT_bp = 1;
TMC_driver_data data; TMC_driver_data data;
data.drv_status = st.DRV_STATUS(); data.drv_status = st.DRV_STATUS();
data.is_otpw = (data.drv_status & OTPW_bm)>>OTPW_bp; data.is_otpw = (data.drv_status & OTPW_bm) >> OTPW_bp;
data.is_ot = (data.drv_status & OT_bm)>>OT_bp; data.is_ot = (data.drv_status & OT_bm) >> OT_bp;
data.is_error = st.drv_err(); data.is_error = st.drv_err();
return data; return data;
} }
#endif #endif
template<typename TMC> template<typename TMC>
uint8_t monitor_tmc_driver(TMC &st, const char axisID, uint8_t otpw_cnt) { void monitor_tmc_driver(TMC &st, const char axisID, uint8_t &otpw_cnt) {
TMC_driver_data data = get_driver_data(st); TMC_driver_data data = get_driver_data(st);
#if ENABLED(STOP_ON_ERROR) #if ENABLED(STOP_ON_ERROR)
if (data.is_error) { if (data.is_error) {
SERIAL_EOL(); SERIAL_EOL();
SERIAL_ECHO(axisID); SERIAL_ECHO(axisID);
SERIAL_ECHO(" driver error detected:"); SERIAL_ECHOPGM(" driver error detected:");
if (data.is_ot) SERIAL_ECHO("\novertemperature"); if (data.is_ot) SERIAL_ECHOPGM("\novertemperature");
if (st.s2ga()) SERIAL_ECHO("\nshort to ground (coil A)"); if (st.s2ga()) SERIAL_ECHOPGM("\nshort to ground (coil A)");
if (st.s2gb()) SERIAL_ECHO("\nshort to ground (coil B)"); if (st.s2gb()) SERIAL_ECHOPGM("\nshort to ground (coil B)");
SERIAL_EOL(); SERIAL_EOL();
#if ENABLED(TMC_DEBUG) #if ENABLED(TMC_DEBUG)
_M122(); tmc_report_all();
#endif #endif
kill(PSTR("Driver error")); kill(PSTR("Driver error"));
} }
#endif #endif
// Report if a warning was triggered // Report if a warning was triggered
if (data.is_otpw && otpw_cnt==0) { if (data.is_otpw && otpw_cnt == 0) {
char timestamp[10]; char timestamp[10];
duration_t elapsed = print_job_timer.duration(); duration_t elapsed = print_job_timer.duration();
const bool has_days = (elapsed.value > 60*60*24L); const bool has_days = (elapsed.value > 60*60*24L);
@ -123,7 +127,7 @@ char extended_axis_codes[11][3] = { "X", "X2", "Y", "Y2", "Z", "Z2", "E0", "E1",
SERIAL_ECHO(axisID); SERIAL_ECHO(axisID);
SERIAL_ECHOPGM(" driver overtemperature warning! ("); SERIAL_ECHOPGM(" driver overtemperature warning! (");
SERIAL_ECHO(st.getCurrent()); SERIAL_ECHO(st.getCurrent());
SERIAL_ECHOLN("mA)"); SERIAL_ECHOLNPGM("mA)");
} }
#if CURRENT_STEP_DOWN > 0 #if CURRENT_STEP_DOWN > 0
// Decrease current if is_otpw is true and driver is enabled and there's been more then 4 warnings // Decrease current if is_otpw is true and driver is enabled and there's been more then 4 warnings
@ -140,23 +144,21 @@ char extended_axis_codes[11][3] = { "X", "X2", "Y", "Y2", "Z", "Z2", "E0", "E1",
otpw_cnt++; otpw_cnt++;
st.flag_otpw = true; st.flag_otpw = true;
} }
else if (otpw_cnt>0) otpw_cnt--; else if (otpw_cnt > 0) otpw_cnt--;
if (report_tmc_status) { if (report_tmc_status) {
const uint32_t pwm_scale = get_pwm_scale(st); const uint32_t pwm_scale = get_pwm_scale(st);
SERIAL_ECHO(axisID); SERIAL_ECHO(axisID);
SERIAL_ECHOPAIR(":", pwm_scale); SERIAL_ECHOPAIR(":", pwm_scale);
SERIAL_ECHO(" |0b"); SERIAL_PRINT(get_status_response(st), BIN); SERIAL_ECHOPGM(" |0b"); MYSERIAL0.print(get_status_response(st), BIN);
SERIAL_ECHO("| "); SERIAL_ECHOPGM("| ");
if (data.is_error) SERIAL_ECHO('E'); if (data.is_error) SERIAL_CHAR('E');
else if (data.is_ot) SERIAL_ECHO('O'); else if (data.is_ot) SERIAL_CHAR('O');
else if (data.is_otpw) SERIAL_ECHO('W'); else if (data.is_otpw) SERIAL_CHAR('W');
else if (otpw_cnt>0) SERIAL_PRINT(otpw_cnt, DEC); else if (otpw_cnt > 0) SERIAL_PRINT(otpw_cnt, DEC);
else if (st.flag_otpw) SERIAL_ECHO('F'); else if (st.flag_otpw) SERIAL_CHAR('F');
SERIAL_ECHO("\t"); SERIAL_CHAR('\t');
} }
return otpw_cnt;
} }
#define HAS_HW_COMMS(ST) ENABLED(ST##_IS_TMC2130)|| (ENABLED(ST##_IS_TMC2208) && defined(ST##_HARDWARE_SERIAL)) #define HAS_HW_COMMS(ST) ENABLED(ST##_IS_TMC2130)|| (ENABLED(ST##_IS_TMC2208) && defined(ST##_HARDWARE_SERIAL))
@ -167,47 +169,47 @@ char extended_axis_codes[11][3] = { "X", "X2", "Y", "Y2", "Z", "Z2", "E0", "E1",
next_cOT = millis() + 500; next_cOT = millis() + 500;
#if HAS_HW_COMMS(X) || ENABLED(IS_TRAMS) #if HAS_HW_COMMS(X) || ENABLED(IS_TRAMS)
static uint8_t x_otpw_cnt = 0; static uint8_t x_otpw_cnt = 0;
x_otpw_cnt = monitor_tmc_driver(stepperX, axis_codes[X_AXIS], x_otpw_cnt); monitor_tmc_driver(stepperX, axis_codes[X_AXIS], x_otpw_cnt);
#endif #endif
#if HAS_HW_COMMS(Y) || ENABLED(IS_TRAMS) #if HAS_HW_COMMS(Y) || ENABLED(IS_TRAMS)
static uint8_t y_otpw_cnt = 0; static uint8_t y_otpw_cnt = 0;
y_otpw_cnt = monitor_tmc_driver(stepperY, axis_codes[Y_AXIS], y_otpw_cnt); monitor_tmc_driver(stepperY, axis_codes[Y_AXIS], y_otpw_cnt);
#endif #endif
#if HAS_HW_COMMS(Z) || ENABLED(IS_TRAMS) #if HAS_HW_COMMS(Z) || ENABLED(IS_TRAMS)
static uint8_t z_otpw_cnt = 0; static uint8_t z_otpw_cnt = 0;
z_otpw_cnt = monitor_tmc_driver(stepperZ, axis_codes[Z_AXIS], z_otpw_cnt); monitor_tmc_driver(stepperZ, axis_codes[Z_AXIS], z_otpw_cnt);
#endif #endif
#if HAS_HW_COMMS(X2) #if HAS_HW_COMMS(X2)
static uint8_t x2_otpw_cnt = 0; static uint8_t x2_otpw_cnt = 0;
x2_otpw_cnt = monitor_tmc_driver(stepperX2, axis_codes[X_AXIS], x2_otpw_cnt); monitor_tmc_driver(stepperX2, axis_codes[X_AXIS], x2_otpw_cnt);
#endif #endif
#if HAS_HW_COMMS(Y2) #if HAS_HW_COMMS(Y2)
static uint8_t y2_otpw_cnt = 0; static uint8_t y2_otpw_cnt = 0;
y2_otpw_cnt = monitor_tmc_driver(stepperY2, axis_codes[Y_AXIS], y2_otpw_cnt); monitor_tmc_driver(stepperY2, axis_codes[Y_AXIS], y2_otpw_cnt);
#endif #endif
#if HAS_HW_COMMS(Z2) #if HAS_HW_COMMS(Z2)
static uint8_t z2_otpw_cnt = 0; static uint8_t z2_otpw_cnt = 0;
z2_otpw_cnt = monitor_tmc_driver(stepperZ2, axis_codes[Z_AXIS], z2_otpw_cnt); monitor_tmc_driver(stepperZ2, axis_codes[Z_AXIS], z2_otpw_cnt);
#endif #endif
#if HAS_HW_COMMS(E0) || ENABLED(IS_TRAMS) #if HAS_HW_COMMS(E0) || ENABLED(IS_TRAMS)
static uint8_t e0_otpw_cnt = 0; static uint8_t e0_otpw_cnt = 0;
e0_otpw_cnt = monitor_tmc_driver(stepperE0, axis_codes[E_AXIS], e0_otpw_cnt); monitor_tmc_driver(stepperE0, axis_codes[E_AXIS], e0_otpw_cnt);
#endif #endif
#if HAS_HW_COMMS(E1) #if HAS_HW_COMMS(E1)
static uint8_t e1_otpw_cnt = 0; static uint8_t e1_otpw_cnt = 0;
e1_otpw_cnt = monitor_tmc_driver(stepperE1, axis_codes[E_AXIS], e1_otpw_cnt); monitor_tmc_driver(stepperE1, axis_codes[E_AXIS], e1_otpw_cnt);
#endif #endif
#if HAS_HW_COMMS(E2) #if HAS_HW_COMMS(E2)
static uint8_t e2_otpw_cnt = 0; static uint8_t e2_otpw_cnt = 0;
e2_otpw_cnt = monitor_tmc_driver(stepperE2, axis_codes[E_AXIS], e2_otpw_cnt); monitor_tmc_driver(stepperE2, axis_codes[E_AXIS], e2_otpw_cnt);
#endif #endif
#if HAS_HW_COMMS(E3) #if HAS_HW_COMMS(E3)
static uint8_t e3_otpw_cnt = 0; static uint8_t e3_otpw_cnt = 0;
e3_otpw_cnt = monitor_tmc_driver(stepperE3, axis_codes[E_AXIS], e3_otpw_cnt); monitor_tmc_driver(stepperE3, axis_codes[E_AXIS], e3_otpw_cnt);
#endif #endif
#if HAS_HW_COMMS(E4) #if HAS_HW_COMMS(E4)
static uint8_t e4_otpw_cnt = 0; static uint8_t e4_otpw_cnt = 0;
e4_otpw_cnt = monitor_tmc_driver(stepperE4, axis_codes[E_AXIS], e4_otpw_cnt); monitor_tmc_driver(stepperE4, axis_codes[E_AXIS], e4_otpw_cnt);
#endif #endif
if (report_tmc_status) SERIAL_EOL(); if (report_tmc_status) SERIAL_EOL();
@ -216,4 +218,349 @@ char extended_axis_codes[11][3] = { "X", "X2", "Y", "Y2", "Z", "Z2", "E0", "E1",
#endif // MONITOR_DRIVER_STATUS #endif // MONITOR_DRIVER_STATUS
void _tmc_say_current(const char name[], const uint16_t curr) {
SERIAL_ECHO(name);
SERIAL_ECHOLNPAIR(" axis driver current: ", curr);
}
void _tmc_say_otpw(const char name[], const bool otpw) {
SERIAL_ECHO(name);
SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
serialprintPGM(otpw ? PSTR("true") : PSTR("false"));
SERIAL_EOL();
}
void _tmc_say_otpw_cleared(const char name[]) {
SERIAL_ECHO(name);
SERIAL_ECHOLNPGM(" prewarn flag cleared");
}
void _tmc_say_pwmthrs(const char name[], const uint32_t thrs) {
SERIAL_ECHO(name);
SERIAL_ECHOLNPAIR(" stealthChop max speed set to ", thrs);
}
void _tmc_say_sgt(const char name[], const uint32_t sgt) {
SERIAL_ECHO(name);
SERIAL_ECHOPGM(" driver homing sensitivity set to ");
MYSERIAL0.println(sgt, DEC);
}
#if ENABLED(TMC_DEBUG)
enum TMC_debug_enum {
TMC_CODES,
TMC_ENABLED,
TMC_CURRENT,
TMC_RMS_CURRENT,
TMC_MAX_CURRENT,
TMC_IRUN,
TMC_IHOLD,
TMC_CS_ACTUAL,
TMC_PWM_SCALE,
TMC_VSENSE,
TMC_STEALTHCHOP,
TMC_MICROSTEPS,
TMC_TSTEP,
TMC_TPWMTHRS,
TMC_TPWMTHRS_MMS,
TMC_OTPW,
TMC_OTPW_TRIGGERED,
TMC_TOFF,
TMC_TBL,
TMC_HEND,
TMC_HSTRT,
TMC_SGT
};
enum TMC_drv_status_enum {
TMC_DRV_CODES,
TMC_STST,
TMC_OLB,
TMC_OLA,
TMC_S2GB,
TMC_S2GA,
TMC_DRV_OTPW,
TMC_OT,
TMC_STALLGUARD,
TMC_DRV_CS_ACTUAL,
TMC_FSACTIVE,
TMC_SG_RESULT,
TMC_DRV_STATUS_HEX,
TMC_T157,
TMC_T150,
TMC_T143,
TMC_T120,
TMC_STEALTH,
TMC_S2VSB,
TMC_S2VSA
};
static void drv_status_print_hex(const char name[], const uint32_t drv_status) {
SERIAL_ECHO(name);
SERIAL_ECHOPGM(" = 0x");
for (int B = 24; B >= 8; B -= 8){
SERIAL_PRINT((drv_status >> (B + 4)) & 0xF, HEX);
SERIAL_PRINT((drv_status >> B) & 0xF, HEX);
SERIAL_CHAR(':');
}
SERIAL_PRINT((drv_status >> 4) & 0xF, HEX);
SERIAL_PRINT(drv_status & 0xF, HEX);
SERIAL_EOL();
}
#if ENABLED(HAVE_TMC2130)
static void tmc_status(TMC2130Stepper &st, const TMC_debug_enum i) {
switch(i) {
case TMC_PWM_SCALE: SERIAL_PRINT(st.PWM_SCALE(), DEC); break;
case TMC_TSTEP: SERIAL_ECHO(st.TSTEP()); break;
case TMC_SGT: SERIAL_PRINT(st.sgt(), DEC); break;
case TMC_STEALTHCHOP: serialprintPGM(st.stealthChop() ? PSTR("true") : PSTR("false")); break;
default: break;
}
}
static void tmc_parse_drv_status(TMC2130Stepper &st, const TMC_drv_status_enum i) {
switch(i) {
case TMC_STALLGUARD: if (st.stallguard()) SERIAL_CHAR('X'); break;
case TMC_SG_RESULT: SERIAL_PRINT(st.sg_result(), DEC); break;
case TMC_FSACTIVE: if (st.fsactive()) SERIAL_CHAR('X'); break;
default: break;
}
}
#endif
#if ENABLED(HAVE_TMC2208)
static void tmc_status(TMC2208Stepper &st, const TMC_debug_enum i) {
switch(i) {
case TMC_TSTEP: { uint32_t data = 0; st.TSTEP(&data); MYSERIAL0.print(data); break; }
case TMC_PWM_SCALE: SERIAL_PRINT(st.pwm_scale_sum(), DEC); break;
case TMC_STEALTHCHOP: serialprintPGM(st.stealth() ? PSTR("true") : PSTR("false")); break;
case TMC_S2VSA: if (st.s2vsa()) SERIAL_CHAR('X'); break;
case TMC_S2VSB: if (st.s2vsb()) SERIAL_CHAR('X'); break;
default: break;
}
}
static void tmc_parse_drv_status(TMC2208Stepper &st, const TMC_drv_status_enum i) {
switch(i) {
case TMC_T157: if (st.t157()) SERIAL_CHAR('X'); break;
case TMC_T150: if (st.t150()) SERIAL_CHAR('X'); break;
case TMC_T143: if (st.t143()) SERIAL_CHAR('X'); break;
case TMC_T120: if (st.t120()) SERIAL_CHAR('X'); break;
default: break;
}
}
#endif
template <typename TMC>
static void tmc_status(TMC &st, TMC_AxisEnum axis, const TMC_debug_enum i, const float spmm) {
SERIAL_ECHO('\t');
switch(i) {
case TMC_CODES: SERIAL_ECHO(extended_axis_codes[axis]); break;
case TMC_ENABLED: serialprintPGM(st.isEnabled() ? PSTR("true") : PSTR("false")); break;
case TMC_CURRENT: SERIAL_ECHO(st.getCurrent()); break;
case TMC_RMS_CURRENT: MYSERIAL0.print(st.rms_current()); break;
case TMC_MAX_CURRENT: SERIAL_PRINT((float)st.rms_current() * 1.41, 0); break;
case TMC_IRUN:
SERIAL_PRINT(st.irun(), DEC);
SERIAL_ECHOPGM("/31");
break;
case TMC_IHOLD:
SERIAL_PRINT(st.ihold(), DEC);
SERIAL_ECHOPGM("/31");
break;
case TMC_CS_ACTUAL:
SERIAL_PRINT(st.cs_actual(), DEC);
SERIAL_ECHOPGM("/31");
break;
case TMC_VSENSE: serialprintPGM(st.vsense() ? PSTR("1=.18") : PSTR("0=.325")); break;
case TMC_MICROSTEPS: SERIAL_ECHO(st.microsteps()); break;
case TMC_TPWMTHRS: {
uint32_t tpwmthrs_val = st.TPWMTHRS();
SERIAL_ECHO(tpwmthrs_val);
}
break;
case TMC_TPWMTHRS_MMS: {
uint32_t tpwmthrs_val = st.TPWMTHRS();
tpwmthrs_val ? SERIAL_ECHO(12650000UL * st.microsteps() / (256 * tpwmthrs_val * spmm)) : SERIAL_CHAR('-');
}
break;
case TMC_OTPW: serialprintPGM(st.otpw() ? PSTR("true") : PSTR("false")); break;
case TMC_OTPW_TRIGGERED: serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false")); break;
case TMC_TOFF: SERIAL_PRINT(st.toff(), DEC); break;
case TMC_TBL: SERIAL_PRINT(st.blank_time(), DEC); break;
case TMC_HEND: SERIAL_PRINT(st.hysterisis_end(), DEC); break;
case TMC_HSTRT: SERIAL_PRINT(st.hysterisis_start(), DEC); break;
default: tmc_status(st, i); break;
}
}
template <typename TMC>
static void tmc_parse_drv_status(TMC &st, TMC_AxisEnum axis, const TMC_drv_status_enum i) {
SERIAL_CHAR('\t');
switch(i) {
case TMC_DRV_CODES: SERIAL_ECHO(extended_axis_codes[axis]); break;
case TMC_STST: if (st.stst()) SERIAL_CHAR('X'); break;
case TMC_OLB: if (st.olb()) SERIAL_CHAR('X'); break;
case TMC_OLA: if (st.ola()) SERIAL_CHAR('X'); break;
case TMC_S2GB: if (st.s2gb()) SERIAL_CHAR('X'); break;
case TMC_S2GA: if (st.s2ga()) SERIAL_CHAR('X'); break;
case TMC_DRV_OTPW: if (st.otpw()) SERIAL_CHAR('X'); break;
case TMC_OT: if (st.ot()) SERIAL_CHAR('X'); break;
case TMC_DRV_CS_ACTUAL: SERIAL_PRINT(st.cs_actual(), DEC); break;
case TMC_DRV_STATUS_HEX:drv_status_print_hex(extended_axis_codes[axis], st.DRV_STATUS()); break;
default: tmc_parse_drv_status(st, i); break;
}
}
static void tmc_debug_loop(const TMC_debug_enum i) {
#if X_IS_TRINAMIC
tmc_status(stepperX, TMC_X, i, planner.axis_steps_per_mm[X_AXIS]);
#endif
#if X2_IS_TRINAMIC
tmc_status(stepperX2, TMC_X2, i, planner.axis_steps_per_mm[X_AXIS]);
#endif
#if Y_IS_TRINAMIC
tmc_status(stepperY, TMC_Y, i, planner.axis_steps_per_mm[Y_AXIS]);
#endif
#if Y2_IS_TRINAMIC
tmc_status(stepperY2, TMC_Y2, i, planner.axis_steps_per_mm[Y_AXIS]);
#endif
#if Z_IS_TRINAMIC
tmc_status(stepperZ, TMC_Z, i, planner.axis_steps_per_mm[Z_AXIS]);
#endif
#if Z2_IS_TRINAMIC
tmc_status(stepperZ2, TMC_Z2, i, planner.axis_steps_per_mm[Z_AXIS]);
#endif
#if E0_IS_TRINAMIC
tmc_status(stepperE0, TMC_E0, i, planner.axis_steps_per_mm[E_AXIS]);
#endif
#if E1_IS_TRINAMIC
tmc_status(stepperE1, TMC_E1, i, planner.axis_steps_per_mm[E_AXIS+1]);
#endif
#if E2_IS_TRINAMIC
tmc_status(stepperE2, TMC_E2, i, planner.axis_steps_per_mm[E_AXIS+2]);
#endif
#if E3_IS_TRINAMIC
tmc_status(stepperE3, TMC_E3, i, planner.axis_steps_per_mm[E_AXIS+3]);
#endif
#if E4_IS_TRINAMIC
tmc_status(stepperE4, TMC_E4, i, planner.axis_steps_per_mm[E_AXIS+4]);
#endif
SERIAL_EOL();
}
static void drv_status_loop(const TMC_drv_status_enum i) {
#if X_IS_TRINAMIC
tmc_parse_drv_status(stepperX, TMC_X, i);
#endif
#if X2_IS_TRINAMIC
tmc_parse_drv_status(stepperX2, TMC_X2, i);
#endif
#if Y_IS_TRINAMIC
tmc_parse_drv_status(stepperY, TMC_Y, i);
#endif
#if Y2_IS_TRINAMIC
tmc_parse_drv_status(stepperY2, TMC_Y2, i);
#endif
#if Z_IS_TRINAMIC
tmc_parse_drv_status(stepperZ, TMC_Z, i);
#endif
#if Z2_IS_TRINAMIC
tmc_parse_drv_status(stepperZ2, TMC_Z2, i);
#endif
#if E0_IS_TRINAMIC
tmc_parse_drv_status(stepperE0, TMC_E0, i);
#endif
#if E1_IS_TRINAMIC
tmc_parse_drv_status(stepperE1, TMC_E1, i);
#endif
#if E2_IS_TRINAMIC
tmc_parse_drv_status(stepperE2, TMC_E2, i);
#endif
#if E3_IS_TRINAMIC
tmc_parse_drv_status(stepperE3, TMC_E3, i);
#endif
#if E4_IS_TRINAMIC
tmc_parse_drv_status(stepperE4, TMC_E4, i);
#endif
SERIAL_EOL();
}
/**
* M122 report functions
*/
void tmc_set_report_status(const bool status) {
if ((report_tmc_status = status))
SERIAL_ECHOLNPGM("axis:pwm_scale |status_response|");
}
void tmc_report_all() {
#define TMC_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); tmc_debug_loop(ITEM); }while(0)
#define DRV_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); drv_status_loop(ITEM); }while(0)
TMC_REPORT("\t", TMC_CODES);
TMC_REPORT("Enabled\t", TMC_ENABLED);
TMC_REPORT("Set current", TMC_CURRENT);
TMC_REPORT("RMS current", TMC_RMS_CURRENT);
TMC_REPORT("MAX current", TMC_MAX_CURRENT);
TMC_REPORT("Run current", TMC_IRUN);
TMC_REPORT("Hold current", TMC_IHOLD);
TMC_REPORT("CS actual\t", TMC_CS_ACTUAL);
TMC_REPORT("PWM scale", TMC_PWM_SCALE);
TMC_REPORT("vsense\t", TMC_VSENSE);
TMC_REPORT("stealthChop", TMC_STEALTHCHOP);
TMC_REPORT("msteps\t", TMC_MICROSTEPS);
TMC_REPORT("tstep\t", TMC_TSTEP);
TMC_REPORT("pwm\nthreshold\t", TMC_TPWMTHRS);
TMC_REPORT("[mm/s]\t", TMC_TPWMTHRS_MMS);
TMC_REPORT("OT prewarn", TMC_OTPW);
TMC_REPORT("OT prewarn has\n"
"been triggered", TMC_OTPW_TRIGGERED);
TMC_REPORT("off time\t", TMC_TOFF);
TMC_REPORT("blank time", TMC_TBL);
TMC_REPORT("hysterisis\n-end\t", TMC_HEND);
TMC_REPORT("-start\t", TMC_HSTRT);
TMC_REPORT("Stallguard thrs", TMC_SGT);
DRV_REPORT("DRVSTATUS", TMC_DRV_CODES);
#if ENABLED(HAVE_TMC2130)
DRV_REPORT("stallguard\t", TMC_STALLGUARD);
DRV_REPORT("sg_result\t", TMC_SG_RESULT);
DRV_REPORT("fsactive\t", TMC_FSACTIVE);
#endif
DRV_REPORT("stst\t", TMC_STST);
DRV_REPORT("olb\t", TMC_OLB);
DRV_REPORT("ola\t", TMC_OLA);
DRV_REPORT("s2gb\t", TMC_S2GB);
DRV_REPORT("s2ga\t", TMC_S2GA);
DRV_REPORT("otpw\t", TMC_DRV_OTPW);
DRV_REPORT("ot\t", TMC_OT);
#if ENABLED(HAVE_TMC2208)
DRV_REPORT("157C\t", TMC_T157);
DRV_REPORT("150C\t", TMC_T150);
DRV_REPORT("143C\t", TMC_T143);
DRV_REPORT("120C\t", TMC_T120);
DRV_REPORT("s2vsa\t", TMC_S2VSA);
DRV_REPORT("s2vsb\t", TMC_S2VSB);
#endif
DRV_REPORT("Driver registers:", TMC_DRV_STATUS_HEX);
SERIAL_EOL();
}
#endif // TMC_DEBUG
#if ENABLED(SENSORLESS_HOMING)
void tmc_sensorless_homing(TMC2130Stepper &st, bool enable/*=true*/) {
#if ENABLED(STEALTHCHOP)
st.coolstep_min_speed(enable ? 1024UL * 1024UL - 1UL : 0);
st.stealthChop(!enable);
#endif
st.diag1_stall(enable ? 1 : 0);
}
#endif // SENSORLESS_HOMING
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC

@ -35,11 +35,19 @@ enum TMC_AxisEnum {
TMC_E0, TMC_E1, TMC_E2, TMC_E3, TMC_E4 TMC_E0, TMC_E1, TMC_E2, TMC_E3, TMC_E4
}; };
constexpr uint32_t _tmc_thrs(const uint16_t msteps, const int32_t thrs, const uint32_t spmm) {
return 12650000UL * msteps / (256 * thrs * spmm);
}
void _tmc_say_current(const char name[], const uint16_t curr);
void _tmc_say_otpw(const char name[], const bool otpw);
void _tmc_say_otpw_cleared(const char name[]);
void _tmc_say_pwmthrs(const char name[], const uint32_t thrs);
void _tmc_say_sgt(const char name[], const uint32_t sgt);
template<typename TMC> template<typename TMC>
void tmc_get_current(TMC &st, const char name[]) { void tmc_get_current(TMC &st, const char name[]) {
SERIAL_ECHO(name); _tmc_say_current(name, st.getCurrent());
SERIAL_ECHOPGM(" axis driver current: ");
SERIAL_ECHOLN(st.getCurrent());
} }
template<typename TMC> template<typename TMC>
void tmc_set_current(TMC &st, const char name[], const int mA) { void tmc_set_current(TMC &st, const char name[], const int mA) {
@ -48,33 +56,25 @@ void tmc_set_current(TMC &st, const char name[], const int mA) {
} }
template<typename TMC> template<typename TMC>
void tmc_report_otpw(TMC &st, const char name[]) { void tmc_report_otpw(TMC &st, const char name[]) {
SERIAL_ECHO(name); _tmc_say_otpw(name, st.getOTPW());
SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
SERIAL_EOL();
} }
template<typename TMC> template<typename TMC>
void tmc_clear_otpw(TMC &st, const char name[]) { void tmc_clear_otpw(TMC &st, const char name[]) {
st.clear_otpw(); st.clear_otpw();
SERIAL_ECHO(name); _tmc_say_otpw_cleared(name);
SERIAL_ECHOLNPGM(" prewarn flag cleared");
} }
template<typename TMC> template<typename TMC>
void tmc_get_pwmthrs(TMC &st, const char name[], const uint16_t spmm) { void tmc_get_pwmthrs(TMC &st, const char name[], const uint16_t spmm) {
SERIAL_ECHO(name); _tmc_say_pwmthrs(name, _tmc_thrs(st.microsteps(), st.TPWMTHRS(), spmm));
SERIAL_ECHOPGM(" stealthChop max speed set to ");
SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.TPWMTHRS() * spmm));
} }
template<typename TMC> template<typename TMC>
void tmc_set_pwmthrs(TMC &st, const char name[], const int32_t thrs, const uint32_t spmm) { void tmc_set_pwmthrs(TMC &st, const char name[], const int32_t thrs, const uint32_t spmm) {
st.TPWMTHRS(12650000UL * st.microsteps() / (256 * thrs * spmm)); st.TPWMTHRS(_tmc_thrs(st.microsteps(), thrs, spmm));
tmc_get_pwmthrs(st, name, spmm); tmc_get_pwmthrs(st, name, spmm);
} }
template<typename TMC> template<typename TMC>
void tmc_get_sgt(TMC &st, const char name[]) { void tmc_get_sgt(TMC &st, const char name[]) {
SERIAL_ECHO(name); _tmc_say_sgt(name, st.sgt());
SERIAL_ECHOPGM(" driver homing sensitivity set to ");
MYSERIAL.println(st.sgt(), DEC);
} }
template<typename TMC> template<typename TMC>
void tmc_set_sgt(TMC &st, const char name[], const int8_t sgt_val) { void tmc_set_sgt(TMC &st, const char name[], const int8_t sgt_val) {
@ -82,9 +82,13 @@ void tmc_set_sgt(TMC &st, const char name[], const int8_t sgt_val) {
tmc_get_sgt(st, name); tmc_get_sgt(st, name);
} }
void _M122();
void monitor_tmc_driver(); void monitor_tmc_driver();
#if ENABLED(TMC_DEBUG)
void tmc_set_report_status(const bool status);
void tmc_report_all();
#endif
/** /**
* TMC2130 specific sensorless homing using stallGuard2. * TMC2130 specific sensorless homing using stallGuard2.
* stallGuard2 only works when in spreadCycle mode. * stallGuard2 only works when in spreadCycle mode.
@ -93,21 +97,7 @@ void monitor_tmc_driver();
* Defined here because of limitations with templates and headers. * Defined here because of limitations with templates and headers.
*/ */
#if ENABLED(SENSORLESS_HOMING) #if ENABLED(SENSORLESS_HOMING)
template<typename TMC> void tmc_sensorless_homing(TMC2130Stepper &st, bool enable=true);
void tmc_sensorless_homing(TMC &st, bool enable=true) {
#if ENABLED(STEALTHCHOP)
if (enable) {
st.coolstep_min_speed(1024UL * 1024UL - 1UL);
st.stealthChop(0);
}
else {
st.coolstep_min_speed(0);
st.stealthChop(1);
}
#endif
st.diag1_stall(enable ? 1 : 0);
}
#endif #endif
#endif // _TMC_UTIL_H_ #endif // _TMC_UTIL_H_

@ -26,314 +26,15 @@
#include "../../gcode.h" #include "../../gcode.h"
#include "../../../feature/tmc_util.h" #include "../../../feature/tmc_util.h"
#include "../../../module/stepper_indirection.h"
#include "../../../module/planner.h"
enum TMC_debug_enum { /**
TMC_CODES, * M122: Debug TMC drivers
TMC_ENABLED, */
TMC_CURRENT, void GcodeSuite::M122() {
TMC_RMS_CURRENT, if (parser.seen('S'))
TMC_MAX_CURRENT, tmc_set_report_status(parser.value_bool());
TMC_IRUN, else
TMC_IHOLD, tmc_report_all();
TMC_CS_ACTUAL,
TMC_PWM_SCALE,
TMC_VSENSE,
TMC_STEALTHCHOP,
TMC_MICROSTEPS,
TMC_TSTEP,
TMC_TPWMTHRS,
TMC_TPWMTHRS_MMS,
TMC_OTPW,
TMC_OTPW_TRIGGERED,
TMC_TOFF,
TMC_TBL,
TMC_HEND,
TMC_HSTRT,
TMC_SGT
};
enum TMC_drv_status_enum {
TMC_DRV_CODES,
TMC_STST,
TMC_OLB,
TMC_OLA,
TMC_S2GB,
TMC_S2GA,
TMC_DRV_OTPW,
TMC_OT,
TMC_STALLGUARD,
TMC_DRV_CS_ACTUAL,
TMC_FSACTIVE,
TMC_SG_RESULT,
TMC_DRV_STATUS_HEX,
TMC_T157,
TMC_T150,
TMC_T143,
TMC_T120,
TMC_STEALTH,
TMC_S2VSB,
TMC_S2VSA
};
static void drv_status_print_hex(const char name[], const uint32_t drv_status) {
SERIAL_ECHO(name);
SERIAL_ECHOPGM(" = 0x");
for(int B=24; B>=8; B-=8){
SERIAL_PRINT((drv_status>>(B+4))&0xF, HEX);
SERIAL_PRINT((drv_status>>B)&0xF, HEX);
SERIAL_CHAR(':');
}
SERIAL_PRINT((drv_status>>4)&0xF, HEX);
SERIAL_PRINT((drv_status)&0xF, HEX);
SERIAL_EOL();
}
#if ENABLED(HAVE_TMC2130)
static void tmc_status(TMC2130Stepper &st, const TMC_debug_enum i) {
switch(i) {
case TMC_PWM_SCALE: SERIAL_PRINT(st.PWM_SCALE(), DEC); break;
case TMC_TSTEP: SERIAL_ECHO(st.TSTEP()); break;
case TMC_SGT: SERIAL_PRINT(st.sgt(), DEC); break;
case TMC_STEALTHCHOP: serialprintPGM(st.stealthChop() ? PSTR("true") : PSTR("false")); break;
default: break;
}
}
static void tmc_parse_drv_status(TMC2130Stepper &st, const TMC_drv_status_enum i) {
switch(i) {
case TMC_STALLGUARD: if (st.stallguard()) SERIAL_ECHOPGM("X"); break;
case TMC_SG_RESULT: SERIAL_PRINT(st.sg_result(), DEC); break;
case TMC_FSACTIVE: if (st.fsactive()) SERIAL_ECHOPGM("X"); break;
default: break;
}
}
#endif
#if ENABLED(HAVE_TMC2208)
static void tmc_status(TMC2208Stepper &st, const TMC_debug_enum i) {
switch(i) {
case TMC_TSTEP: {
uint32_t data = 0;
st.TSTEP(&data);
SERIAL_PROTOCOL(data);
break;
}
case TMC_PWM_SCALE: SERIAL_PRINT(st.pwm_scale_sum(), DEC); break;
case TMC_STEALTHCHOP: serialprintPGM(st.stealth() ? PSTR("true") : PSTR("false")); break;
case TMC_S2VSA: if (st.s2vsa()) SERIAL_ECHOPGM("X"); break;
case TMC_S2VSB: if (st.s2vsb()) SERIAL_ECHOPGM("X"); break;
default: break;
}
}
static void tmc_parse_drv_status(TMC2208Stepper &st, const TMC_drv_status_enum i) {
switch(i) {
case TMC_T157: if (st.t157()) SERIAL_ECHOPGM("X"); break;
case TMC_T150: if (st.t150()) SERIAL_ECHOPGM("X"); break;
case TMC_T143: if (st.t143()) SERIAL_ECHOPGM("X"); break;
case TMC_T120: if (st.t120()) SERIAL_ECHOPGM("X"); break;
default: break;
}
}
#endif
template <typename TMC>
static void tmc_status(TMC &st, TMC_AxisEnum axis, const TMC_debug_enum i, const float spmm) {
SERIAL_ECHO('\t');
switch(i) {
case TMC_CODES: SERIAL_ECHO(extended_axis_codes[axis]); break;
case TMC_ENABLED: serialprintPGM(st.isEnabled() ? PSTR("true") : PSTR("false")); break;
case TMC_CURRENT: SERIAL_ECHO(st.getCurrent()); break;
case TMC_RMS_CURRENT: SERIAL_PROTOCOL(st.rms_current()); break;
case TMC_MAX_CURRENT: SERIAL_PRINT((float)st.rms_current()*1.41, 0); break;
case TMC_IRUN:
SERIAL_PRINT(st.irun(), DEC);
SERIAL_ECHOPGM("/31");
break;
case TMC_IHOLD:
SERIAL_PRINT(st.ihold(), DEC);
SERIAL_ECHOPGM("/31");
break;
case TMC_CS_ACTUAL:
SERIAL_PRINT(st.cs_actual(), DEC);
SERIAL_ECHOPGM("/31");
break;
case TMC_VSENSE: serialprintPGM(st.vsense() ? PSTR("1=.18") : PSTR("0=.325")); break;
case TMC_MICROSTEPS: SERIAL_ECHO(st.microsteps()); break;
case TMC_TPWMTHRS: {
uint32_t tpwmthrs_val = st.TPWMTHRS();
SERIAL_ECHO(tpwmthrs_val);
}
break;
case TMC_TPWMTHRS_MMS: {
uint32_t tpwmthrs_val = st.TPWMTHRS();
tpwmthrs_val ? SERIAL_ECHO(12650000UL * st.microsteps() / (256 * tpwmthrs_val * spmm)) : SERIAL_ECHO('-');
}
break;
case TMC_OTPW: serialprintPGM(st.otpw() ? PSTR("true") : PSTR("false")); break;
case TMC_OTPW_TRIGGERED: serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false")); break;
case TMC_TOFF: SERIAL_PRINT(st.toff(), DEC); break;
case TMC_TBL: SERIAL_PRINT(st.blank_time(), DEC); break;
case TMC_HEND: SERIAL_PRINT(st.hysterisis_end(), DEC); break;
case TMC_HSTRT: SERIAL_PRINT(st.hysterisis_start(), DEC); break;
default: tmc_status(st, i); break;
}
}
template <typename TMC>
static void tmc_parse_drv_status(TMC &st, TMC_AxisEnum axis, const TMC_drv_status_enum i) {
SERIAL_ECHOPGM("\t");
switch(i) {
case TMC_DRV_CODES: SERIAL_ECHO(extended_axis_codes[axis]); break;
case TMC_STST: if (st.stst()) SERIAL_ECHOPGM("X"); break;
case TMC_OLB: if (st.olb()) SERIAL_ECHOPGM("X"); break;
case TMC_OLA: if (st.ola()) SERIAL_ECHOPGM("X"); break;
case TMC_S2GB: if (st.s2gb()) SERIAL_ECHOPGM("X"); break;
case TMC_S2GA: if (st.s2ga()) SERIAL_ECHOPGM("X"); break;
case TMC_DRV_OTPW: if (st.otpw()) SERIAL_ECHOPGM("X"); break;
case TMC_OT: if (st.ot()) SERIAL_ECHOPGM("X"); break;
case TMC_DRV_CS_ACTUAL: SERIAL_PRINT(st.cs_actual(), DEC); break;
case TMC_DRV_STATUS_HEX:drv_status_print_hex(extended_axis_codes[axis], st.DRV_STATUS()); break;
default: tmc_parse_drv_status(st, i); break;
}
}
static void tmc_debug_loop(const TMC_debug_enum i) {
#if X_IS_TRINAMIC
tmc_status(stepperX, TMC_X, i, planner.axis_steps_per_mm[X_AXIS]);
#endif
#if X2_IS_TRINAMIC
tmc_status(stepperX2, TMC_X2, i, planner.axis_steps_per_mm[X_AXIS]);
#endif
#if Y_IS_TRINAMIC
tmc_status(stepperY, TMC_Y, i, planner.axis_steps_per_mm[Y_AXIS]);
#endif
#if Y2_IS_TRINAMIC
tmc_status(stepperY2, TMC_Y2, i, planner.axis_steps_per_mm[Y_AXIS]);
#endif
#if Z_IS_TRINAMIC
tmc_status(stepperZ, TMC_Z, i, planner.axis_steps_per_mm[Z_AXIS]);
#endif
#if Z2_IS_TRINAMIC
tmc_status(stepperZ2, TMC_Z2, i, planner.axis_steps_per_mm[Z_AXIS]);
#endif
#if E0_IS_TRINAMIC
tmc_status(stepperE0, TMC_E0, i, planner.axis_steps_per_mm[E_AXIS]);
#endif
#if E1_IS_TRINAMIC
tmc_status(stepperE1, TMC_E1, i, planner.axis_steps_per_mm[E_AXIS+1]);
#endif
#if E2_IS_TRINAMIC
tmc_status(stepperE2, TMC_E2, i, planner.axis_steps_per_mm[E_AXIS+2]);
#endif
#if E3_IS_TRINAMIC
tmc_status(stepperE3, TMC_E3, i, planner.axis_steps_per_mm[E_AXIS+3]);
#endif
#if E4_IS_TRINAMIC
tmc_status(stepperE4, TMC_E4, i, planner.axis_steps_per_mm[E_AXIS+4]);
#endif
SERIAL_EOL();
}
static void drv_status_loop(const TMC_drv_status_enum i) {
#if X_IS_TRINAMIC
tmc_parse_drv_status(stepperX, TMC_X, i);
#endif
#if X2_IS_TRINAMIC
tmc_parse_drv_status(stepperX2, TMC_X2, i);
#endif
#if Y_IS_TRINAMIC
tmc_parse_drv_status(stepperY, TMC_Y, i);
#endif
#if Y2_IS_TRINAMIC
tmc_parse_drv_status(stepperY2, TMC_Y2, i);
#endif
#if Z_IS_TRINAMIC
tmc_parse_drv_status(stepperZ, TMC_Z, i);
#endif
#if Z2_IS_TRINAMIC
tmc_parse_drv_status(stepperZ2, TMC_Z2, i);
#endif
#if E0_IS_TRINAMIC
tmc_parse_drv_status(stepperE0, TMC_E0, i);
#endif
#if E1_IS_TRINAMIC
tmc_parse_drv_status(stepperE1, TMC_E1, i);
#endif
#if E2_IS_TRINAMIC
tmc_parse_drv_status(stepperE2, TMC_E2, i);
#endif
#if E3_IS_TRINAMIC
tmc_parse_drv_status(stepperE3, TMC_E3, i);
#endif
#if E4_IS_TRINAMIC
tmc_parse_drv_status(stepperE4, TMC_E4, i);
#endif
SERIAL_EOL();
}
void _M122() {
if (parser.seen('S')) {
if (parser.value_bool()) {
SERIAL_ECHOLNPGM("axis:pwm_scale |status_response|");
report_tmc_status = true;
} else
report_tmc_status = false;
} else {
SERIAL_ECHOPGM("\t"); tmc_debug_loop(TMC_CODES);
SERIAL_ECHOPGM("Enabled\t"); tmc_debug_loop(TMC_ENABLED);
SERIAL_ECHOPGM("Set current"); tmc_debug_loop(TMC_CURRENT);
SERIAL_ECHOPGM("RMS current"); tmc_debug_loop(TMC_RMS_CURRENT);
SERIAL_ECHOPGM("MAX current"); tmc_debug_loop(TMC_MAX_CURRENT);
SERIAL_ECHOPGM("Run current"); tmc_debug_loop(TMC_IRUN);
SERIAL_ECHOPGM("Hold current"); tmc_debug_loop(TMC_IHOLD);
SERIAL_ECHOPGM("CS actual\t"); tmc_debug_loop(TMC_CS_ACTUAL);
SERIAL_ECHOPGM("PWM scale"); tmc_debug_loop(TMC_PWM_SCALE);
SERIAL_ECHOPGM("vsense\t"); tmc_debug_loop(TMC_VSENSE);
SERIAL_ECHOPGM("stealthChop"); tmc_debug_loop(TMC_STEALTHCHOP);
SERIAL_ECHOPGM("msteps\t"); tmc_debug_loop(TMC_MICROSTEPS);
SERIAL_ECHOPGM("tstep\t"); tmc_debug_loop(TMC_TSTEP);
SERIAL_ECHOPGM("pwm\nthreshold\t"); tmc_debug_loop(TMC_TPWMTHRS);
SERIAL_ECHOPGM("[mm/s]\t"); tmc_debug_loop(TMC_TPWMTHRS_MMS);
SERIAL_ECHOPGM("OT prewarn"); tmc_debug_loop(TMC_OTPW);
SERIAL_ECHOPGM("OT prewarn has\nbeen triggered"); tmc_debug_loop(TMC_OTPW_TRIGGERED);
SERIAL_ECHOPGM("off time\t"); tmc_debug_loop(TMC_TOFF);
SERIAL_ECHOPGM("blank time"); tmc_debug_loop(TMC_TBL);
SERIAL_ECHOPGM("hysterisis\n-end\t"); tmc_debug_loop(TMC_HEND);
SERIAL_ECHOPGM("-start\t"); tmc_debug_loop(TMC_HSTRT);
SERIAL_ECHOPGM("Stallguard thrs"); tmc_debug_loop(TMC_SGT);
SERIAL_ECHOPGM("DRVSTATUS"); drv_status_loop(TMC_DRV_CODES);
#if ENABLED(HAVE_TMC2130)
SERIAL_ECHOPGM("stallguard\t"); drv_status_loop(TMC_STALLGUARD);
SERIAL_ECHOPGM("sg_result\t"); drv_status_loop(TMC_SG_RESULT);
SERIAL_ECHOPGM("fsactive\t"); drv_status_loop(TMC_FSACTIVE);
#endif
SERIAL_ECHOPGM("stst\t"); drv_status_loop(TMC_STST);
SERIAL_ECHOPGM("olb\t"); drv_status_loop(TMC_OLB);
SERIAL_ECHOPGM("ola\t"); drv_status_loop(TMC_OLA);
SERIAL_ECHOPGM("s2gb\t"); drv_status_loop(TMC_S2GB);
SERIAL_ECHOPGM("s2ga\t"); drv_status_loop(TMC_S2GA);
SERIAL_ECHOPGM("otpw\t"); drv_status_loop(TMC_DRV_OTPW);
SERIAL_ECHOPGM("ot\t"); drv_status_loop(TMC_OT);
#if ENABLED(HAVE_TMC2208)
SERIAL_ECHOPGM("157C\t"); drv_status_loop(TMC_T157);
SERIAL_ECHOPGM("150C\t"); drv_status_loop(TMC_T150);
SERIAL_ECHOPGM("143C\t"); drv_status_loop(TMC_T143);
SERIAL_ECHOPGM("120C\t"); drv_status_loop(TMC_T120);
SERIAL_ECHOPGM("s2vsa\t"); drv_status_loop(TMC_S2VSA);
SERIAL_ECHOPGM("s2vsb\t"); drv_status_loop(TMC_S2VSB);
#endif
SERIAL_ECHOLNPGM("Driver registers:");drv_status_loop(TMC_DRV_STATUS_HEX);
}
} }
// We need to call M122 from monitor_tmc_driver() as well but GcodeSuite::M122 is private.
void GcodeSuite::M122() { _M122(); }
#endif // TMC_DEBUG #endif // TMC_DEBUG

@ -27,7 +27,6 @@
#include "../../gcode.h" #include "../../gcode.h"
#include "../../../feature/tmc_util.h" #include "../../../feature/tmc_util.h"
#include "../../../module/stepper_indirection.h" #include "../../../module/stepper_indirection.h"
#include "../../../module/planner.h"
/** /**
* M906: Set motor current in milliamps using axis codes X, Y, Z, E * M906: Set motor current in milliamps using axis codes X, Y, Z, E
@ -35,54 +34,45 @@
*/ */
void GcodeSuite::M906() { void GcodeSuite::M906() {
uint16_t values[XYZE]; uint16_t values[XYZE];
LOOP_XYZE(i) LOOP_XYZE(i) values[i] = parser.intval(axis_codes[i]);
values[i] = parser.intval(axis_codes[i]);
#define TMC_SET_GET_CURRENT(P,Q) do { \
if (values[P##_AXIS]) tmc_set_current(stepper##Q, extended_axis_codes[TMC_##Q], values[P##_AXIS]); \
else tmc_get_current(stepper##Q, extended_axis_codes[TMC_##Q]); } while(0)
#if X_IS_TRINAMIC #if X_IS_TRINAMIC
if (values[X_AXIS]) tmc_set_current(stepperX, extended_axis_codes[TMC_X], values[X_AXIS]); TMC_SET_GET_CURRENT(X,X);
else tmc_get_current(stepperX, extended_axis_codes[TMC_X]);
#endif #endif
#if X2_IS_TRINAMIC #if X2_IS_TRINAMIC
if (values[X_AXIS]) tmc_set_current(stepperX2, extended_axis_codes[TMC_X2], values[X_AXIS]); TMC_SET_GET_CURRENT(X,X2);
else tmc_get_current(stepperX2, extended_axis_codes[TMC_X2]);
#endif #endif
#if Y_IS_TRINAMIC #if Y_IS_TRINAMIC
if (values[Y_AXIS]) tmc_set_current(stepperY, extended_axis_codes[TMC_Y], values[Y_AXIS]); TMC_SET_GET_CURRENT(Y,Y);
else tmc_get_current(stepperY, extended_axis_codes[TMC_Y]);
#endif #endif
#if Y2_IS_TRINAMIC #if Y2_IS_TRINAMIC
if (values[Y_AXIS]) tmc_set_current(stepperY2, extended_axis_codes[TMC_Y2], values[Y_AXIS]); TMC_SET_GET_CURRENT(Y,Y2);
else tmc_get_current(stepperY2, extended_axis_codes[TMC_Y2]);
#endif #endif
#if Z_IS_TRINAMIC #if Z_IS_TRINAMIC
if (values[Z_AXIS]) tmc_set_current(stepperZ, extended_axis_codes[TMC_Z], values[Z_AXIS]); TMC_SET_GET_CURRENT(Z,Z);
else tmc_get_current(stepperZ, extended_axis_codes[TMC_Z]);
#endif #endif
#if Z2_IS_TRINAMIC #if Z2_IS_TRINAMIC
if (values[Z_AXIS]) tmc_set_current(stepperZ2, extended_axis_codes[TMC_Z2], values[Z_AXIS]); TMC_SET_GET_CURRENT(Z,Z2);
else tmc_get_current(stepperZ2, extended_axis_codes[TMC_Z2]);
#endif #endif
#if E0_IS_TRINAMIC #if E0_IS_TRINAMIC
if (values[E_AXIS]) tmc_set_current(stepperE0, extended_axis_codes[TMC_E0], values[E_AXIS]); TMC_SET_GET_CURRENT(E,E0);
else tmc_get_current(stepperE0, extended_axis_codes[TMC_E0]);
#endif #endif
#if E1_IS_TRINAMIC #if E1_IS_TRINAMIC
if (values[E_AXIS]) tmc_set_current(stepperE1, extended_axis_codes[TMC_E1], values[E_AXIS]); TMC_SET_GET_CURRENT(E,E1);
else tmc_get_current(stepperE1, extended_axis_codes[TMC_E1]);
#endif #endif
#if E2_IS_TRINAMIC #if E2_IS_TRINAMIC
if (values[E_AXIS]) tmc_set_current(stepperE2, extended_axis_codes[TMC_E2], values[E_AXIS]); TMC_SET_GET_CURRENT(E,E2);
else tmc_get_current(stepperE2, extended_axis_codes[TMC_E2]);
#endif #endif
#if E3_IS_TRINAMIC #if E3_IS_TRINAMIC
if (values[E_AXIS]) tmc_set_current(stepperE3, extended_axis_codes[TMC_E3], values[E_AXIS]); TMC_SET_GET_CURRENT(E,E3);
else tmc_get_current(stepperE3, extended_axis_codes[TMC_E3]);
#endif #endif
#if E4_IS_TRINAMIC #if E4_IS_TRINAMIC
if (values[E_AXIS]) tmc_set_current(stepperE4, extended_axis_codes[TMC_E4], values[E_AXIS]); TMC_SET_GET_CURRENT(E,E4);
else tmc_get_current(stepperE4, extended_axis_codes[TMC_E4]);
#endif #endif
} }
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC

@ -81,55 +81,44 @@ void GcodeSuite::M912() {
#if ENABLED(HYBRID_THRESHOLD) #if ENABLED(HYBRID_THRESHOLD)
void GcodeSuite::M913() { void GcodeSuite::M913() {
uint16_t values[XYZE]; uint16_t values[XYZE];
LOOP_XYZE(i) LOOP_XYZE(i) values[i] = parser.intval(axis_codes[i]);
values[i] = parser.intval(axis_codes[i]);
#define TMC_SET_GET_PWMTHRS(P,Q) do { \
if (values[P##_AXIS]) tmc_set_pwmthrs(stepper##Q, extended_axis_codes[TMC_##Q], values[P##_AXIS], planner.axis_steps_per_mm[P##_AXIS]); \
else tmc_get_pwmthrs(stepper##Q, extended_axis_codes[TMC_##Q], planner.axis_steps_per_mm[P##_AXIS]); } while(0)
#if X_IS_TRINAMIC #if X_IS_TRINAMIC
if (values[X_AXIS]) tmc_set_pwmthrs(stepperX, extended_axis_codes[TMC_X], values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]); TMC_SET_GET_PWMTHRS(X,X);
else tmc_get_pwmthrs(stepperX, extended_axis_codes[TMC_X], planner.axis_steps_per_mm[X_AXIS]);
#endif #endif
#if X2_IS_TRINAMIC #if X2_IS_TRINAMIC
if (values[X_AXIS]) tmc_set_pwmthrs(stepperX2, extended_axis_codes[TMC_X2], values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]); TMC_SET_GET_PWMTHRS(X,X2);
else tmc_get_pwmthrs(stepperX, extended_axis_codes[TMC_X2], planner.axis_steps_per_mm[X_AXIS]);
#endif #endif
#if Y_IS_TRINAMIC #if Y_IS_TRINAMIC
if (values[Y_AXIS]) tmc_set_pwmthrs(stepperY, extended_axis_codes[TMC_Y], values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]); TMC_SET_GET_PWMTHRS(Y,Y);
else tmc_get_pwmthrs(stepperY, extended_axis_codes[TMC_Y], planner.axis_steps_per_mm[Y_AXIS]);
#endif #endif
#if Y2_IS_TRINAMIC #if Y2_IS_TRINAMIC
if (values[Y_AXIS]) tmc_set_pwmthrs(stepperY2, extended_axis_codes[TMC_Y2], values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]); TMC_SET_GET_PWMTHRS(Y,Y2);
else tmc_get_pwmthrs(stepperY, extended_axis_codes[TMC_Y2], planner.axis_steps_per_mm[Y_AXIS]);
#endif #endif
#if Z_IS_TRINAMIC #if Z_IS_TRINAMIC
if (values[Z_AXIS]) tmc_set_pwmthrs(stepperZ, extended_axis_codes[TMC_Z], values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]); TMC_SET_GET_PWMTHRS(Z,Z);
else tmc_get_pwmthrs(stepperZ, extended_axis_codes[TMC_Z], planner.axis_steps_per_mm[Z_AXIS]);
#endif #endif
#if Z2_IS_TRINAMIC #if Z2_IS_TRINAMIC
if (values[Z_AXIS]) tmc_set_pwmthrs(stepperZ2, extended_axis_codes[TMC_Z2], values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]); TMC_SET_GET_PWMTHRS(Z,Z2);
else tmc_get_pwmthrs(stepperZ, extended_axis_codes[TMC_Z2], planner.axis_steps_per_mm[Z_AXIS]);
#endif #endif
#if E0_IS_TRINAMIC #if E0_IS_TRINAMIC
if (values[E_AXIS]) tmc_set_pwmthrs(stepperE0, extended_axis_codes[TMC_E0], values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]); TMC_SET_GET_PWMTHRS(E,E0);
else tmc_get_pwmthrs(stepperE0, extended_axis_codes[TMC_E0], planner.axis_steps_per_mm[E_AXIS]);
#endif #endif
#if E1_IS_TRINAMIC #if E1_IS_TRINAMIC
if (values[E_AXIS]) tmc_set_pwmthrs(stepperE1, extended_axis_codes[TMC_E1], values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]); TMC_SET_GET_PWMTHRS(E,E1);
else tmc_get_pwmthrs(stepperE1, extended_axis_codes[TMC_E1], planner.axis_steps_per_mm[E_AXIS]);
#endif #endif
#if E2_IS_TRINAMIC #if E2_IS_TRINAMIC
if (values[E_AXIS]) tmc_set_pwmthrs(stepperE2, extended_axis_codes[TMC_E2], values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]); TMC_SET_GET_PWMTHRS(E,E2);
else tmc_get_pwmthrs(stepperE2, extended_axis_codes[TMC_E2], planner.axis_steps_per_mm[E_AXIS]);
#endif #endif
#if E3_IS_TRINAMIC #if E3_IS_TRINAMIC
if (values[E_AXIS]) tmc_set_pwmthrs(stepperE3, extended_axis_codes[TMC_E3], values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]); TMC_SET_GET_PWMTHRS(E,E3);
else tmc_get_pwmthrs(stepperE3, extended_axis_codes[TMC_E3], planner.axis_steps_per_mm[E_AXIS]);
#endif #endif
#if E4_IS_TRINAMIC #if E4_IS_TRINAMIC
if (values[E_AXIS]) tmc_set_pwmthrs(stepperE4, extended_axis_codes[TMC_E4], values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]); TMC_SET_GET_PWMTHRS(E,E4);
else tmc_get_pwmthrs(stepperE4, extended_axis_codes[TMC_E4], planner.axis_steps_per_mm[E_AXIS]);
#endif #endif
} }
#endif // HYBRID_THRESHOLD #endif // HYBRID_THRESHOLD
@ -139,21 +128,21 @@ void GcodeSuite::M912() {
*/ */
#if ENABLED(SENSORLESS_HOMING) #if ENABLED(SENSORLESS_HOMING)
void GcodeSuite::M914() { void GcodeSuite::M914() {
#define TMC_SET_GET_SGT(P,Q) do { \
if (parser.seen(axis_codes[P##_AXIS])) tmc_set_sgt(stepper##Q, extended_axis_codes[TMC_##Q], parser.value_int()); \
else tmc_get_sgt(stepper##Q, extended_axis_codes[TMC_##Q]); } while(0)
#if ENABLED(X_IS_TMC2130) || ENABLED(IS_TRAMS) #if ENABLED(X_IS_TMC2130) || ENABLED(IS_TRAMS)
if (parser.seen(axis_codes[X_AXIS])) tmc_set_sgt(stepperX, extended_axis_codes[TMC_X], parser.value_int()); TMC_SET_GET_SGT(X,X);
else tmc_get_sgt(stepperX, extended_axis_codes[TMC_X]);
#endif #endif
#if ENABLED(X2_IS_TMC2130) #if ENABLED(X2_IS_TMC2130)
if (parser.seen(axis_codes[X_AXIS])) tmc_set_sgt(stepperX2, extended_axis_codes[TMC_X2], parser.value_int()); TMC_SET_GET_SGT(X,X2);
else tmc_get_sgt(stepperX2, extended_axis_codes[TMC_X2]);
#endif #endif
#if ENABLED(Y_IS_TMC2130) || ENABLED(IS_TRAMS) #if ENABLED(Y_IS_TMC2130) || ENABLED(IS_TRAMS)
if (parser.seen(axis_codes[Y_AXIS])) tmc_set_sgt(stepperY, extended_axis_codes[TMC_Y], parser.value_int()); TMC_SET_GET_SGT(Y,Y);
else tmc_get_sgt(stepperY, extended_axis_codes[TMC_Y]);
#endif #endif
#if ENABLED(Y2_IS_TMC2130) #if ENABLED(Y2_IS_TMC2130)
if (parser.seen(axis_codes[Y_AXIS])) tmc_set_sgt(stepperY2, extended_axis_codes[TMC_Y2], parser.value_int()); TMC_SET_GET_SGT(Y,Y2);
else tmc_get_sgt(stepperY2, extended_axis_codes[TMC_Y2]);
#endif #endif
} }
#endif // SENSORLESS_HOMING #endif // SENSORLESS_HOMING

@ -679,6 +679,20 @@
#define HAS_E4_MICROSTEPS (PIN_EXISTS(E4_MS1)) #define HAS_E4_MICROSTEPS (PIN_EXISTS(E4_MS1))
#define HAS_SOLENOID_4 (PIN_EXISTS(SOL4)) #define HAS_SOLENOID_4 (PIN_EXISTS(SOL4))
// Trinamic Stepper Drivers
#define HAS_TRINAMIC (ENABLED(HAVE_TMC2130) || ENABLED(HAVE_TMC2208) || ENABLED(IS_TRAMS))
#define X_IS_TRINAMIC (ENABLED( X_IS_TMC2130) || ENABLED( X_IS_TMC2208) || ENABLED(IS_TRAMS))
#define X2_IS_TRINAMIC (ENABLED(X2_IS_TMC2130) || ENABLED(X2_IS_TMC2208))
#define Y_IS_TRINAMIC (ENABLED( Y_IS_TMC2130) || ENABLED( Y_IS_TMC2208) || ENABLED(IS_TRAMS))
#define Y2_IS_TRINAMIC (ENABLED(Y2_IS_TMC2130) || ENABLED(Y2_IS_TMC2208))
#define Z_IS_TRINAMIC (ENABLED( Z_IS_TMC2130) || ENABLED( Z_IS_TMC2208) || ENABLED(IS_TRAMS))
#define Z2_IS_TRINAMIC (ENABLED(Z2_IS_TMC2130) || ENABLED(Z2_IS_TMC2208))
#define E0_IS_TRINAMIC (ENABLED(E0_IS_TMC2130) || ENABLED(E0_IS_TMC2208) || ENABLED(IS_TRAMS))
#define E1_IS_TRINAMIC (ENABLED(E1_IS_TMC2130) || ENABLED(E1_IS_TMC2208))
#define E2_IS_TRINAMIC (ENABLED(E2_IS_TMC2130) || ENABLED(E2_IS_TMC2208))
#define E3_IS_TRINAMIC (ENABLED(E3_IS_TMC2130) || ENABLED(E3_IS_TMC2208))
#define E4_IS_TRINAMIC (ENABLED(E4_IS_TMC2130) || ENABLED(E4_IS_TMC2208))
// Endstops and bed probe // Endstops and bed probe
#define HAS_X_MIN (PIN_EXISTS(X_MIN) && !IS_X2_ENDSTOP(X,MIN) && !IS_Y2_ENDSTOP(X,MIN) && !IS_Z2_OR_PROBE(X,MIN)) #define HAS_X_MIN (PIN_EXISTS(X_MIN) && !IS_X2_ENDSTOP(X,MIN) && !IS_Y2_ENDSTOP(X,MIN) && !IS_Z2_OR_PROBE(X,MIN))
#define HAS_X_MAX (PIN_EXISTS(X_MAX) && !IS_X2_ENDSTOP(X,MAX) && !IS_Y2_ENDSTOP(X,MAX) && !IS_Z2_OR_PROBE(X,MAX)) #define HAS_X_MAX (PIN_EXISTS(X_MAX) && !IS_X2_ENDSTOP(X,MAX) && !IS_Y2_ENDSTOP(X,MAX) && !IS_Z2_OR_PROBE(X,MAX))

@ -28,7 +28,6 @@
#include "Version.h" #include "Version.h"
#include "../../Configuration.h" #include "../../Configuration.h"
#include "Conditionals_LCD.h" #include "Conditionals_LCD.h"
#include "../feature/tmc_macros.h"
#include "../../Configuration_adv.h" #include "../../Configuration_adv.h"
#include "Conditionals_adv.h" #include "Conditionals_adv.h"

@ -1491,8 +1491,6 @@ static_assert(1 >= 0
#error "Enable STEALTHCHOP to use HYBRID_THRESHOLD." #error "Enable STEALTHCHOP to use HYBRID_THRESHOLD."
#endif #endif
#include "../feature/tmc_macros.h"
#if ENABLED(TMC_Z_CALIBRATION) && !Z_IS_TRINAMIC && !Z2_IS_TRINAMIC #if ENABLED(TMC_Z_CALIBRATION) && !Z_IS_TRINAMIC && !Z2_IS_TRINAMIC
#error "TMC_Z_CALIBRATION requires at least one TMC driver on Z axis" #error "TMC_Z_CALIBRATION requires at least one TMC driver on Z axis"
#endif #endif

Loading…
Cancel
Save