Merge pull request #3751 from AnHardt/fix-arcs

Idle during long arcs
2.0.x
Scott Lahteine 9 years ago
commit 6903eb1c5b

@ -455,6 +455,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

@ -506,7 +506,9 @@ void stop();
void get_available_commands(); void get_available_commands();
void process_next_command(); void process_next_command();
void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise); #if ENABLED(ARC_SUPPORT)
void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
#endif
void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
@ -2461,32 +2463,34 @@ inline void gcode_G0_G1() {
* G2: Clockwise Arc * G2: Clockwise Arc
* G3: Counterclockwise Arc * G3: Counterclockwise Arc
*/ */
inline void gcode_G2_G3(bool clockwise) { #if ENABLED(ARC_SUPPORT)
if (IsRunning()) { inline void gcode_G2_G3(bool clockwise) {
if (IsRunning()) {
#if ENABLED(SF_ARC_FIX) #if ENABLED(SF_ARC_FIX)
bool relative_mode_backup = relative_mode; bool relative_mode_backup = relative_mode;
relative_mode = true; relative_mode = true;
#endif #endif
gcode_get_destination(); gcode_get_destination();
#if ENABLED(SF_ARC_FIX) #if ENABLED(SF_ARC_FIX)
relative_mode = relative_mode_backup; relative_mode = relative_mode_backup;
#endif #endif
// Center of arc as offset from current_position // Center of arc as offset from current_position
float arc_offset[2] = { float arc_offset[2] = {
code_seen('I') ? code_value() : 0, code_seen('I') ? code_value() : 0,
code_seen('J') ? code_value() : 0 code_seen('J') ? code_value() : 0
}; };
// Send an arc to the planner // Send an arc to the planner
plan_arc(destination, arc_offset, clockwise); plan_arc(destination, arc_offset, clockwise);
refresh_cmd_timeout(); refresh_cmd_timeout();
}
} }
} #endif
/** /**
* G4: Dwell S<seconds> or P<milliseconds> * G4: Dwell S<seconds> or P<milliseconds>
@ -6484,7 +6488,7 @@ void process_next_command() {
break; break;
// G2, G3 // G2, G3
#if DISABLED(SCARA) #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
case 2: // G2 - CW ARC case 2: // G2 - CW ARC
case 3: // G3 - CCW ARC case 3: // G3 - CCW ARC
gcode_G2_G3(codenum == 2); gcode_G2_G3(codenum == 2);
@ -7423,147 +7427,157 @@ void prepare_move() {
set_current_to_destination(); set_current_to_destination();
} }
/** #if ENABLED(ARC_SUPPORT)
* Plan an arc in 2 dimensions
*
* The arc is approximated by generating many small linear segments.
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
* Arcs should only be made relatively large (over 5mm), as larger arcs with
* larger segments will tend to be more efficient. Your slicer should have
* options for G2/G3 arc generation. In future these options may be GCode tunable.
*/
void plan_arc(
float target[NUM_AXIS], // Destination position
float* offset, // Center of rotation relative to current_position
uint8_t clockwise // Clockwise?
) {
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
center_X = current_position[X_AXIS] + offset[X_AXIS],
center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
extruder_travel = target[E_AXIS] - current_position[E_AXIS],
r_X = -offset[X_AXIS], // Radius vector from center to current location
r_Y = -offset[Y_AXIS],
rt_X = target[X_AXIS] - center_X,
rt_Y = target[Y_AXIS] - center_Y;
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
if (angular_travel < 0) angular_travel += RADIANS(360);
if (clockwise) angular_travel -= RADIANS(360);
// Make a circle if the angular rotation is 0
if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
angular_travel += RADIANS(360);
float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
if (mm_of_travel < 0.001) return;
uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
if (segments == 0) segments = 1;
float theta_per_segment = angular_travel / segments;
float linear_per_segment = linear_travel / segments;
float extruder_per_segment = extruder_travel / segments;
/** /**
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, * Plan an arc in 2 dimensions
* and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
* r_T = [cos(phi) -sin(phi);
* sin(phi) cos(phi] * r ;
*
* For arc generation, the center of the circle is the axis of rotation and the radius vector is
* defined from the circle center to the initial position. Each line segment is formed by successive
* vector rotations. This requires only two cos() and sin() computations to form the rotation
* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
* all double numbers are single precision on the Arduino. (True double precision will not have
* round off issues for CNC applications.) Single precision error can accumulate to be greater than
* tool precision in some cases. Therefore, arc path correction is implemented.
*
* Small angle approximation may be used to reduce computation overhead further. This approximation
* holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
* issue for CNC machines with the single precision Arduino calculations.
* *
* This approximation also allows plan_arc to immediately insert a line segment into the planner * The arc is approximated by generating many small linear segments.
* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. * Arcs should only be made relatively large (over 5mm), as larger arcs with
* This is important when there are successive arc motions. * larger segments will tend to be more efficient. Your slicer should have
* options for G2/G3 arc generation. In future these options may be GCode tunable.
*/ */
// Vector rotation matrix values void plan_arc(
float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation float target[NUM_AXIS], // Destination position
float sin_T = theta_per_segment; float* offset, // Center of rotation relative to current_position
uint8_t clockwise // Clockwise?
) {
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
center_X = current_position[X_AXIS] + offset[X_AXIS],
center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
extruder_travel = target[E_AXIS] - current_position[E_AXIS],
r_X = -offset[X_AXIS], // Radius vector from center to current location
r_Y = -offset[Y_AXIS],
rt_X = target[X_AXIS] - center_X,
rt_Y = target[Y_AXIS] - center_Y;
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
if (angular_travel < 0) angular_travel += RADIANS(360);
if (clockwise) angular_travel -= RADIANS(360);
// Make a circle if the angular rotation is 0
if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
angular_travel += RADIANS(360);
float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
if (mm_of_travel < 0.001) return;
uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
if (segments == 0) segments = 1;
float theta_per_segment = angular_travel / segments;
float linear_per_segment = linear_travel / segments;
float extruder_per_segment = extruder_travel / segments;
float arc_target[NUM_AXIS]; /**
float sin_Ti, cos_Ti, r_new_Y; * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
uint16_t i; * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
int8_t count = 0; * r_T = [cos(phi) -sin(phi);
* sin(phi) cos(phi] * r ;
*
* For arc generation, the center of the circle is the axis of rotation and the radius vector is
* defined from the circle center to the initial position. Each line segment is formed by successive
* vector rotations. This requires only two cos() and sin() computations to form the rotation
* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
* all double numbers are single precision on the Arduino. (True double precision will not have
* round off issues for CNC applications.) Single precision error can accumulate to be greater than
* tool precision in some cases. Therefore, arc path correction is implemented.
*
* Small angle approximation may be used to reduce computation overhead further. This approximation
* holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
* issue for CNC machines with the single precision Arduino calculations.
*
* This approximation also allows plan_arc to immediately insert a line segment into the planner
* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
* This is important when there are successive arc motions.
*/
// Vector rotation matrix values
float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
float sin_T = theta_per_segment;
// Initialize the linear axis float arc_target[NUM_AXIS];
arc_target[Z_AXIS] = current_position[Z_AXIS]; float sin_Ti, cos_Ti, r_new_Y;
uint16_t i;
int8_t count = 0;
// Initialize the extruder axis // Initialize the linear axis
arc_target[E_AXIS] = current_position[E_AXIS]; arc_target[Z_AXIS] = current_position[Z_AXIS];
float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0; // Initialize the extruder axis
arc_target[E_AXIS] = current_position[E_AXIS];
for (i = 1; i < segments; i++) { // Iterate (segments-1) times float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
if (++count < N_ARC_CORRECTION) { millis_t previous_ms = millis();
// Apply vector rotation matrix to previous r_X / 1
r_new_Y = r_X * sin_T + r_Y * cos_T; for (i = 1; i < segments; i++) { // Iterate (segments-1) times
r_X = r_X * cos_T - r_Y * sin_T;
r_Y = r_new_Y; millis_t now = millis();
} if (now - previous_ms > 200UL) {
else { previous_ms = now;
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. idle();
// Compute exact location by applying transformation matrix from initial radius vector(=-offset). }
// To reduce stuttering, the sin and cos could be computed at different times.
// For now, compute both at the same time. if (++count < N_ARC_CORRECTION) {
cos_Ti = cos(i * theta_per_segment); // Apply vector rotation matrix to previous r_X / 1
sin_Ti = sin(i * theta_per_segment); r_new_Y = r_X * sin_T + r_Y * cos_T;
r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti; r_X = r_X * cos_T - r_Y * sin_T;
r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti; r_Y = r_new_Y;
count = 0; }
} else {
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
// To reduce stuttering, the sin and cos could be computed at different times.
// For now, compute both at the same time.
cos_Ti = cos(i * theta_per_segment);
sin_Ti = sin(i * theta_per_segment);
r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
count = 0;
}
// Update arc_target location
arc_target[X_AXIS] = center_X + r_X;
arc_target[Y_AXIS] = center_Y + r_Y;
arc_target[Z_AXIS] += linear_per_segment;
arc_target[E_AXIS] += extruder_per_segment;
// Update arc_target location clamp_to_software_endstops(arc_target);
arc_target[X_AXIS] = center_X + r_X;
arc_target[Y_AXIS] = center_Y + r_Y;
arc_target[Z_AXIS] += linear_per_segment;
arc_target[E_AXIS] += extruder_per_segment;
clamp_to_software_endstops(arc_target); #if ENABLED(DELTA) || ENABLED(SCARA)
calculate_delta(arc_target);
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
adjust_delta(arc_target);
#endif
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
#else
planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
#endif
}
// Ensure last segment arrives at target location.
#if ENABLED(DELTA) || ENABLED(SCARA) #if ENABLED(DELTA) || ENABLED(SCARA)
calculate_delta(arc_target); calculate_delta(target);
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
adjust_delta(arc_target); adjust_delta(target);
#endif #endif
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
#else #else
planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
#endif #endif
}
// Ensure last segment arrives at target location. // As far as the parser is concerned, the position is now == target. In reality the
#if ENABLED(DELTA) || ENABLED(SCARA) // motion control system might still be processing the action and the real tool position
calculate_delta(target); // in any intermediate location.
#if ENABLED(AUTO_BED_LEVELING_FEATURE) set_current_to_destination();
adjust_delta(target); }
#endif #endif
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
#else
planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
#endif
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
set_current_to_destination();
}
#if HAS_CONTROLLERFAN #if HAS_CONTROLLERFAN

@ -455,6 +455,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

@ -455,6 +455,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

@ -455,6 +455,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

@ -461,6 +461,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

@ -455,6 +455,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

@ -455,6 +455,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

@ -463,6 +463,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

@ -455,6 +455,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

@ -457,6 +457,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

@ -457,6 +457,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

@ -456,6 +456,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

@ -461,6 +461,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

@ -457,6 +457,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

@ -455,6 +455,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

@ -455,6 +455,7 @@
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2660bytes
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25

Loading…
Cancel
Save