A lot of changes in the planner code

2.0.x
Erik van der Zalm 13 years ago
parent 72ace55e6a
commit 65934eee9c

@ -6,6 +6,15 @@
#define MM_PER_ARC_SEGMENT 1 #define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25 #define N_ARC_CORRECTION 25
// Frequency limit
// See nophead's blog for more info
#define XY_FREQUENCY_LIMIT 15
// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
// of the buffer and all stops. This should not be much greater than zero and should only be changed
// if unwanted behavior is observed on a user's machine when running at very slow speeds.
#define MINIMUM_PLANNER_SPEED 2.0 // (mm/sec)
// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration // BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
//// The following define selects which electronics board you have. Please choose the one that matches your setup //// The following define selects which electronics board you have. Please choose the one that matches your setup
@ -97,6 +106,11 @@ const int dropsegments=5; //everything with this number of steps will be ignore
#define DISABLE_E false #define DISABLE_E false
// Inverting axis direction // Inverting axis direction
//#define INVERT_X_DIR false // for Mendel set to false, for Orca set to true
//#define INVERT_Y_DIR true // for Mendel set to true, for Orca set to false
//#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true
//#define INVERT_E_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true #define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false #define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true #define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
@ -117,7 +131,7 @@ const int dropsegments=5; //everything with this number of steps will be ignore
//// MOVEMENT SETTINGS //// MOVEMENT SETTINGS
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E #define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
//note: on bernhards ultimaker 200 200 12 are working well. //note: on bernhards ultimaker 200 200 12 are working well.
#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds #define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0} // set the homing speeds (mm/min)
#define AXIS_RELATIVE_MODES {false, false, false, false} #define AXIS_RELATIVE_MODES {false, false, false, false}
@ -126,19 +140,20 @@ const int dropsegments=5; //everything with this number of steps will be ignore
// default settings // default settings
#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker #define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000} //#define DEFAULT_AXIS_STEPS_PER_UNIT {40, 40, 3333.92, 67}
#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot. #define DEFAULT_MAX_FEEDRATE {500, 500, 10, 500000} // (mm/min)
#define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves #define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts #define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate #define DEFAULT_MINIMUMFEEDRATE 0 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 10 #define DEFAULT_MINTRAVELFEEDRATE 0
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff. // minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
#define DEFAULT_MINSEGMENTTIME 20000 #define DEFAULT_MINSEGMENTTIME 20000
#define DEFAULT_XYJERK 30.0*60 #define DEFAULT_XYJERK 30.0 // (mm/sec)
#define DEFAULT_ZJERK 10.0*60 #define DEFAULT_ZJERK 0.4 // (mm/sec)
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature // The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
@ -162,7 +177,7 @@ const int dropsegments=5; //everything with this number of steps will be ignore
//#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one //#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one
//// The minimal temperature defines the temperature below which the heater will not be enabled //// The minimal temperature defines the temperature below which the heater will not be enabled
#define HEATER_0_MINTEMP 5 //#define HEATER_0_MINTEMP 5
//#define HEATER_1_MINTEMP 5 //#define HEATER_1_MINTEMP 5
//#define BED_MINTEMP 5 //#define BED_MINTEMP 5
@ -170,7 +185,7 @@ const int dropsegments=5; //everything with this number of steps will be ignore
// When temperature exceeds max temp, your heater will be switched off. // When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure! // This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection. // You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 275 //#define HEATER_0_MAXTEMP 275
//#define_HEATER_1_MAXTEMP 275 //#define_HEATER_1_MAXTEMP 275
//#define BED_MAXTEMP 150 //#define BED_MAXTEMP 150
@ -246,9 +261,9 @@ const int dropsegments=5; //everything with this number of steps will be ignore
// The number of linear motions that can be in the plan at any give time. // The number of linear motions that can be in the plan at any give time.
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ringbuffering. // THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ringbuffering.
#if defined SDSUPPORT #if defined SDSUPPORT
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller #define BLOCK_BUFFER_SIZE 8 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else #else
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer #define BLOCK_BUFFER_SIZE 8 // maximize block buffer
#endif #endif
//The ASCII buffer for recieving from the serial: //The ASCII buffer for recieving from the serial:

@ -114,7 +114,9 @@ extern float HeaterPower;
//=========================================================================== //===========================================================================
//=============================public variables============================= //=============================public variables=============================
//=========================================================================== //===========================================================================
#ifdef SDSUPPORT
CardReader card; CardReader card;
#endif
float homing_feedrate[] = HOMING_FEEDRATE; float homing_feedrate[] = HOMING_FEEDRATE;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES; bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
volatile int feedmultiply=100; //100->1 200->2 volatile int feedmultiply=100; //100->1 200->2
@ -215,7 +217,9 @@ void loop()
{ {
if(buflen<3) if(buflen<3)
get_command(); get_command();
#ifdef SDSUPPORT
card.checkautostart(false); card.checkautostart(false);
#endif
if(buflen) if(buflen)
{ {
#ifdef SDSUPPORT #ifdef SDSUPPORT
@ -933,7 +937,7 @@ inline void get_arc_coordinates()
void prepare_move() void prepare_move()
{ {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0);
for(int8_t i=0; i < NUM_AXIS; i++) { for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i]; current_position[i] = destination[i];
} }
@ -943,7 +947,7 @@ void prepare_arc_move(char isclockwise) {
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
// Trace the arc // Trace the arc
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60.0/100.0, r, isclockwise); mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise);
// As far as the parser is concerned, the position is now == target. In reality the // As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position // motion control system might still be processing the action and the real tool position

@ -83,6 +83,8 @@ unsigned long axis_steps_per_sqr_second[NUM_AXIS];
// The current position of the tool in absolute steps // The current position of the tool in absolute steps
long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
static float previous_speed[4]; // Speed of previous path line segment
static float previous_nominal_speed; // Nominal speed of previous path line segment
//=========================================================================== //===========================================================================
@ -92,12 +94,30 @@ static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for
static volatile unsigned char block_buffer_head; // Index of the next block to be pushed static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
static volatile unsigned char block_buffer_tail; // Index of the block to process now static volatile unsigned char block_buffer_tail; // Index of the block to process now
// Used for the frequency limit
static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations
static long y_segment_time[3]={0,0,0};
// Returns the index of the next block in the ring buffer
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
static int8_t next_block_index(int8_t block_index) {
block_index++;
if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
return(block_index);
}
// Returns the index of the previous block in the ring buffer
static int8_t prev_block_index(int8_t block_index) {
if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
block_index--;
return(block_index);
}
//=========================================================================== //===========================================================================
//=============================functions ============================ //=============================functions ============================
//=========================================================================== //===========================================================================
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
// given acceleration: // given acceleration:
@ -128,43 +148,46 @@ inline float intersection_distance(float initial_rate, float final_rate, float a
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) { void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
if(block->busy == true) return; // If block is busy then bail out. long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
float entry_factor = entry_speed / block->nominal_speed; long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
float exit_factor = exit_speed / block->nominal_speed;
long initial_rate = ceil(block->nominal_rate*entry_factor);
long final_rate = ceil(block->nominal_rate*exit_factor);
#ifdef ADVANCE
long initial_advance = block->advance*entry_factor*entry_factor;
long final_advance = block->advance*exit_factor*exit_factor;
#endif // ADVANCE
// Limit minimal step rate (Otherwise the timer will overflow.) // Limit minimal step rate (Otherwise the timer will overflow.)
if(initial_rate <120) initial_rate=120; if(initial_rate <120) {initial_rate=120; }
if(final_rate < 120) final_rate=120; if(final_rate < 120) {final_rate=120; }
// Calculate the acceleration steps
long acceleration = block->acceleration_st; long acceleration = block->acceleration_st;
long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration); int32_t accelerate_steps =
long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration); ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
int32_t decelerate_steps =
floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
// Calculate the size of Plateau of Nominal Rate. // Calculate the size of Plateau of Nominal Rate.
long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps; int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort acceleration and start braking // have to use intersection_distance() to calculate when to abort acceleration and start braking
// in order to reach the final_rate exactly at the end of this block. // in order to reach the final_rate exactly at the end of this block.
if (plateau_steps < 0) { if (plateau_steps < 0) {
accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count); accelerate_steps = ceil(
intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
accelerate_steps = min(accelerate_steps,block->step_event_count);
plateau_steps = 0; plateau_steps = 0;
} }
long decelerate_after = accelerate_steps+plateau_steps; #ifdef ADVANCE
long initial_advance = block->advance*entry_factor*entry_factor;
long final_advance = block->advance*exit_factor*exit_factor;
#endif // ADVANCE
// block->accelerate_until = accelerate_steps;
// block->decelerate_after = accelerate_steps+plateau_steps;
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
if(block->busy == false) { // Don't update variables if block is busy. if(block->busy == false) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps; block->accelerate_until = accelerate_steps;
block->decelerate_after = decelerate_after; block->decelerate_after = accelerate_steps+plateau_steps;
block->initial_rate = initial_rate; block->initial_rate = initial_rate;
block->final_rate = final_rate; block->final_rate = final_rate;
#ifdef ADVANCE #ifdef ADVANCE
@ -178,71 +201,40 @@ void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
// acceleration within the allotted distance. // acceleration within the allotted distance.
inline float max_allowable_speed(float acceleration, float target_velocity, float distance) { inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
return sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance); return sqrt(target_velocity*target_velocity-2*acceleration*distance);
} }
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
// This method will calculate the junction jerk as the euclidean distance between the nominal // This method will calculate the junction jerk as the euclidean distance between the nominal
// velocities of the respective blocks. // velocities of the respective blocks.
inline float junction_jerk(block_t *before, block_t *after) { //inline float junction_jerk(block_t *before, block_t *after) {
return sqrt( // return sqrt(
pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2)); // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
} //}
// Return the safe speed which is max_jerk/2, e.g. the
// speed under which you cannot exceed max_jerk no matter what you do.
float safe_speed(block_t *block) {
float safe_speed;
safe_speed = max_xy_jerk/2;
if(abs(block->speed_z) > max_z_jerk/2)
safe_speed = max_z_jerk/2;
if (safe_speed > block->nominal_speed)
safe_speed = block->nominal_speed;
return safe_speed;
}
// The kernel called by planner_recalculate() when scanning the plan from last to first entry. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) { void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!current) { if(!current) { return; }
return;
}
float entry_speed = current->nominal_speed;
float exit_factor;
float exit_speed;
if (next) { if (next) {
exit_speed = next->entry_speed; // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
} // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
else { // check for maximum allowable speed reductions to ensure maximum possible planned speed.
exit_speed = safe_speed(current); if (current->entry_speed != current->max_entry_speed) {
}
// Calculate the entry_factor for the current block. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
if (previous) { // for max allowable speed if block is decelerating and nominal length is false.
// Reduce speed so that junction_jerk is within the maximum allowed if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
float jerk = junction_jerk(previous, current); current->entry_speed = min( current->max_entry_speed,
if((previous->steps_x == 0) && (previous->steps_y == 0)) { max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
entry_speed = safe_speed(current); } else {
} current->entry_speed = current->max_entry_speed;
else if (jerk > max_xy_jerk) {
entry_speed = (max_xy_jerk/jerk) * entry_speed;
}
if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {
entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;
}
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
if (entry_speed > exit_speed) {
float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);
if (max_entry_speed < entry_speed) {
entry_speed = max_entry_speed;
} }
current->recalculate_flag = true;
} }
} } // Skip last block. Already initialized and set for recalculation.
else {
entry_speed = safe_speed(current);
}
// Store result
current->entry_speed = entry_speed;
} }
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
@ -251,33 +243,34 @@ void planner_reverse_pass() {
char block_index = block_buffer_head; char block_index = block_buffer_head;
if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) { if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1); block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
block_t *block[5] = { block_t *block[3] = { NULL, NULL, NULL };
NULL, NULL, NULL, NULL, NULL };
while(block_index != block_buffer_tail) { while(block_index != block_buffer_tail) {
block_index = (block_index-1) & (BLOCK_BUFFER_SIZE -1); block_index = prev_block_index(block_index);
block[2]= block[1]; block[2]= block[1];
block[1]= block[0]; block[1]= block[0];
block[0] = &block_buffer[block_index]; block[0] = &block_buffer[block_index];
planner_reverse_pass_kernel(block[0], block[1], block[2]); planner_reverse_pass_kernel(block[0], block[1], block[2]);
} }
planner_reverse_pass_kernel(NULL, block[0], block[1]);
} }
} }
// The kernel called by planner_recalculate() when scanning the plan from first to last entry. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) { void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!current) { if(!previous) { return; }
return;
} // If the previous block is an acceleration block, but it is not long enough to complete the
if(previous) { // full speed change within the block, we need to adjust the entry speed accordingly. Entry
// If the previous block is an acceleration block, but it is not long enough to // speeds have already been reset, maximized, and reverse planned by reverse planner.
// complete the full speed change within the block, we need to adjust out entry // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
// speed accordingly. Remember current->entry_factor equals the exit factor of if (!previous->nominal_length_flag) {
// the previous block. if (previous->entry_speed < current->entry_speed) {
if(previous->entry_speed < current->entry_speed) { double entry_speed = min( current->entry_speed,
float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters); max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
if (max_entry_speed < current->entry_speed) {
current->entry_speed = max_entry_speed; // Check for junction speed change
if (current->entry_speed != entry_speed) {
current->entry_speed = entry_speed;
current->recalculate_flag = true;
} }
} }
} }
@ -287,15 +280,14 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
// implements the forward pass. // implements the forward pass.
void planner_forward_pass() { void planner_forward_pass() {
char block_index = block_buffer_tail; char block_index = block_buffer_tail;
block_t *block[3] = { block_t *block[3] = { NULL, NULL, NULL };
NULL, NULL, NULL };
while(block_index != block_buffer_head) { while(block_index != block_buffer_head) {
block[0] = block[1]; block[0] = block[1];
block[1] = block[2]; block[1] = block[2];
block[2] = &block_buffer[block_index]; block[2] = &block_buffer[block_index];
planner_forward_pass_kernel(block[0],block[1],block[2]); planner_forward_pass_kernel(block[0],block[1],block[2]);
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); block_index = next_block_index(block_index);
} }
planner_forward_pass_kernel(block[1], block[2], NULL); planner_forward_pass_kernel(block[1], block[2], NULL);
} }
@ -304,18 +296,30 @@ void planner_forward_pass() {
// entry_factor for each junction. Must be called by planner_recalculate() after // entry_factor for each junction. Must be called by planner_recalculate() after
// updating the blocks. // updating the blocks.
void planner_recalculate_trapezoids() { void planner_recalculate_trapezoids() {
char block_index = block_buffer_tail; int8_t block_index = block_buffer_tail;
block_t *current; block_t *current;
block_t *next = NULL; block_t *next = NULL;
while(block_index != block_buffer_head) { while(block_index != block_buffer_head) {
current = next; current = next;
next = &block_buffer[block_index]; next = &block_buffer[block_index];
if (current) { if (current) {
calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed); // Recalculate if current block entry or exit junction speed has changed.
if (current->recalculate_flag || next->recalculate_flag) {
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
next->entry_speed/current->nominal_speed);
current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
} }
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
} }
calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next)); block_index = next_block_index( block_index );
}
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
if(next != NULL) {
calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
MINIMUM_PLANNER_SPEED/next->nominal_speed);
next->recalculate_flag = false;
}
} }
// Recalculates the motion plan according to the following algorithm: // Recalculates the motion plan according to the following algorithm:
@ -345,6 +349,11 @@ void plan_init() {
block_buffer_head = 0; block_buffer_head = 0;
block_buffer_tail = 0; block_buffer_tail = 0;
memset(position, 0, sizeof(position)); // clear position memset(position, 0, sizeof(position)); // clear position
previous_speed[0] = 0.0;
previous_speed[1] = 0.0;
previous_speed[2] = 0.0;
previous_speed[3] = 0.0;
previous_nominal_speed = 0.0;
} }
@ -387,13 +396,15 @@ void check_axes_activity() {
if((DISABLE_E) && (e_active == 0)) disable_e(); if((DISABLE_E) && (e_active == 0)) disable_e();
} }
float junction_deviation = 0.1;
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters. // calculation the caller must also provide the physical length of the line in millimeters.
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate) void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate)
{ {
// Calculate the buffer head after we push this byte // Calculate the buffer head after we push this byte
int next_buffer_head = (block_buffer_head + 1) & (BLOCK_BUFFER_SIZE - 1); int next_buffer_head = next_block_index(block_buffer_head);
// If the buffer is full: good! That means we are well ahead of the robot. // If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer. // Rest here until there is room in the buffer.
@ -426,9 +437,14 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e))); block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
// Bail if this is a zero-length block // Bail if this is a zero-length block
if (block->step_event_count <=dropsegments) { if (block->step_event_count <=dropsegments) { return; };
return;
}; // Compute direction bits for this block
block->direction_bits = 0;
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); }
if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); }
//enable active axes //enable active axes
if(block->steps_x != 0) enable_x(); if(block->steps_x != 0) enable_x();
@ -436,14 +452,23 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
if(block->steps_z != 0) enable_z(); if(block->steps_z != 0) enable_z();
if(block->steps_e != 0) enable_e(); if(block->steps_e != 0) enable_e();
float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS]; float delta_mm[4];
float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]; delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]; delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS]; delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm)); delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) +
square(delta_mm[Z_AXIS]));
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
float inverse_second = feed_rate * inverse_millimeters;
unsigned long microseconds; block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
// unsigned long microseconds;
#if 0
if (block->steps_e == 0) { if (block->steps_e == 0) {
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate; if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
} }
@ -466,75 +491,168 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
if (microseconds<minsegmenttime) microseconds=minsegmenttime; if (microseconds<minsegmenttime) microseconds=minsegmenttime;
} }
// END OF SLOW DOWN SECTION // END OF SLOW DOWN SECTION
#endif
// Calculate speed in mm/sec for each axis
float current_speed[4];
for(int i=0; i < 4; i++) {
current_speed[i] = delta_mm[i] * inverse_second;
}
// Calculate speed in mm/minute for each axis // Limit speed per axis
float multiplier = 60.0*1000000.0/microseconds; float speed_factor = 1.0; //factor <=1 do decrease speed
block->speed_z = delta_z_mm * multiplier; for(int i=0; i < 4; i++) {
block->speed_x = delta_x_mm * multiplier; if(abs(current_speed[i]) > max_feedrate[i])
block->speed_y = delta_y_mm * multiplier; speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
block->speed_e = delta_e_mm * multiplier; }
// Max segement time in us.
// Limit speed per axis #ifdef XY_FREQUENCY_LIMIT
float speed_factor = 1; //factor <=1 do decrease speed #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x); // Check and limit the xy direction change frequency
//if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; /is not need here because auf the init above unsigned char direction_change = block->direction_bits ^ old_direction_bits;
} old_direction_bits = block->direction_bits;
if(abs(block->speed_y) > max_feedrate[Y_AXIS]){ long segment_time = lround(1000000.0/inverse_second);
float tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y); if((direction_change & (1<<X_AXIS)) == 0) {
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; x_segment_time[0] += segment_time;
} }
if(abs(block->speed_z) > max_feedrate[Z_AXIS]){ else {
float tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z); x_segment_time[2] = x_segment_time[1];
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; x_segment_time[1] = x_segment_time[0];
} x_segment_time[0] = segment_time;
if(abs(block->speed_e) > max_feedrate[E_AXIS]){ }
float tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e); if((direction_change & (1<<Y_AXIS)) == 0) {
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; y_segment_time[0] += segment_time;
} }
multiplier = multiplier * speed_factor; else {
block->speed_z = delta_z_mm * multiplier; y_segment_time[2] = y_segment_time[1];
block->speed_x = delta_x_mm * multiplier; y_segment_time[1] = y_segment_time[0];
block->speed_y = delta_y_mm * multiplier; y_segment_time[0] = segment_time;
block->speed_e = delta_e_mm * multiplier; }
block->nominal_speed = block->millimeters * multiplier; long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
block->nominal_rate = ceil(block->step_event_count * multiplier / 60); long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
if(block->nominal_rate < 120) if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
block->nominal_rate = 120; #endif
block->entry_speed = safe_speed(block);
// Compute the acceleration rate for the trapezoid generator. // Correct the speed
float travel_per_step = block->millimeters/block->step_event_count; if( speed_factor < 1.0) {
// Serial.print("speed factor : "); Serial.println(speed_factor);
for(int i=0; i < 4; i++) {
if(abs(current_speed[i]) > max_feedrate[i])
speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
// Serial.print("current_speed"); Serial.print(i); Serial.print(" : "); Serial.println(current_speed[i]);
}
for(unsigned char i=0; i < 4; i++) {
current_speed[i] *= speed_factor;
}
block->nominal_speed *= speed_factor;
block->nominal_rate *= speed_factor;
}
// Compute and limit the acceleration rate for the trapezoid generator.
float steps_per_mm = block->step_event_count/block->millimeters;
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) { if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2 block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
} }
else { else {
block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2 block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
float tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
// Limit acceleration per axis // Limit acceleration per axis
if((tmp_acceleration * block->steps_x) > axis_steps_per_sqr_second[X_AXIS]) { if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count; if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
}
if((tmp_acceleration * block->steps_y) > axis_steps_per_sqr_second[Y_AXIS]) {
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count; if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
}
if((tmp_acceleration * block->steps_e) > axis_steps_per_sqr_second[E_AXIS]) {
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count; if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
}
if((tmp_acceleration * block->steps_z) > axis_steps_per_sqr_second[Z_AXIS]) {
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
} }
} block->acceleration = block->acceleration_st / steps_per_mm;
block->acceleration = block->acceleration_st * travel_per_step;
block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608); block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
#if 0 // Use old jerk for now
// Compute path unit vector
double unit_vec[3];
unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
// Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
// Let a circle be tangent to both previous and current path line segments, where the junction
// deviation is defined as the distance from the junction to the closest edge of the circle,
// colinear with the circle center. The circular segment joining the two paths represents the
// path of centripetal acceleration. Solve for max velocity based on max acceleration about the
// radius of the circle, defined indirectly by junction deviation. This may be also viewed as
// path width or max_jerk in the previous grbl version. This approach does not actually deviate
// from path, but used as a robust way to compute cornering speeds, as it takes into account the
// nonlinearities of both the junction angle and junction velocity.
double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
// Skip and use default max junction speed for 0 degree acute junction.
if (cos_theta < 0.95) {
vmax_junction = min(previous_nominal_speed,block->nominal_speed);
// Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
if (cos_theta > -0.95) {
// Compute maximum junction velocity based on maximum acceleration and junction deviation
double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
vmax_junction = min(vmax_junction,
sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
}
}
}
#endif
// Start with a safe speed
float vmax_junction = max_xy_jerk/2;
if(abs(current_speed[Z_AXIS]) > max_z_jerk/2)
vmax_junction = max_z_jerk/2;
vmax_junction = min(vmax_junction, block->nominal_speed);
if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
if((previous_speed[X_AXIS] != 0.0) || (previous_speed[Y_AXIS] != 0.0)) {
vmax_junction = block->nominal_speed;
}
if (jerk > max_xy_jerk) {
vmax_junction *= (max_xy_jerk/jerk);
}
if(abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
vmax_junction *= (max_z_jerk/abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]));
}
}
block->max_entry_speed = vmax_junction;
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
block->entry_speed = min(vmax_junction, v_allowable);
// Initialize planner efficiency flags
// Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
// the current block and next block junction speeds are guaranteed to always be at their maximum
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
// the reverse and forward planners, the corresponding block junction speed will always be at the
// the maximum junction speed and may always be ignored for any speed reduction checks.
if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
else { block->nominal_length_flag = false; }
block->recalculate_flag = true; // Always calculate trapezoid for new block
// Update previous path unit_vector and nominal speed
memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
previous_nominal_speed = block->nominal_speed;
#ifdef ADVANCE #ifdef ADVANCE
// Calculate advance rate // Calculate advance rate
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) { if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
@ -555,24 +673,11 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
} }
#endif // ADVANCE #endif // ADVANCE
// compute a preliminary conservative acceleration trapezoid
float safespeed = safe_speed(block);
calculate_trapezoid_for_block(block, safespeed, safespeed);
// Compute direction bits for this block
block->direction_bits = 0;
if (target[X_AXIS] < position[X_AXIS]) { calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
block->direction_bits |= (1<<X_AXIS); MINIMUM_PLANNER_SPEED/block->nominal_speed);
}
if (target[Y_AXIS] < position[Y_AXIS]) {
block->direction_bits |= (1<<Y_AXIS);
}
if (target[Z_AXIS] < position[Z_AXIS]) {
block->direction_bits |= (1<<Z_AXIS);
}
if (target[E_AXIS] < position[E_AXIS]) {
block->direction_bits |= (1<<E_AXIS);
}
// Move buffer head // Move buffer head
block_buffer_head = next_buffer_head; block_buffer_head = next_buffer_head;
@ -581,6 +686,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
memcpy(position, target, sizeof(target)); // position[] = target[] memcpy(position, target, sizeof(target)); // position[] = target[]
planner_recalculate(); planner_recalculate();
st_wake_up(); st_wake_up();
} }
@ -590,5 +696,10 @@ void plan_set_position(const float &x, const float &y, const float &z, const flo
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
previous_speed[0] = 0.0;
previous_speed[1] = 0.0;
previous_speed[2] = 0.0;
previous_speed[3] = 0.0;
} }

@ -37,18 +37,21 @@ typedef struct {
volatile long acceleration_rate; // The acceleration rate used for acceleration calculation volatile long acceleration_rate; // The acceleration rate used for acceleration calculation
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h) unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
#ifdef ADVANCE #ifdef ADVANCE
long advance_rate; // long advance_rate;
volatile long initial_advance; // volatile long initial_advance;
volatile long final_advance; // volatile long final_advance;
float advance; // float advance;
#endif #endif
// Fields used by the motion planner to manage acceleration // Fields used by the motion planner to manage acceleration
float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis // float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis
float nominal_speed; // The nominal speed for this block in mm/min float nominal_speed; // The nominal speed for this block in mm/min
float entry_speed; // Entry speed at previous-current junction in mm/min
float max_entry_speed; // Maximum allowable junction entry speed in mm/min
float millimeters; // The total travel of this block in mm float millimeters; // The total travel of this block in mm
float entry_speed;
float acceleration; // acceleration mm/sec^2 float acceleration; // acceleration mm/sec^2
unsigned char recalculate_flag; // Planner flag to recalculate trapezoids on entry junction
unsigned char nominal_length_flag; // Planner flag for nominal speed always reached
// Settings for the trapezoid generator // Settings for the trapezoid generator
long nominal_rate; // The nominal step rate for this block in step_events/sec long nominal_rate; // The nominal step rate for this block in step_events/sec

@ -174,6 +174,7 @@ asm volatile ( \
void st_wake_up() { void st_wake_up() {
// TCNT1 = 0; // TCNT1 = 0;
if(busy == false)
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
} }
@ -208,7 +209,7 @@ inline unsigned short calc_timer(unsigned short step_rate) {
timer = (unsigned short)pgm_read_word_near(table_address); timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3); timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
} }
if(timer < 100) timer = 100; //if(timer < 100) timer = 100;
return timer; return timer;
} }
@ -220,7 +221,6 @@ inline void trapezoid_generator_reset() {
final_advance = current_block->final_advance; final_advance = current_block->final_advance;
#endif #endif
deceleration_time = 0; deceleration_time = 0;
// advance_rate = current_block->advance_rate;
// step_rate to timer interval // step_rate to timer interval
acc_step_rate = current_block->initial_rate; acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate); acceleration_time = calc_timer(acc_step_rate);
@ -232,7 +232,7 @@ inline void trapezoid_generator_reset() {
ISR(TIMER1_COMPA_vect) ISR(TIMER1_COMPA_vect)
{ {
if(busy){ if(busy){
SERIAL_ERRORLN(*(unsigned short *)OCR1A<< " ISR overtaking itself."); /* SERIAL_ERRORLN(*(unsigned short *)OCR1A<< " ISR overtaking itself.");*/
return; return;
} // The busy-flag is used to avoid reentering this interrupt } // The busy-flag is used to avoid reentering this interrupt
@ -448,6 +448,11 @@ ISR(TIMER1_COMPA_vect)
deceleration_time += timer; deceleration_time += timer;
OCR1A = timer; OCR1A = timer;
} }
else {
timer = calc_timer(current_block->nominal_rate);
OCR1A = timer;
}
// If current block is finished, reset pointer // If current block is finished, reset pointer
if (step_events_completed >= current_block->step_event_count) { if (step_events_completed >= current_block->step_event_count) {
current_block = NULL; current_block = NULL;

@ -28,6 +28,7 @@
This firmware is optimized for gen6 electronics. This firmware is optimized for gen6 electronics.
*/ */
#include <avr/pgmspace.h>
#include "fastio.h" #include "fastio.h"
#include "Configuration.h" #include "Configuration.h"
@ -54,7 +55,9 @@ int current_raw[3] = {0, 0, 0};
float Kp=DEFAULT_Kp; float Kp=DEFAULT_Kp;
float Ki=DEFAULT_Ki; float Ki=DEFAULT_Ki;
float Kd=DEFAULT_Kd; float Kd=DEFAULT_Kd;
#ifdef PID_ADD_EXTRUSION_RATE
float Kc=DEFAULT_Kc; float Kc=DEFAULT_Kc;
#endif
#endif //PIDTEMP #endif //PIDTEMP
@ -153,9 +156,9 @@ void manage_heater()
#define K2 (1.0-K1) #define K2 (1.0-K1)
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm); dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
temp_dState = pid_input; temp_dState = pid_input;
#ifdef PID_ADD_EXTRUSION_RATE // #ifdef PID_ADD_EXTRUSION_RATE
pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high // pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high
#endif // #endif
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX); pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
} }
#endif //PID_OPENLOOP #endif //PID_OPENLOOP
@ -203,18 +206,18 @@ int temp2analog(int celsius) {
for (i=1; i<NUMTEMPS_HEATER_0; i++) for (i=1; i<NUMTEMPS_HEATER_0; i++)
{ {
if (heater_0_temptable[i][1] < celsius) if (pgm_read_word(&(heater_0_temptable[i][1])) < celsius)
{ {
raw = heater_0_temptable[i-1][0] + raw = pgm_read_word(&(heater_0_temptable[i-1][0])) +
(celsius - heater_0_temptable[i-1][1]) * (celsius - pgm_read_word(&(heater_0_temptable[i-1][1]))) *
(heater_0_temptable[i][0] - heater_0_temptable[i-1][0]) / (pgm_read_word(&(heater_0_temptable[i][0])) - pgm_read_word(&(heater_0_temptable[i-1][0]))) /
(heater_0_temptable[i][1] - heater_0_temptable[i-1][1]); (pgm_read_word(&(heater_0_temptable[i][1])) - pgm_read_word(&(heater_0_temptable[i-1][1])));
break; break;
} }
} }
// Overflow: Set to last value in the table // Overflow: Set to last value in the table
if (i == NUMTEMPS_HEATER_0) raw = heater_0_temptable[i-1][0]; if (i == NUMTEMPS_HEATER_0) raw = pgm_read_word(&(heater_0_temptable[i-1][0]));
return (1023 * OVERSAMPLENR) - raw; return (1023 * OVERSAMPLENR) - raw;
#elif defined HEATER_0_USES_AD595 #elif defined HEATER_0_USES_AD595
@ -234,19 +237,19 @@ int temp2analogBed(int celsius) {
for (i=1; i<BNUMTEMPS; i++) for (i=1; i<BNUMTEMPS; i++)
{ {
if (bedtemptable[i][1] < celsius) if (pgm_read_word(&)bedtemptable[i][1])) < celsius)
{ {
raw = bedtemptable[i-1][0] + raw = pgm_read_word(&(bedtemptable[i-1][0])) +
(celsius - bedtemptable[i-1][1]) * (celsius - pgm_read_word(&(bedtemptable[i-1][1]))) *
(bedtemptable[i][0] - bedtemptable[i-1][0]) / (pgm_read_word(&(bedtemptable[i][0])) - pgm_read_word(&(bedtemptable[i-1][0]))) /
(bedtemptable[i][1] - bedtemptable[i-1][1]); (pgm_read_word(&(bedtemptable[i][1])) - pgm_read_word(&(bedtemptable[i-1][1])));
break; break;
} }
} }
// Overflow: Set to last value in the table // Overflow: Set to last value in the table
if (i == BNUMTEMPS) raw = bedtemptable[i-1][0]; if (i == BNUMTEMPS) raw = pgm_read_word(&(bedtemptable[i-1][0]));
return (1023 * OVERSAMPLENR) - raw; return (1023 * OVERSAMPLENR) - raw;
#elif defined BED_USES_AD595 #elif defined BED_USES_AD595
@ -263,19 +266,18 @@ float analog2temp(int raw) {
raw = (1023 * OVERSAMPLENR) - raw; raw = (1023 * OVERSAMPLENR) - raw;
for (i=1; i<NUMTEMPS_HEATER_0; i++) for (i=1; i<NUMTEMPS_HEATER_0; i++)
{ {
if (heater_0_temptable[i][0] > raw) if ((short)pgm_read_word(&heater_0_temptable[i][0]) > raw)
{ {
celsius = heater_0_temptable[i-1][1] + celsius = (short)pgm_read_word(&heater_0_temptable[i-1][1]) +
(raw - heater_0_temptable[i-1][0]) * (raw - (short)pgm_read_word(&heater_0_temptable[i-1][0])) *
(float)(heater_0_temptable[i][1] - heater_0_temptable[i-1][1]) / (float)((short)pgm_read_word(&heater_0_temptable[i][1]) - (short)pgm_read_word(&heater_0_temptable[i-1][1])) /
(float)(heater_0_temptable[i][0] - heater_0_temptable[i-1][0]); (float)((short)pgm_read_word(&heater_0_temptable[i][0]) - (short)pgm_read_word(&heater_0_temptable[i-1][0]));
break; break;
} }
} }
// Overflow: Set to last value in the table // Overflow: Set to last value in the table
if (i == NUMTEMPS_HEATER_0) celsius = heater_0_temptable[i-1][1]; if (i == NUMTEMPS_HEATER_0) celsius = (short)pgm_read_word(&(heater_0_temptable[i-1][1]));
return celsius; return celsius;
#elif defined HEATER_0_USES_AD595 #elif defined HEATER_0_USES_AD595
@ -294,19 +296,19 @@ float analog2tempBed(int raw) {
for (i=1; i<BNUMTEMPS; i++) for (i=1; i<BNUMTEMPS; i++)
{ {
if (bedtemptable[i][0] > raw) if (pgm_read_word(&(bedtemptable[i][0])) > raw)
{ {
celsius = bedtemptable[i-1][1] + celsius = pgm_read_word(&(bedtemptable[i-1][1])) +
(raw - bedtemptable[i-1][0]) * (raw - pgm_read_word(&(bedtemptable[i-1][0]))) *
(bedtemptable[i][1] - bedtemptable[i-1][1]) / (pgm_read_word(&(bedtemptable[i][1])) - pgm_read_word(&(bedtemptable[i-1][1]))) /
(bedtemptable[i][0] - bedtemptable[i-1][0]); (pgm_read_word(&(bedtemptable[i][0])) - pgm_read_word(&(bedtemptable[i-1][0])));
break; break;
} }
} }
// Overflow: Set to last value in the table // Overflow: Set to last value in the table
if (i == BNUMTEMPS) celsius = bedtemptable[i-1][1]; if (i == BNUMTEMPS) celsius = pgm_read_word(&(bedtemptable[i-1][1]));
return celsius; return celsius;

@ -1,12 +1,14 @@
#ifndef THERMISTORTABLES_H_ #ifndef THERMISTORTABLES_H_
#define THERMISTORTABLES_H_ #define THERMISTORTABLES_H_
#include <avr/pgmspace.h>
#define OVERSAMPLENR 16 #define OVERSAMPLENR 16
#if (THERMISTORHEATER_0 == 1) || (THERMISTORHEATER_1 == 1) || (THERMISTORBED == 1) //100k bed thermistor #if (THERMISTORHEATER_0 == 1) || (THERMISTORHEATER_1 == 1) || (THERMISTORBED == 1) //100k bed thermistor
#define NUMTEMPS_1 61 #define NUMTEMPS_1 61
const short temptable_1[NUMTEMPS_1][2] = { const short temptable_1[NUMTEMPS_1][2] PROGMEM = {
{ 23*OVERSAMPLENR , 300 }, { 23*OVERSAMPLENR , 300 },
{ 25*OVERSAMPLENR , 295 }, { 25*OVERSAMPLENR , 295 },
{ 27*OVERSAMPLENR , 290 }, { 27*OVERSAMPLENR , 290 },
@ -72,7 +74,7 @@ const short temptable_1[NUMTEMPS_1][2] = {
#endif #endif
#if (THERMISTORHEATER_0 == 2) || (THERMISTORHEATER_1 == 2) || (THERMISTORBED == 2) //200k bed thermistor #if (THERMISTORHEATER_0 == 2) || (THERMISTORHEATER_1 == 2) || (THERMISTORBED == 2) //200k bed thermistor
#define NUMTEMPS_2 21 #define NUMTEMPS_2 21
const short temptable_2[NUMTEMPS_2][2] = { const short temptable_2[NUMTEMPS_2][2] PROGMEM = {
{1*OVERSAMPLENR, 848}, {1*OVERSAMPLENR, 848},
{54*OVERSAMPLENR, 275}, {54*OVERSAMPLENR, 275},
{107*OVERSAMPLENR, 228}, {107*OVERSAMPLENR, 228},
@ -99,7 +101,7 @@ const short temptable_2[NUMTEMPS_2][2] = {
#endif #endif
#if (THERMISTORHEATER_0 == 3) || (THERMISTORHEATER_1 == 3) || (THERMISTORBED == 3) //mendel-parts #if (THERMISTORHEATER_0 == 3) || (THERMISTORHEATER_1 == 3) || (THERMISTORBED == 3) //mendel-parts
#define NUMTEMPS_3 28 #define NUMTEMPS_3 28
const short temptable_3[NUMTEMPS_3][2] = { const short temptable_3[NUMTEMPS_3][2] PROGMEM = {
{1*OVERSAMPLENR,864}, {1*OVERSAMPLENR,864},
{21*OVERSAMPLENR,300}, {21*OVERSAMPLENR,300},
{25*OVERSAMPLENR,290}, {25*OVERSAMPLENR,290},
@ -134,7 +136,7 @@ const short temptable_3[NUMTEMPS_3][2] = {
#if (THERMISTORHEATER_0 == 4) || (THERMISTORHEATER_1 == 4) || (THERMISTORBED == 4) //10k thermistor #if (THERMISTORHEATER_0 == 4) || (THERMISTORHEATER_1 == 4) || (THERMISTORBED == 4) //10k thermistor
#define NUMTEMPS_4 20 #define NUMTEMPS_4 20
short temptable_4[NUMTEMPS_4][2] = { const short temptable_4[NUMTEMPS_4][2] PROGMEM = {
{1*OVERSAMPLENR, 430}, {1*OVERSAMPLENR, 430},
{54*OVERSAMPLENR, 137}, {54*OVERSAMPLENR, 137},
{107*OVERSAMPLENR, 107}, {107*OVERSAMPLENR, 107},
@ -161,7 +163,7 @@ short temptable_4[NUMTEMPS_4][2] = {
#if (THERMISTORHEATER_0 == 5) || (THERMISTORHEATER_1 == 5) || (THERMISTORBED == 5) //100k ParCan thermistor (104GT-2) #if (THERMISTORHEATER_0 == 5) || (THERMISTORHEATER_1 == 5) || (THERMISTORBED == 5) //100k ParCan thermistor (104GT-2)
#define NUMTEMPS_5 61 #define NUMTEMPS_5 61
const short temptable_5[NUMTEMPS_5][2] = { const short temptable_5[NUMTEMPS_5][2] PROGMEM = {
{1*OVERSAMPLENR, 713}, {1*OVERSAMPLENR, 713},
{18*OVERSAMPLENR, 316}, {18*OVERSAMPLENR, 316},
{35*OVERSAMPLENR, 266}, {35*OVERSAMPLENR, 266},
@ -228,7 +230,7 @@ const short temptable_5[NUMTEMPS_5][2] = {
#if (THERMISTORHEATER_0 == 6) || (THERMISTORHEATER_1 == 6) || (THERMISTORBED == 6) // 100k Epcos thermistor #if (THERMISTORHEATER_0 == 6) || (THERMISTORHEATER_1 == 6) || (THERMISTORBED == 6) // 100k Epcos thermistor
#define NUMTEMPS_6 36 #define NUMTEMPS_6 36
const short temptable_6[NUMTEMPS_6][2] = { const short temptable_6[NUMTEMPS_6][2] PROGMEM = {
{28*OVERSAMPLENR, 250}, {28*OVERSAMPLENR, 250},
{31*OVERSAMPLENR, 245}, {31*OVERSAMPLENR, 245},
{35*OVERSAMPLENR, 240}, {35*OVERSAMPLENR, 240},
@ -270,7 +272,7 @@ const short temptable_6[NUMTEMPS_6][2] = {
#if (THERMISTORHEATER_0 == 7) || (THERMISTORHEATER_1 == 7) || (THERMISTORBED == 7) // 100k Honeywell 135-104LAG-J01 #if (THERMISTORHEATER_0 == 7) || (THERMISTORHEATER_1 == 7) || (THERMISTORBED == 7) // 100k Honeywell 135-104LAG-J01
#define NUMTEMPS_7 54 #define NUMTEMPS_7 54
const short temptable_7[NUMTEMPS_7][2] = { const short temptable_7[NUMTEMPS_7][2] PROGMEM = {
{46*OVERSAMPLENR, 270}, {46*OVERSAMPLENR, 270},
{50*OVERSAMPLENR, 265}, {50*OVERSAMPLENR, 265},
{54*OVERSAMPLENR, 260}, {54*OVERSAMPLENR, 260},

Loading…
Cancel
Save