updated to sdfatlib2010902

2.0.x
Bernhard Kubicek 13 years ago
parent 46f80e82d9
commit 64f2121ab1

@ -4,8 +4,8 @@
// This determines the communication speed of the printer
#define BAUDRATE 250000
//#define BAUDRATE 115200
//#define BAUDRATE 250000
#define BAUDRATE 115200
//#define BAUDRATE 230400
@ -277,7 +277,7 @@ const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the
#define ULTIPANEL
#ifdef ULTIPANEL
// #define NEWPANEL //enable this if you have a click-encoder panel
#define NEWPANEL //enable this if you have a click-encoder panel
#define SDSUPPORT
#define ULTRA_LCD
#define LCD_WIDTH 20

@ -26,6 +26,7 @@
*/
#include <EEPROM.h>
#include "EEPROMwrite.h"
#include "fastio.h"
#include "Configuration.h"
@ -391,9 +392,15 @@ inline void get_command()
while( !card.eof() && buflen < BUFSIZE) {
int16_t n=card.get();
serial_char = (char)n;
// Serial.print((char)serial_char);
// Serial.print(" ");
// Serial.println((int)serial_count);
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
{
// if(serial_char == '\n' || serial_char == '\r' )
// Serial.println("newline or :");
// if(serial_count >= (MAX_CMD_SIZE - 1))
// Serial.println("too long line");
if(card.eof()){
card.sdprinting = false;
SERIAL_PROTOCOLLNPGM("Done printing file");
@ -409,15 +416,20 @@ inline void get_command()
LCD_MESSAGE(time);
card.checkautostart(true);
}
if(!serial_count)
return; //if empty line
if(serial_char=='\n')
comment_mode = false; //for new command
if(!serial_count)
{
// Serial.println("empty line");
return; //if empty line
}
cmdbuffer[bufindw][serial_count] = 0; //terminate string
if(!comment_mode){
fromsd[bufindw] = true;
buflen += 1;
bufindw = (bufindw + 1)%BUFSIZE;
}
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else

@ -17,28 +17,77 @@
* along with the Arduino Sd2Card Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#if ARDUINO < 100
#include <WProgram.h>
#else // ARDUINO
#include <Arduino.h>
#endif // ARDUINO
#include "Sd2Card.h"
//------------------------------------------------------------------------------
#ifndef SOFTWARE_SPI
// functions for hardware SPI
/** Send a byte to the card */
//------------------------------------------------------------------------------
// make sure SPCR rate is in expected bits
#if (SPR0 != 0 || SPR1 != 1)
#error unexpected SPCR bits
#endif
/**
* Initialize hardware SPI
* Set SCK rate to F_CPU/pow(2, 1 + spiRate) for spiRate [0,6]
*/
static void spiInit(uint8_t spiRate) {
// See avr processor documentation
SPCR = (1 << SPE) | (1 << MSTR) | (spiRate >> 1);
SPSR = spiRate & 1 || spiRate == 6 ? 0 : 1 << SPI2X;
}
//------------------------------------------------------------------------------
/** SPI receive a byte */
static uint8_t spiRec() {
SPDR = 0XFF;
while (!(SPSR & (1 << SPIF)));
return SPDR;
}
//------------------------------------------------------------------------------
/** SPI read data - only one call so force inline */
static inline __attribute__((always_inline))
void spiRead(uint8_t* buf, uint16_t nbyte) {
if (nbyte-- == 0) return;
SPDR = 0XFF;
for (uint16_t i = 0; i < nbyte; i++) {
while (!(SPSR & (1 << SPIF)));
buf[i] = SPDR;
SPDR = 0XFF;
}
while (!(SPSR & (1 << SPIF)));
buf[nbyte] = SPDR;
}
//------------------------------------------------------------------------------
/** SPI send a byte */
static void spiSend(uint8_t b) {
SPDR = b;
while (!(SPSR & (1 << SPIF)));
}
/** Receive a byte from the card */
static uint8_t spiRec(void) {
spiSend(0XFF);
return SPDR;
//------------------------------------------------------------------------------
/** SPI send block - only one call so force inline */
static inline __attribute__((always_inline))
void spiSendBlock(uint8_t token, const uint8_t* buf) {
SPDR = token;
for (uint16_t i = 0; i < 512; i += 2) {
while (!(SPSR & (1 << SPIF)));
SPDR = buf[i];
while (!(SPSR & (1 << SPIF)));
SPDR = buf[i + 1];
}
while (!(SPSR & (1 << SPIF)));
}
//------------------------------------------------------------------------------
#else // SOFTWARE_SPI
//------------------------------------------------------------------------------
/** nop to tune soft SPI timing */
#define nop asm volatile ("nop\n\t")
//------------------------------------------------------------------------------
/** Soft SPI receive */
uint8_t spiRec(void) {
/** Soft SPI receive byte */
static uint8_t spiRec() {
uint8_t data = 0;
// no interrupts during byte receive - about 8 us
cli();
@ -63,8 +112,15 @@ uint8_t spiRec(void) {
return data;
}
//------------------------------------------------------------------------------
/** Soft SPI send */
void spiSend(uint8_t data) {
/** Soft SPI read data */
static void spiRead(uint8_t* buf, uint16_t nbyte) {
for (uint16_t i = 0; i < nbyte; i++) {
buf[i] = spiRec();
}
}
//------------------------------------------------------------------------------
/** Soft SPI send byte */
static void spiSend(uint8_t data) {
// no interrupts during byte send - about 8 us
cli();
for (uint8_t i = 0; i < 8; i++) {
@ -86,13 +142,18 @@ void spiSend(uint8_t data) {
// enable interrupts
sei();
}
//------------------------------------------------------------------------------
/** Soft SPI send block */
void spiSendBlock(uint8_t token, const uint8_t* buf) {
spiSend(token);
for (uint16_t i = 0; i < 512; i++) {
spiSend(buf[i]);
}
}
#endif // SOFTWARE_SPI
//------------------------------------------------------------------------------
// send command and return error code. Return zero for OK
uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) {
// end read if in partialBlockRead mode
readEnd();
// select card
chipSelectLow();
@ -111,6 +172,9 @@ uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) {
if (cmd == CMD8) crc = 0X87; // correct crc for CMD8 with arg 0X1AA
spiSend(crc);
// skip stuff byte for stop read
if (cmd == CMD12) spiRec();
// wait for response
for (uint8_t i = 0; ((status_ = spiRec()) & 0X80) && i != 0XFF; i++);
return status_;
@ -122,7 +186,7 @@ uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) {
* \return The number of 512 byte data blocks in the card
* or zero if an error occurs.
*/
uint32_t Sd2Card::cardSize(void) {
uint32_t Sd2Card::cardSize() {
csd_t csd;
if (!readCSD(&csd)) return 0;
if (csd.v1.csd_ver == 0) {
@ -142,11 +206,14 @@ uint32_t Sd2Card::cardSize(void) {
}
}
//------------------------------------------------------------------------------
void Sd2Card::chipSelectHigh(void) {
void Sd2Card::chipSelectHigh() {
digitalWrite(chipSelectPin_, HIGH);
}
//------------------------------------------------------------------------------
void Sd2Card::chipSelectLow(void) {
void Sd2Card::chipSelectLow() {
#ifndef SOFTWARE_SPI
spiInit(spiRate_);
#endif // SOFTWARE_SPI
digitalWrite(chipSelectPin_, LOW);
}
//------------------------------------------------------------------------------
@ -163,10 +230,18 @@ void Sd2Card::chipSelectLow(void) {
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) {
if (!eraseSingleBlockEnable()) {
error(SD_CARD_ERROR_ERASE_SINGLE_BLOCK);
goto fail;
bool Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) {
csd_t csd;
if (!readCSD(&csd)) goto fail;
// check for single block erase
if (!csd.v1.erase_blk_en) {
// erase size mask
uint8_t m = (csd.v1.sector_size_high << 1) | csd.v1.sector_size_low;
if ((firstBlock & m) != 0 || ((lastBlock + 1) & m) != 0) {
// error card can't erase specified area
error(SD_CARD_ERROR_ERASE_SINGLE_BLOCK);
goto fail;
}
}
if (type_ != SD_CARD_TYPE_SDHC) {
firstBlock <<= 9;
@ -195,9 +270,9 @@ uint8_t Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) {
* \return The value one, true, is returned if single block erase is supported.
* The value zero, false, is returned if single block erase is not supported.
*/
uint8_t Sd2Card::eraseSingleBlockEnable(void) {
bool Sd2Card::eraseSingleBlockEnable() {
csd_t csd;
return readCSD(&csd) ? csd.v1.erase_blk_en : 0;
return readCSD(&csd) ? csd.v1.erase_blk_en : false;
}
//------------------------------------------------------------------------------
/**
@ -210,8 +285,8 @@ uint8_t Sd2Card::eraseSingleBlockEnable(void) {
* the value zero, false, is returned for failure. The reason for failure
* can be determined by calling errorCode() and errorData().
*/
uint8_t Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) {
errorCode_ = inBlock_ = partialBlockRead_ = type_ = 0;
bool Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) {
errorCode_ = type_ = 0;
chipSelectPin_ = chipSelectPin;
// 16-bit init start time allows over a minute
uint16_t t0 = (uint16_t)millis();
@ -227,17 +302,18 @@ uint8_t Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) {
#ifndef SOFTWARE_SPI
// SS must be in output mode even it is not chip select
pinMode(SS_PIN, OUTPUT);
// Enable SPI, Master, clock rate f_osc/128
SPCR = (1 << SPE) | (1 << MSTR) | (1 << SPR1) | (1 << SPR0);
// clear double speed
SPSR &= ~(1 << SPI2X);
// set SS high - may be chip select for another SPI device
#if SET_SPI_SS_HIGH
digitalWrite(SS_PIN, HIGH);
#endif // SET_SPI_SS_HIGH
// set SCK rate for initialization commands
spiRate_ = SPI_SD_INIT_RATE;
spiInit(spiRate_);
#endif // SOFTWARE_SPI
// must supply min of 74 clock cycles with CS high.
for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);
chipSelectLow();
// command to go idle in SPI mode
while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
@ -291,105 +367,60 @@ uint8_t Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) {
}
//------------------------------------------------------------------------------
/**
* Enable or disable partial block reads.
*
* Enabling partial block reads improves performance by allowing a block
* to be read over the SPI bus as several sub-blocks. Errors may occur
* if the time between reads is too long since the SD card may timeout.
* The SPI SS line will be held low until the entire block is read or
* readEnd() is called.
* Read a 512 byte block from an SD card.
*
* Use this for applications like the Adafruit Wave Shield.
*
* \param[in] value The value TRUE (non-zero) or FALSE (zero).)
*/
void Sd2Card::partialBlockRead(uint8_t value) {
readEnd();
partialBlockRead_ = value;
}
//------------------------------------------------------------------------------
/**
* Read a 512 byte block from an SD card device.
*
* \param[in] block Logical block to be read.
* \param[in] blockNumber Logical block to be read.
* \param[out] dst Pointer to the location that will receive the data.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::readBlock(uint32_t block, uint8_t* dst) {
return readData(block, 0, 512, dst);
bool Sd2Card::readBlock(uint32_t blockNumber, uint8_t* dst) {
// use address if not SDHC card
if (type()!= SD_CARD_TYPE_SDHC) blockNumber <<= 9;
if (cardCommand(CMD17, blockNumber)) {
error(SD_CARD_ERROR_CMD17);
goto fail;
}
return readData(dst, 512);
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/**
* Read part of a 512 byte block from an SD card.
/** Read one data block in a multiple block read sequence
*
* \param[in] dst Pointer to the location for the data to be read.
*
* \param[in] block Logical block to be read.
* \param[in] offset Number of bytes to skip at start of block
* \param[out] dst Pointer to the location that will receive the data.
* \param[in] count Number of bytes to read
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::readData(uint32_t block,
uint16_t offset, uint16_t count, uint8_t* dst) {
uint16_t n;
if (count == 0) return true;
if ((count + offset) > 512) {
goto fail;
}
if (!inBlock_ || block != block_ || offset < offset_) {
block_ = block;
// use address if not SDHC card
if (type()!= SD_CARD_TYPE_SDHC) block <<= 9;
if (cardCommand(CMD17, block)) {
error(SD_CARD_ERROR_CMD17);
goto fail;
}
if (!waitStartBlock()) {
bool Sd2Card::readData(uint8_t *dst) {
chipSelectLow();
return readData(dst, 512);
}
//------------------------------------------------------------------------------
bool Sd2Card::readData(uint8_t* dst, uint16_t count) {
// wait for start block token
uint16_t t0 = millis();
while ((status_ = spiRec()) == 0XFF) {
if (((uint16_t)millis() - t0) > SD_READ_TIMEOUT) {
error(SD_CARD_ERROR_READ_TIMEOUT);
goto fail;
}
offset_ = 0;
inBlock_ = 1;
}
#ifdef OPTIMIZE_HARDWARE_SPI
// start first spi transfer
SPDR = 0XFF;
// skip data before offset
for (;offset_ < offset; offset_++) {
while (!(SPSR & (1 << SPIF)));
SPDR = 0XFF;
}
// transfer data
n = count - 1;
for (uint16_t i = 0; i < n; i++) {
while (!(SPSR & (1 << SPIF)));
dst[i] = SPDR;
SPDR = 0XFF;
}
// wait for last byte
while (!(SPSR & (1 << SPIF)));
dst[n] = SPDR;
#else // OPTIMIZE_HARDWARE_SPI
// skip data before offset
for (;offset_ < offset; offset_++) {
spiRec();
if (status_ != DATA_START_BLOCK) {
error(SD_CARD_ERROR_READ);
goto fail;
}
// transfer data
for (uint16_t i = 0; i < count; i++) {
dst[i] = spiRec();
}
#endif // OPTIMIZE_HARDWARE_SPI
spiRead(dst, count);
offset_ += count;
if (!partialBlockRead_ || offset_ >= 512) {
// read rest of data, checksum and set chip select high
readEnd();
}
// discard CRC
spiRec();
spiRec();
chipSelectHigh();
return true;
fail:
@ -397,39 +428,55 @@ uint8_t Sd2Card::readData(uint32_t block,
return false;
}
//------------------------------------------------------------------------------
/** Skip remaining data in a block when in partial block read mode. */
void Sd2Card::readEnd(void) {
if (inBlock_) {
// skip data and crc
#ifdef OPTIMIZE_HARDWARE_SPI
// optimize skip for hardware
SPDR = 0XFF;
while (offset_++ < 513) {
while (!(SPSR & (1 << SPIF)));
SPDR = 0XFF;
}
// wait for last crc byte
while (!(SPSR & (1 << SPIF)));
#else // OPTIMIZE_HARDWARE_SPI
while (offset_++ < 514) spiRec();
#endif // OPTIMIZE_HARDWARE_SPI
chipSelectHigh();
inBlock_ = 0;
}
}
//------------------------------------------------------------------------------
/** read CID or CSR register */
uint8_t Sd2Card::readRegister(uint8_t cmd, void* buf) {
bool Sd2Card::readRegister(uint8_t cmd, void* buf) {
uint8_t* dst = reinterpret_cast<uint8_t*>(buf);
if (cardCommand(cmd, 0)) {
error(SD_CARD_ERROR_READ_REG);
goto fail;
}
if (!waitStartBlock()) goto fail;
// transfer data
for (uint16_t i = 0; i < 16; i++) dst[i] = spiRec();
spiRec(); // get first crc byte
spiRec(); // get second crc byte
return readData(dst, 16);
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** Start a read multiple blocks sequence.
*
* \param[in] blockNumber Address of first block in sequence.
*
* \note This function is used with readData() and readStop() for optimized
* multiple block reads. SPI chipSelect must be low for the entire sequence.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool Sd2Card::readStart(uint32_t blockNumber) {
if (type()!= SD_CARD_TYPE_SDHC) blockNumber <<= 9;
if (cardCommand(CMD18, blockNumber)) {
error(SD_CARD_ERROR_CMD18);
goto fail;
}
chipSelectHigh();
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** End a read multiple blocks sequence.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool Sd2Card::readStop() {
chipSelectLow();
if (cardCommand(CMD12, 0)) {
error(SD_CARD_ERROR_CMD12);
goto fail;
}
chipSelectHigh();
return true;
@ -450,50 +497,24 @@ uint8_t Sd2Card::readRegister(uint8_t cmd, void* buf) {
* \return The value one, true, is returned for success and the value zero,
* false, is returned for an invalid value of \a sckRateID.
*/
uint8_t Sd2Card::setSckRate(uint8_t sckRateID) {
bool Sd2Card::setSckRate(uint8_t sckRateID) {
if (sckRateID > 6) {
error(SD_CARD_ERROR_SCK_RATE);
return false;
}
// see avr processor datasheet for SPI register bit definitions
if ((sckRateID & 1) || sckRateID == 6) {
SPSR &= ~(1 << SPI2X);
} else {
SPSR |= (1 << SPI2X);
}
SPCR &= ~((1 <<SPR1) | (1 << SPR0));
SPCR |= (sckRateID & 4 ? (1 << SPR1) : 0)
| (sckRateID & 2 ? (1 << SPR0) : 0);
spiRate_ = sckRateID;
return true;
}
//------------------------------------------------------------------------------
// wait for card to go not busy
uint8_t Sd2Card::waitNotBusy(uint16_t timeoutMillis) {
bool Sd2Card::waitNotBusy(uint16_t timeoutMillis) {
uint16_t t0 = millis();
do {
if (spiRec() == 0XFF) return true;
}
while (((uint16_t)millis() - t0) < timeoutMillis);
return false;
}
//------------------------------------------------------------------------------
/** Wait for start block token */
uint8_t Sd2Card::waitStartBlock(void) {
uint16_t t0 = millis();
while ((status_ = spiRec()) == 0XFF) {
if (((uint16_t)millis() - t0) > SD_READ_TIMEOUT) {
error(SD_CARD_ERROR_READ_TIMEOUT);
goto fail;
}
}
if (status_ != DATA_START_BLOCK) {
error(SD_CARD_ERROR_READ);
goto fail;
while (spiRec() != 0XFF) {
if (((uint16_t)millis() - t0) >= timeoutMillis) goto fail;
}
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
@ -505,15 +526,7 @@ uint8_t Sd2Card::waitStartBlock(void) {
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) {
#if SD_PROTECT_BLOCK_ZERO
// don't allow write to first block
if (blockNumber == 0) {
error(SD_CARD_ERROR_WRITE_BLOCK_ZERO);
goto fail;
}
#endif // SD_PROTECT_BLOCK_ZERO
bool Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) {
// use address if not SDHC card
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
if (cardCommand(CMD24, blockNumber)) {
@ -540,51 +553,42 @@ uint8_t Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) {
return false;
}
//------------------------------------------------------------------------------
/** Write one data block in a multiple block write sequence */
uint8_t Sd2Card::writeData(const uint8_t* src) {
/** Write one data block in a multiple block write sequence
* \param[in] src Pointer to the location of the data to be written.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool Sd2Card::writeData(const uint8_t* src) {
chipSelectLow();
// wait for previous write to finish
if (!waitNotBusy(SD_WRITE_TIMEOUT)) {
error(SD_CARD_ERROR_WRITE_MULTIPLE);
chipSelectHigh();
return false;
}
return writeData(WRITE_MULTIPLE_TOKEN, src);
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
if (!writeData(WRITE_MULTIPLE_TOKEN, src)) goto fail;
chipSelectHigh();
return true;
fail:
error(SD_CARD_ERROR_WRITE_MULTIPLE);
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
// send one block of data for write block or write multiple blocks
uint8_t Sd2Card::writeData(uint8_t token, const uint8_t* src) {
#ifdef OPTIMIZE_HARDWARE_SPI
// send data - optimized loop
SPDR = token;
// send two byte per iteration
for (uint16_t i = 0; i < 512; i += 2) {
while (!(SPSR & (1 << SPIF)));
SPDR = src[i];
while (!(SPSR & (1 << SPIF)));
SPDR = src[i+1];
}
// wait for last data byte
while (!(SPSR & (1 << SPIF)));
bool Sd2Card::writeData(uint8_t token, const uint8_t* src) {
spiSendBlock(token, src);
#else // OPTIMIZE_HARDWARE_SPI
spiSend(token);
for (uint16_t i = 0; i < 512; i++) {
spiSend(src[i]);
}
#endif // OPTIMIZE_HARDWARE_SPI
spiSend(0xff); // dummy crc
spiSend(0xff); // dummy crc
status_ = spiRec();
if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) {
error(SD_CARD_ERROR_WRITE);
chipSelectHigh();
return false;
goto fail;
}
return true;
fail:
chipSelectHigh();
return false;
}
//------------------------------------------------------------------------------
/** Start a write multiple blocks sequence.
@ -598,14 +602,7 @@ uint8_t Sd2Card::writeData(uint8_t token, const uint8_t* src) {
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
#if SD_PROTECT_BLOCK_ZERO
// don't allow write to first block
if (blockNumber == 0) {
error(SD_CARD_ERROR_WRITE_BLOCK_ZERO);
goto fail;
}
#endif // SD_PROTECT_BLOCK_ZERO
bool Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
// send pre-erase count
if (cardAcmd(ACMD23, eraseCount)) {
error(SD_CARD_ERROR_ACMD23);
@ -617,6 +614,7 @@ uint8_t Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
error(SD_CARD_ERROR_CMD25);
goto fail;
}
chipSelectHigh();
return true;
fail:
@ -629,7 +627,8 @@ uint8_t Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Sd2Card::writeStop(void) {
bool Sd2Card::writeStop() {
chipSelectLow();
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
spiSend(STOP_TRAN_TOKEN);
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;

@ -21,67 +21,24 @@
#define Sd2Card_h
/**
* \file
* Sd2Card class
* \brief Sd2Card class for V2 SD/SDHC cards
*/
#include "SdFatConfig.h"
#include "Sd2PinMap.h"
#include "SdInfo.h"
//------------------------------------------------------------------------------
// SPI speed is F_CPU/2^(1 + index), 0 <= index <= 6
/** Set SCK to max rate of F_CPU/2. See Sd2Card::setSckRate(). */
uint8_t const SPI_FULL_SPEED = 0;
/** Set SCK rate to F_CPU/4. See Sd2Card::setSckRate(). */
uint8_t const SPI_HALF_SPEED = 1;
/** Set SCK rate to F_CPU/8. Sd2Card::setSckRate(). */
/** Set SCK rate to F_CPU/8. See Sd2Card::setSckRate(). */
uint8_t const SPI_QUARTER_SPEED = 2;
/**
* Define MEGA_SOFT_SPI non-zero to use software SPI on Mega Arduinos.
* Pins used are SS 10, MOSI 11, MISO 12, and SCK 13.
*
* MEGA_SOFT_SPI allows an unmodified Adafruit GPS Shield to be used
* on Mega Arduinos. Software SPI works well with GPS Shield V1.1
* but many SD cards will fail with GPS Shield V1.0.
*/
#define MEGA_SOFT_SPI 0
//------------------------------------------------------------------------------
#if MEGA_SOFT_SPI && (defined(__AVR_ATmega1280__)||defined(__AVR_ATmega2560__))
#define SOFTWARE_SPI
#endif // MEGA_SOFT_SPI
//------------------------------------------------------------------------------
// SPI pin definitions
//
#ifndef SOFTWARE_SPI
// hardware pin defs
/**
* SD Chip Select pin
*
* Warning if this pin is redefined the hardware SS will pin will be enabled
* as an output by init(). An avr processor will not function as an SPI
* master unless SS is set to output mode.
*/
/** The default chip select pin for the SD card is SS. */
uint8_t const SD_CHIP_SELECT_PIN = SS_PIN;
// The following three pins must not be redefined for hardware SPI.
/** SPI Master Out Slave In pin */
uint8_t const SPI_MOSI_PIN = MOSI_PIN;
/** SPI Master In Slave Out pin */
uint8_t const SPI_MISO_PIN = MISO_PIN;
/** SPI Clock pin */
uint8_t const SPI_SCK_PIN = SCK_PIN;
/** optimize loops for hardware SPI */
#define OPTIMIZE_HARDWARE_SPI
#else // SOFTWARE_SPI
// define software SPI pins so Mega can use unmodified GPS Shield
/** SPI chip select pin */
uint8_t const SD_CHIP_SELECT_PIN = 10;
/** SPI Master Out Slave In pin */
uint8_t const SPI_MOSI_PIN = 11;
/** SPI Master In Slave Out pin */
uint8_t const SPI_MISO_PIN = 12;
/** SPI Clock pin */
uint8_t const SPI_SCK_PIN = 13;
#endif // SOFTWARE_SPI
/** Set SCK rate to F_CPU/16. See Sd2Card::setSckRate(). */
uint8_t const SPI_EIGHTH_SPEED = 3;
/** Set SCK rate to F_CPU/32. See Sd2Card::setSckRate(). */
uint8_t const SPI_SIXTEENTH_SPEED = 4;
//------------------------------------------------------------------------------
/** Protect block zero from write if nonzero */
#define SD_PROTECT_BLOCK_ZERO 1
/** init timeout ms */
uint16_t const SD_INIT_TIMEOUT = 2000;
/** erase timeout ms */
@ -92,58 +49,99 @@ uint16_t const SD_READ_TIMEOUT = 300;
uint16_t const SD_WRITE_TIMEOUT = 600;
//------------------------------------------------------------------------------
// SD card errors
/** timeout error for command CMD0 */
/** timeout error for command CMD0 (initialize card in SPI mode) */
uint8_t const SD_CARD_ERROR_CMD0 = 0X1;
/** CMD8 was not accepted - not a valid SD card*/
uint8_t const SD_CARD_ERROR_CMD8 = 0X2;
/** card returned an error response for CMD12 (write stop) */
uint8_t const SD_CARD_ERROR_CMD12 = 0X3;
/** card returned an error response for CMD17 (read block) */
uint8_t const SD_CARD_ERROR_CMD17 = 0X3;
uint8_t const SD_CARD_ERROR_CMD17 = 0X4;
/** card returned an error response for CMD18 (read multiple block) */
uint8_t const SD_CARD_ERROR_CMD18 = 0X5;
/** card returned an error response for CMD24 (write block) */
uint8_t const SD_CARD_ERROR_CMD24 = 0X4;
uint8_t const SD_CARD_ERROR_CMD24 = 0X6;
/** WRITE_MULTIPLE_BLOCKS command failed */
uint8_t const SD_CARD_ERROR_CMD25 = 0X05;
uint8_t const SD_CARD_ERROR_CMD25 = 0X7;
/** card returned an error response for CMD58 (read OCR) */
uint8_t const SD_CARD_ERROR_CMD58 = 0X06;
uint8_t const SD_CARD_ERROR_CMD58 = 0X8;
/** SET_WR_BLK_ERASE_COUNT failed */
uint8_t const SD_CARD_ERROR_ACMD23 = 0X07;
/** card's ACMD41 initialization process timeout */
uint8_t const SD_CARD_ERROR_ACMD41 = 0X08;
uint8_t const SD_CARD_ERROR_ACMD23 = 0X9;
/** ACMD41 initialization process timeout */
uint8_t const SD_CARD_ERROR_ACMD41 = 0XA;
/** card returned a bad CSR version field */
uint8_t const SD_CARD_ERROR_BAD_CSD = 0X09;
uint8_t const SD_CARD_ERROR_BAD_CSD = 0XB;
/** erase block group command failed */
uint8_t const SD_CARD_ERROR_ERASE = 0X0A;
uint8_t const SD_CARD_ERROR_ERASE = 0XC;
/** card not capable of single block erase */
uint8_t const SD_CARD_ERROR_ERASE_SINGLE_BLOCK = 0X0B;
uint8_t const SD_CARD_ERROR_ERASE_SINGLE_BLOCK = 0XD;
/** Erase sequence timed out */
uint8_t const SD_CARD_ERROR_ERASE_TIMEOUT = 0X0C;
uint8_t const SD_CARD_ERROR_ERASE_TIMEOUT = 0XE;
/** card returned an error token instead of read data */
uint8_t const SD_CARD_ERROR_READ = 0X0D;
uint8_t const SD_CARD_ERROR_READ = 0XF;
/** read CID or CSD failed */
uint8_t const SD_CARD_ERROR_READ_REG = 0X0E;
uint8_t const SD_CARD_ERROR_READ_REG = 0X10;
/** timeout while waiting for start of read data */
uint8_t const SD_CARD_ERROR_READ_TIMEOUT = 0X0F;
uint8_t const SD_CARD_ERROR_READ_TIMEOUT = 0X11;
/** card did not accept STOP_TRAN_TOKEN */
uint8_t const SD_CARD_ERROR_STOP_TRAN = 0X10;
uint8_t const SD_CARD_ERROR_STOP_TRAN = 0X12;
/** card returned an error token as a response to a write operation */
uint8_t const SD_CARD_ERROR_WRITE = 0X11;
uint8_t const SD_CARD_ERROR_WRITE = 0X13;
/** attempt to write protected block zero */
uint8_t const SD_CARD_ERROR_WRITE_BLOCK_ZERO = 0X12;
uint8_t const SD_CARD_ERROR_WRITE_BLOCK_ZERO = 0X14; // REMOVE - not used
/** card did not go ready for a multiple block write */
uint8_t const SD_CARD_ERROR_WRITE_MULTIPLE = 0X13;
uint8_t const SD_CARD_ERROR_WRITE_MULTIPLE = 0X15;
/** card returned an error to a CMD13 status check after a write */
uint8_t const SD_CARD_ERROR_WRITE_PROGRAMMING = 0X14;
uint8_t const SD_CARD_ERROR_WRITE_PROGRAMMING = 0X16;
/** timeout occurred during write programming */
uint8_t const SD_CARD_ERROR_WRITE_TIMEOUT = 0X15;
uint8_t const SD_CARD_ERROR_WRITE_TIMEOUT = 0X17;
/** incorrect rate selected */
uint8_t const SD_CARD_ERROR_SCK_RATE = 0X16;
uint8_t const SD_CARD_ERROR_SCK_RATE = 0X18;
/** init() not called */
uint8_t const SD_CARD_ERROR_INIT_NOT_CALLED = 0X19;
//------------------------------------------------------------------------------
// card types
/** Standard capacity V1 SD card */
uint8_t const SD_CARD_TYPE_SD1 = 1;
uint8_t const SD_CARD_TYPE_SD1 = 1;
/** Standard capacity V2 SD card */
uint8_t const SD_CARD_TYPE_SD2 = 2;
uint8_t const SD_CARD_TYPE_SD2 = 2;
/** High Capacity SD card */
uint8_t const SD_CARD_TYPE_SDHC = 3;
/**
* define SOFTWARE_SPI to use bit-bang SPI
*/
//------------------------------------------------------------------------------
#if MEGA_SOFT_SPI && (defined(__AVR_ATmega1280__)||defined(__AVR_ATmega2560__))
#define SOFTWARE_SPI
#elif USE_SOFTWARE_SPI
#define SOFTWARE_SPI
#endif // MEGA_SOFT_SPI
//------------------------------------------------------------------------------
// SPI pin definitions - do not edit here - change in SdFatConfig.h
//
#ifndef SOFTWARE_SPI
// hardware pin defs
/** The default chip select pin for the SD card is SS. */
uint8_t const SD_CHIP_SELECT_PIN = SS_PIN;
// The following three pins must not be redefined for hardware SPI.
/** SPI Master Out Slave In pin */
uint8_t const SPI_MOSI_PIN = MOSI_PIN;
/** SPI Master In Slave Out pin */
uint8_t const SPI_MISO_PIN = MISO_PIN;
/** SPI Clock pin */
uint8_t const SPI_SCK_PIN = SCK_PIN;
#else // SOFTWARE_SPI
/** SPI chip select pin */
uint8_t const SD_CHIP_SELECT_PIN = SOFT_SPI_CS_PIN;
/** SPI Master Out Slave In pin */
uint8_t const SPI_MOSI_PIN = SOFT_SPI_MOSI_PIN;
/** SPI Master In Slave Out pin */
uint8_t const SPI_MISO_PIN = SOFT_SPI_MISO_PIN;
/** SPI Clock pin */
uint8_t const SPI_SCK_PIN = SOFT_SPI_SCK_PIN;
#endif // SOFTWARE_SPI
//------------------------------------------------------------------------------
/**
* \class Sd2Card
@ -152,66 +150,70 @@ uint8_t const SD_CARD_TYPE_SDHC = 3;
class Sd2Card {
public:
/** Construct an instance of Sd2Card. */
Sd2Card(void) : errorCode_(0), inBlock_(0), partialBlockRead_(0), type_(0) {}
uint32_t cardSize(void);
uint8_t erase(uint32_t firstBlock, uint32_t lastBlock);
uint8_t eraseSingleBlockEnable(void);
Sd2Card() : errorCode_(SD_CARD_ERROR_INIT_NOT_CALLED), type_(0) {}
uint32_t cardSize();
bool erase(uint32_t firstBlock, uint32_t lastBlock);
bool eraseSingleBlockEnable();
/**
* Set SD error code.
* \param[in] code value for error code.
*/
void error(uint8_t code) {errorCode_ = code;}
/**
* \return error code for last error. See Sd2Card.h for a list of error codes.
*/
uint8_t errorCode(void) const {return errorCode_;}
int errorCode() const {return errorCode_;}
/** \return error data for last error. */
uint8_t errorData(void) const {return status_;}
int errorData() const {return status_;}
/**
* Initialize an SD flash memory card with default clock rate and chip
* select pin. See sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin).
*
* \return true for success or false for failure.
*/
uint8_t init(void) {
return init(SPI_FULL_SPEED, SD_CHIP_SELECT_PIN);
}
bool init(uint8_t sckRateID = SPI_FULL_SPEED,
uint8_t chipSelectPin = SD_CHIP_SELECT_PIN);
bool readBlock(uint32_t block, uint8_t* dst);
/**
* Initialize an SD flash memory card with the selected SPI clock rate
* and the default SD chip select pin.
* See sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin).
*/
uint8_t init(uint8_t sckRateID) {
return init(sckRateID, SD_CHIP_SELECT_PIN);
}
uint8_t init(uint8_t sckRateID, uint8_t chipSelectPin);
void partialBlockRead(uint8_t value);
/** Returns the current value, true or false, for partial block read. */
uint8_t partialBlockRead(void) const {return partialBlockRead_;}
uint8_t readBlock(uint32_t block, uint8_t* dst);
uint8_t readData(uint32_t block,
uint16_t offset, uint16_t count, uint8_t* dst);
/**
* Read a cards CID register. The CID contains card identification
* Read a card's CID register. The CID contains card identification
* information such as Manufacturer ID, Product name, Product serial
* number and Manufacturing date. */
uint8_t readCID(cid_t* cid) {
* number and Manufacturing date.
*
* \param[out] cid pointer to area for returned data.
*
* \return true for success or false for failure.
*/
bool readCID(cid_t* cid) {
return readRegister(CMD10, cid);
}
/**
* Read a cards CSD register. The CSD contains Card-Specific Data that
* provides information regarding access to the card's contents. */
uint8_t readCSD(csd_t* csd) {
* Read a card's CSD register. The CSD contains Card-Specific Data that
* provides information regarding access to the card's contents.
*
* \param[out] csd pointer to area for returned data.
*
* \return true for success or false for failure.
*/
bool readCSD(csd_t* csd) {
return readRegister(CMD9, csd);
}
void readEnd(void);
uint8_t setSckRate(uint8_t sckRateID);
/** Return the card type: SD V1, SD V2 or SDHC */
uint8_t type(void) const {return type_;}
uint8_t writeBlock(uint32_t blockNumber, const uint8_t* src);
uint8_t writeData(const uint8_t* src);
uint8_t writeStart(uint32_t blockNumber, uint32_t eraseCount);
uint8_t writeStop(void);
bool readData(uint8_t *dst);
bool readStart(uint32_t blockNumber);
bool readStop();
bool setSckRate(uint8_t sckRateID);
/** Return the card type: SD V1, SD V2 or SDHC
* \return 0 - SD V1, 1 - SD V2, or 3 - SDHC.
*/
int type() const {return type_;}
bool writeBlock(uint32_t blockNumber, const uint8_t* src);
bool writeData(const uint8_t* src);
bool writeStart(uint32_t blockNumber, uint32_t eraseCount);
bool writeStop();
private:
uint32_t block_;
//----------------------------------------------------------------------------
uint8_t chipSelectPin_;
uint8_t errorCode_;
uint8_t inBlock_;
uint16_t offset_;
uint8_t partialBlockRead_;
uint8_t spiRate_;
uint8_t status_;
uint8_t type_;
// private functions
@ -220,14 +222,13 @@ class Sd2Card {
return cardCommand(cmd, arg);
}
uint8_t cardCommand(uint8_t cmd, uint32_t arg);
void error(uint8_t code) {errorCode_ = code;}
uint8_t readRegister(uint8_t cmd, void* buf);
uint8_t sendWriteCommand(uint32_t blockNumber, uint32_t eraseCount);
void chipSelectHigh(void);
void chipSelectLow(void);
bool readData(uint8_t* dst, uint16_t count);
bool readRegister(uint8_t cmd, void* buf);
void chipSelectHigh();
void chipSelectLow();
void type(uint8_t value) {type_ = value;}
uint8_t waitNotBusy(uint16_t timeoutMillis);
uint8_t writeData(uint8_t token, const uint8_t* src);
uint8_t waitStartBlock(void);
bool waitNotBusy(uint16_t timeoutMillis);
bool writeData(uint8_t token, const uint8_t* src);
};
#endif // Sd2Card_h

@ -21,7 +21,6 @@
#ifndef Sd2PinMap_h
#define Sd2PinMap_h
#include <avr/io.h>
//------------------------------------------------------------------------------
/** struct for mapping digital pins */
struct pin_map_t {
@ -31,18 +30,19 @@ struct pin_map_t {
uint8_t bit;
};
//------------------------------------------------------------------------------
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#if defined(__AVR_ATmega1280__)\
|| defined(__AVR_ATmega2560__)
// Mega
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 20;
uint8_t const SCL_PIN = 21;
uint8_t const SDA_PIN = 20; // D1
uint8_t const SCL_PIN = 21; // D0
// SPI port
uint8_t const SS_PIN = 53;
uint8_t const MOSI_PIN = 51;
uint8_t const MISO_PIN = 50;
uint8_t const SCK_PIN = 52;
uint8_t const SS_PIN = 53; // B0
uint8_t const MOSI_PIN = 51; // B2
uint8_t const MISO_PIN = 50; // B3
uint8_t const SCK_PIN = 52; // B1
static const pin_map_t digitalPinMap[] = {
{&DDRE, &PINE, &PORTE, 0}, // E0 0
@ -117,18 +117,20 @@ static const pin_map_t digitalPinMap[] = {
{&DDRK, &PINK, &PORTK, 7} // K7 69
};
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
#elif defined(__AVR_ATmega644P__)\
|| defined(__AVR_ATmega644__)\
|| defined(__AVR_ATmega1284P__)
// Sanguino
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 17;
uint8_t const SCL_PIN = 18;
uint8_t const SDA_PIN = 17; // C1
uint8_t const SCL_PIN = 18; // C2
// SPI port
uint8_t const SS_PIN = 4;
uint8_t const MOSI_PIN = 5;
uint8_t const MISO_PIN = 6;
uint8_t const SCK_PIN = 7;
uint8_t const SS_PIN = 4; // B4
uint8_t const MOSI_PIN = 5; // B5
uint8_t const MISO_PIN = 6; // B6
uint8_t const SCK_PIN = 7; // B7
static const pin_map_t digitalPinMap[] = {
{&DDRB, &PINB, &PORTB, 0}, // B0 0
@ -169,14 +171,14 @@ static const pin_map_t digitalPinMap[] = {
// Teensy 2.0
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 6;
uint8_t const SCL_PIN = 5;
uint8_t const SDA_PIN = 6; // D1
uint8_t const SCL_PIN = 5; // D0
// SPI port
uint8_t const SS_PIN = 0;
uint8_t const MOSI_PIN = 2;
uint8_t const MISO_PIN = 3;
uint8_t const SCK_PIN = 1;
uint8_t const SS_PIN = 0; // B0
uint8_t const MOSI_PIN = 2; // B2
uint8_t const MISO_PIN = 3; // B3
uint8_t const SCK_PIN = 1; // B1
static const pin_map_t digitalPinMap[] = {
{&DDRB, &PINB, &PORTB, 0}, // B0 0
@ -206,18 +208,19 @@ static const pin_map_t digitalPinMap[] = {
{&DDRE, &PINE, &PORTE, 6} // E6 24
};
//------------------------------------------------------------------------------
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#elif defined(__AVR_AT90USB646__)\
|| defined(__AVR_AT90USB1286__)
// Teensy++ 1.0 & 2.0
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 1;
uint8_t const SCL_PIN = 0;
uint8_t const SDA_PIN = 1; // D1
uint8_t const SCL_PIN = 0; // D0
// SPI port
uint8_t const SS_PIN = 20;
uint8_t const MOSI_PIN = 22;
uint8_t const MISO_PIN = 23;
uint8_t const SCK_PIN = 21;
uint8_t const SS_PIN = 20; // B0
uint8_t const MOSI_PIN = 22; // B2
uint8_t const MISO_PIN = 23; // B3
uint8_t const SCK_PIN = 21; // B1
static const pin_map_t digitalPinMap[] = {
{&DDRD, &PIND, &PORTD, 0}, // D0 0
@ -268,18 +271,20 @@ static const pin_map_t digitalPinMap[] = {
{&DDRF, &PINF, &PORTF, 7} // F7 45
};
//------------------------------------------------------------------------------
#else // defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#elif defined(__AVR_ATmega168__)\
||defined(__AVR_ATmega168P__)\
||defined(__AVR_ATmega328P__)
// 168 and 328 Arduinos
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 18;
uint8_t const SCL_PIN = 19;
uint8_t const SDA_PIN = 18; // C4
uint8_t const SCL_PIN = 19; // C5
// SPI port
uint8_t const SS_PIN = 10;
uint8_t const MOSI_PIN = 11;
uint8_t const MISO_PIN = 12;
uint8_t const SCK_PIN = 13;
uint8_t const SS_PIN = 10; // B2
uint8_t const MOSI_PIN = 11; // B3
uint8_t const MISO_PIN = 12; // B4
uint8_t const SCK_PIN = 13; // B5
static const pin_map_t digitalPinMap[] = {
{&DDRD, &PIND, &PORTD, 0}, // D0 0
@ -303,7 +308,9 @@ static const pin_map_t digitalPinMap[] = {
{&DDRC, &PINC, &PORTC, 4}, // C4 18
{&DDRC, &PINC, &PORTC, 5} // C5 19
};
#endif // defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#else // defined(__AVR_ATmega1280__)
#error unknown chip
#endif // defined(__AVR_ATmega1280__)
//------------------------------------------------------------------------------
static const uint8_t digitalPinCount = sizeof(digitalPinMap)/sizeof(pin_map_t);
@ -311,7 +318,7 @@ uint8_t badPinNumber(void)
__attribute__((error("Pin number is too large or not a constant")));
static inline __attribute__((always_inline))
uint8_t getPinMode(uint8_t pin) {
bool getPinMode(uint8_t pin) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
return (*digitalPinMap[pin].ddr >> digitalPinMap[pin].bit) & 1;
} else {
@ -331,7 +338,7 @@ static inline __attribute__((always_inline))
}
}
static inline __attribute__((always_inline))
uint8_t fastDigitalRead(uint8_t pin) {
bool fastDigitalRead(uint8_t pin) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
return (*digitalPinMap[pin].pin >> digitalPinMap[pin].bit) & 1;
} else {

File diff suppressed because it is too large Load Diff

@ -0,0 +1,489 @@
/* Arduino SdFat Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef SdBaseFile_h
#define SdBaseFile_h
/**
* \file
* \brief SdBaseFile class
*/
#include <avr/pgmspace.h>
#if ARDUINO < 100
#include <WProgram.h>
#else // ARDUINO
#include <Arduino.h>
#endif // ARDUINO
#include "SdFatConfig.h"
#include "SdVolume.h"
//------------------------------------------------------------------------------
/**
* \struct fpos_t
* \brief internal type for istream
* do not use in user apps
*/
struct fpos_t {
/** stream position */
uint32_t position;
/** cluster for position */
uint32_t cluster;
fpos_t() : position(0), cluster(0) {}
};
// use the gnu style oflag in open()
/** open() oflag for reading */
uint8_t const O_READ = 0X01;
/** open() oflag - same as O_IN */
uint8_t const O_RDONLY = O_READ;
/** open() oflag for write */
uint8_t const O_WRITE = 0X02;
/** open() oflag - same as O_WRITE */
uint8_t const O_WRONLY = O_WRITE;
/** open() oflag for reading and writing */
uint8_t const O_RDWR = (O_READ | O_WRITE);
/** open() oflag mask for access modes */
uint8_t const O_ACCMODE = (O_READ | O_WRITE);
/** The file offset shall be set to the end of the file prior to each write. */
uint8_t const O_APPEND = 0X04;
/** synchronous writes - call sync() after each write */
uint8_t const O_SYNC = 0X08;
/** truncate the file to zero length */
uint8_t const O_TRUNC = 0X10;
/** set the initial position at the end of the file */
uint8_t const O_AT_END = 0X20;
/** create the file if nonexistent */
uint8_t const O_CREAT = 0X40;
/** If O_CREAT and O_EXCL are set, open() shall fail if the file exists */
uint8_t const O_EXCL = 0X80;
// SdBaseFile class static and const definitions
// flags for ls()
/** ls() flag to print modify date */
uint8_t const LS_DATE = 1;
/** ls() flag to print file size */
uint8_t const LS_SIZE = 2;
/** ls() flag for recursive list of subdirectories */
uint8_t const LS_R = 4;
// flags for timestamp
/** set the file's last access date */
uint8_t const T_ACCESS = 1;
/** set the file's creation date and time */
uint8_t const T_CREATE = 2;
/** Set the file's write date and time */
uint8_t const T_WRITE = 4;
// values for type_
/** This file has not been opened. */
uint8_t const FAT_FILE_TYPE_CLOSED = 0;
/** A normal file */
uint8_t const FAT_FILE_TYPE_NORMAL = 1;
/** A FAT12 or FAT16 root directory */
uint8_t const FAT_FILE_TYPE_ROOT_FIXED = 2;
/** A FAT32 root directory */
uint8_t const FAT_FILE_TYPE_ROOT32 = 3;
/** A subdirectory file*/
uint8_t const FAT_FILE_TYPE_SUBDIR = 4;
/** Test value for directory type */
uint8_t const FAT_FILE_TYPE_MIN_DIR = FAT_FILE_TYPE_ROOT_FIXED;
/** date field for FAT directory entry
* \param[in] year [1980,2107]
* \param[in] month [1,12]
* \param[in] day [1,31]
*
* \return Packed date for dir_t entry.
*/
static inline uint16_t FAT_DATE(uint16_t year, uint8_t month, uint8_t day) {
return (year - 1980) << 9 | month << 5 | day;
}
/** year part of FAT directory date field
* \param[in] fatDate Date in packed dir format.
*
* \return Extracted year [1980,2107]
*/
static inline uint16_t FAT_YEAR(uint16_t fatDate) {
return 1980 + (fatDate >> 9);
}
/** month part of FAT directory date field
* \param[in] fatDate Date in packed dir format.
*
* \return Extracted month [1,12]
*/
static inline uint8_t FAT_MONTH(uint16_t fatDate) {
return (fatDate >> 5) & 0XF;
}
/** day part of FAT directory date field
* \param[in] fatDate Date in packed dir format.
*
* \return Extracted day [1,31]
*/
static inline uint8_t FAT_DAY(uint16_t fatDate) {
return fatDate & 0X1F;
}
/** time field for FAT directory entry
* \param[in] hour [0,23]
* \param[in] minute [0,59]
* \param[in] second [0,59]
*
* \return Packed time for dir_t entry.
*/
static inline uint16_t FAT_TIME(uint8_t hour, uint8_t minute, uint8_t second) {
return hour << 11 | minute << 5 | second >> 1;
}
/** hour part of FAT directory time field
* \param[in] fatTime Time in packed dir format.
*
* \return Extracted hour [0,23]
*/
static inline uint8_t FAT_HOUR(uint16_t fatTime) {
return fatTime >> 11;
}
/** minute part of FAT directory time field
* \param[in] fatTime Time in packed dir format.
*
* \return Extracted minute [0,59]
*/
static inline uint8_t FAT_MINUTE(uint16_t fatTime) {
return(fatTime >> 5) & 0X3F;
}
/** second part of FAT directory time field
* Note second/2 is stored in packed time.
*
* \param[in] fatTime Time in packed dir format.
*
* \return Extracted second [0,58]
*/
static inline uint8_t FAT_SECOND(uint16_t fatTime) {
return 2*(fatTime & 0X1F);
}
/** Default date for file timestamps is 1 Jan 2000 */
uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | (1 << 5) | 1;
/** Default time for file timestamp is 1 am */
uint16_t const FAT_DEFAULT_TIME = (1 << 11);
//------------------------------------------------------------------------------
/**
* \class SdBaseFile
* \brief Base class for SdFile with Print and C++ streams.
*/
class SdBaseFile {
public:
/** Create an instance. */
SdBaseFile() : writeError(false), type_(FAT_FILE_TYPE_CLOSED) {}
SdBaseFile(const char* path, uint8_t oflag);
~SdBaseFile() {if(isOpen()) close();}
/**
* writeError is set to true if an error occurs during a write().
* Set writeError to false before calling print() and/or write() and check
* for true after calls to print() and/or write().
*/
bool writeError;
//----------------------------------------------------------------------------
// helpers for stream classes
/** get position for streams
* \param[out] pos struct to receive position
*/
void getpos(fpos_t* pos);
/** set position for streams
* \param[out] pos struct with value for new position
*/
void setpos(fpos_t* pos);
//----------------------------------------------------------------------------
bool close();
bool contiguousRange(uint32_t* bgnBlock, uint32_t* endBlock);
bool createContiguous(SdBaseFile* dirFile,
const char* path, uint32_t size);
/** \return The current cluster number for a file or directory. */
uint32_t curCluster() const {return curCluster_;}
/** \return The current position for a file or directory. */
uint32_t curPosition() const {return curPosition_;}
/** \return Current working directory */
static SdBaseFile* cwd() {return cwd_;}
/** Set the date/time callback function
*
* \param[in] dateTime The user's call back function. The callback
* function is of the form:
*
* \code
* void dateTime(uint16_t* date, uint16_t* time) {
* uint16_t year;
* uint8_t month, day, hour, minute, second;
*
* // User gets date and time from GPS or real-time clock here
*
* // return date using FAT_DATE macro to format fields
* *date = FAT_DATE(year, month, day);
*
* // return time using FAT_TIME macro to format fields
* *time = FAT_TIME(hour, minute, second);
* }
* \endcode
*
* Sets the function that is called when a file is created or when
* a file's directory entry is modified by sync(). All timestamps,
* access, creation, and modify, are set when a file is created.
* sync() maintains the last access date and last modify date/time.
*
* See the timestamp() function.
*/
static void dateTimeCallback(
void (*dateTime)(uint16_t* date, uint16_t* time)) {
dateTime_ = dateTime;
}
/** Cancel the date/time callback function. */
static void dateTimeCallbackCancel() {dateTime_ = 0;}
bool dirEntry(dir_t* dir);
static void dirName(const dir_t& dir, char* name);
bool exists(const char* name);
int16_t fgets(char* str, int16_t num, char* delim = 0);
/** \return The total number of bytes in a file or directory. */
uint32_t fileSize() const {return fileSize_;}
/** \return The first cluster number for a file or directory. */
uint32_t firstCluster() const {return firstCluster_;}
bool getFilename(char* name);
/** \return True if this is a directory else false. */
bool isDir() const {return type_ >= FAT_FILE_TYPE_MIN_DIR;}
/** \return True if this is a normal file else false. */
bool isFile() const {return type_ == FAT_FILE_TYPE_NORMAL;}
/** \return True if this is an open file/directory else false. */
bool isOpen() const {return type_ != FAT_FILE_TYPE_CLOSED;}
/** \return True if this is a subdirectory else false. */
bool isSubDir() const {return type_ == FAT_FILE_TYPE_SUBDIR;}
/** \return True if this is the root directory. */
bool isRoot() const {
return type_ == FAT_FILE_TYPE_ROOT_FIXED || type_ == FAT_FILE_TYPE_ROOT32;
}
void ls(Print* pr, uint8_t flags = 0, uint8_t indent = 0);
void ls(uint8_t flags = 0);
bool mkdir(SdBaseFile* dir, const char* path, bool pFlag = true);
// alias for backward compactability
bool makeDir(SdBaseFile* dir, const char* path) {
return mkdir(dir, path, false);
}
bool open(SdBaseFile* dirFile, uint16_t index, uint8_t oflag);
bool open(SdBaseFile* dirFile, const char* path, uint8_t oflag);
bool open(const char* path, uint8_t oflag = O_READ);
bool openNext(SdBaseFile* dirFile, uint8_t oflag);
bool openRoot(SdVolume* vol);
int peek();
static void printFatDate(uint16_t fatDate);
static void printFatDate(Print* pr, uint16_t fatDate);
static void printFatTime(uint16_t fatTime);
static void printFatTime(Print* pr, uint16_t fatTime);
bool printName();
int16_t read();
int16_t read(void* buf, uint16_t nbyte);
int8_t readDir(dir_t* dir);
static bool remove(SdBaseFile* dirFile, const char* path);
bool remove();
/** Set the file's current position to zero. */
void rewind() {seekSet(0);}
bool rename(SdBaseFile* dirFile, const char* newPath);
bool rmdir();
// for backward compatibility
bool rmDir() {return rmdir();}
bool rmRfStar();
/** Set the files position to current position + \a pos. See seekSet().
* \param[in] offset The new position in bytes from the current position.
* \return true for success or false for failure.
*/
bool seekCur(int32_t offset) {
return seekSet(curPosition_ + offset);
}
/** Set the files position to end-of-file + \a offset. See seekSet().
* \param[in] offset The new position in bytes from end-of-file.
* \return true for success or false for failure.
*/
bool seekEnd(int32_t offset = 0) {return seekSet(fileSize_ + offset);}
bool seekSet(uint32_t pos);
bool sync();
bool timestamp(SdBaseFile* file);
bool timestamp(uint8_t flag, uint16_t year, uint8_t month, uint8_t day,
uint8_t hour, uint8_t minute, uint8_t second);
/** Type of file. You should use isFile() or isDir() instead of type()
* if possible.
*
* \return The file or directory type.
*/
uint8_t type() const {return type_;}
bool truncate(uint32_t size);
/** \return SdVolume that contains this file. */
SdVolume* volume() const {return vol_;}
int16_t write(const void* buf, uint16_t nbyte);
//------------------------------------------------------------------------------
private:
// allow SdFat to set cwd_
friend class SdFat;
// global pointer to cwd dir
static SdBaseFile* cwd_;
// data time callback function
static void (*dateTime_)(uint16_t* date, uint16_t* time);
// bits defined in flags_
// should be 0X0F
static uint8_t const F_OFLAG = (O_ACCMODE | O_APPEND | O_SYNC);
// sync of directory entry required
static uint8_t const F_FILE_DIR_DIRTY = 0X80;
// private data
uint8_t flags_; // See above for definition of flags_ bits
uint8_t fstate_; // error and eof indicator
uint8_t type_; // type of file see above for values
uint32_t curCluster_; // cluster for current file position
uint32_t curPosition_; // current file position in bytes from beginning
uint32_t dirBlock_; // block for this files directory entry
uint8_t dirIndex_; // index of directory entry in dirBlock
uint32_t fileSize_; // file size in bytes
uint32_t firstCluster_; // first cluster of file
SdVolume* vol_; // volume where file is located
/** experimental don't use */
bool openParent(SdBaseFile* dir);
// private functions
bool addCluster();
bool addDirCluster();
dir_t* cacheDirEntry(uint8_t action);
int8_t lsPrintNext(Print *pr, uint8_t flags, uint8_t indent);
static bool make83Name(const char* str, uint8_t* name, const char** ptr);
bool mkdir(SdBaseFile* parent, const uint8_t dname[11]);
bool open(SdBaseFile* dirFile, const uint8_t dname[11], uint8_t oflag);
bool openCachedEntry(uint8_t cacheIndex, uint8_t oflags);
dir_t* readDirCache();
//------------------------------------------------------------------------------
// to be deleted
static void printDirName(const dir_t& dir,
uint8_t width, bool printSlash);
static void printDirName(Print* pr, const dir_t& dir,
uint8_t width, bool printSlash);
//------------------------------------------------------------------------------
// Deprecated functions - suppress cpplint warnings with NOLINT comment
#if ALLOW_DEPRECATED_FUNCTIONS && !defined(DOXYGEN)
public:
/** \deprecated Use:
* bool contiguousRange(uint32_t* bgnBlock, uint32_t* endBlock);
* \param[out] bgnBlock the first block address for the file.
* \param[out] endBlock the last block address for the file.
* \return true for success or false for failure.
*/
bool contiguousRange(uint32_t& bgnBlock, uint32_t& endBlock) { // NOLINT
return contiguousRange(&bgnBlock, &endBlock);
}
/** \deprecated Use:
* bool createContiguous(SdBaseFile* dirFile,
* const char* path, uint32_t size)
* \param[in] dirFile The directory where the file will be created.
* \param[in] path A path with a valid DOS 8.3 file name.
* \param[in] size The desired file size.
* \return true for success or false for failure.
*/
bool createContiguous(SdBaseFile& dirFile, // NOLINT
const char* path, uint32_t size) {
return createContiguous(&dirFile, path, size);
}
/** \deprecated Use:
* static void dateTimeCallback(
* void (*dateTime)(uint16_t* date, uint16_t* time));
* \param[in] dateTime The user's call back function.
*/
static void dateTimeCallback(
void (*dateTime)(uint16_t& date, uint16_t& time)) { // NOLINT
oldDateTime_ = dateTime;
dateTime_ = dateTime ? oldToNew : 0;
}
/** \deprecated Use: bool dirEntry(dir_t* dir);
* \param[out] dir Location for return of the file's directory entry.
* \return true for success or false for failure.
*/
bool dirEntry(dir_t& dir) {return dirEntry(&dir);} // NOLINT
/** \deprecated Use:
* bool mkdir(SdBaseFile* dir, const char* path);
* \param[in] dir An open SdFat instance for the directory that will contain
* the new directory.
* \param[in] path A path with a valid 8.3 DOS name for the new directory.
* \return true for success or false for failure.
*/
bool mkdir(SdBaseFile& dir, const char* path) { // NOLINT
return mkdir(&dir, path);
}
/** \deprecated Use:
* bool open(SdBaseFile* dirFile, const char* path, uint8_t oflag);
* \param[in] dirFile An open SdFat instance for the directory containing the
* file to be opened.
* \param[in] path A path with a valid 8.3 DOS name for the file.
* \param[in] oflag Values for \a oflag are constructed by a bitwise-inclusive
* OR of flags O_READ, O_WRITE, O_TRUNC, and O_SYNC.
* \return true for success or false for failure.
*/
bool open(SdBaseFile& dirFile, // NOLINT
const char* path, uint8_t oflag) {
return open(&dirFile, path, oflag);
}
/** \deprecated Do not use in new apps
* \param[in] dirFile An open SdFat instance for the directory containing the
* file to be opened.
* \param[in] path A path with a valid 8.3 DOS name for a file to be opened.
* \return true for success or false for failure.
*/
bool open(SdBaseFile& dirFile, const char* path) { // NOLINT
return open(dirFile, path, O_RDWR);
}
/** \deprecated Use:
* bool open(SdBaseFile* dirFile, uint16_t index, uint8_t oflag);
* \param[in] dirFile An open SdFat instance for the directory.
* \param[in] index The \a index of the directory entry for the file to be
* opened. The value for \a index is (directory file position)/32.
* \param[in] oflag Values for \a oflag are constructed by a bitwise-inclusive
* OR of flags O_READ, O_WRITE, O_TRUNC, and O_SYNC.
* \return true for success or false for failure.
*/
bool open(SdBaseFile& dirFile, uint16_t index, uint8_t oflag) { // NOLINT
return open(&dirFile, index, oflag);
}
/** \deprecated Use: bool openRoot(SdVolume* vol);
* \param[in] vol The FAT volume containing the root directory to be opened.
* \return true for success or false for failure.
*/
bool openRoot(SdVolume& vol) {return openRoot(&vol);} // NOLINT
/** \deprecated Use: int8_t readDir(dir_t* dir);
* \param[out] dir The dir_t struct that will receive the data.
* \return bytes read for success zero for eof or -1 for failure.
*/
int8_t readDir(dir_t& dir) {return readDir(&dir);} // NOLINT
/** \deprecated Use:
* static uint8_t remove(SdBaseFile* dirFile, const char* path);
* \param[in] dirFile The directory that contains the file.
* \param[in] path The name of the file to be removed.
* \return true for success or false for failure.
*/
static bool remove(SdBaseFile& dirFile, const char* path) { // NOLINT
return remove(&dirFile, path);
}
//------------------------------------------------------------------------------
// rest are private
private:
static void (*oldDateTime_)(uint16_t& date, uint16_t& time); // NOLINT
static void oldToNew(uint16_t* date, uint16_t* time) {
uint16_t d;
uint16_t t;
oldDateTime_(d, t);
*date = d;
*time = t;
}
#endif // ALLOW_DEPRECATED_FUNCTIONS
};
#endif // SdBaseFile_h

@ -0,0 +1,329 @@
/* Arduino SdFat Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include "SdFat.h"
#include "SdFatUtil.h"
//------------------------------------------------------------------------------
/** Change a volume's working directory to root
*
* Changes the volume's working directory to the SD's root directory.
* Optionally set the current working directory to the volume's
* working directory.
*
* \param[in] set_cwd Set the current working directory to this volume's
* working directory if true.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool SdFat::chdir(bool set_cwd) {
if (set_cwd) SdBaseFile::cwd_ = &vwd_;
vwd_.close();
return vwd_.openRoot(&vol_);
}
//------------------------------------------------------------------------------
/** Change a volume's working directory
*
* Changes the volume working directory to the \a path subdirectory.
* Optionally set the current working directory to the volume's
* working directory.
*
* Example: If the volume's working directory is "/DIR", chdir("SUB")
* will change the volume's working directory from "/DIR" to "/DIR/SUB".
*
* If path is "/", the volume's working directory will be changed to the
* root directory
*
* \param[in] path The name of the subdirectory.
*
* \param[in] set_cwd Set the current working directory to this volume's
* working directory if true.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool SdFat::chdir(const char *path, bool set_cwd) {
SdBaseFile dir;
if (path[0] == '/' && path[1] == '\0') return chdir(set_cwd);
if (!dir.open(&vwd_, path, O_READ)) goto fail;
if (!dir.isDir()) goto fail;
vwd_ = dir;
if (set_cwd) SdBaseFile::cwd_ = &vwd_;
return true;
fail:
return false;
}
//------------------------------------------------------------------------------
/** Set the current working directory to a volume's working directory.
*
* This is useful with multiple SD cards.
*
* The current working directory is changed to this volume's working directory.
*
* This is like the Windows/DOS \<drive letter>: command.
*/
void SdFat::chvol() {
SdBaseFile::cwd_ = &vwd_;
}
//------------------------------------------------------------------------------
/** %Print any SD error code and halt. */
void SdFat::errorHalt() {
errorPrint();
while (1);
}
//------------------------------------------------------------------------------
/** %Print msg, any SD error code, and halt.
*
* \param[in] msg Message to print.
*/
void SdFat::errorHalt(char const* msg) {
errorPrint(msg);
while (1);
}
//------------------------------------------------------------------------------
/** %Print msg, any SD error code, and halt.
*
* \param[in] msg Message in program space (flash memory) to print.
*/
void SdFat::errorHalt_P(PGM_P msg) {
errorPrint_P(msg);
while (1);
}
//------------------------------------------------------------------------------
/** %Print any SD error code. */
void SdFat::errorPrint() {
if (!card_.errorCode()) return;
PgmPrint("SD errorCode: 0X");
Serial.println(card_.errorCode(), HEX);
}
//------------------------------------------------------------------------------
/** %Print msg, any SD error code.
*
* \param[in] msg Message to print.
*/
void SdFat::errorPrint(char const* msg) {
PgmPrint("error: ");
Serial.println(msg);
errorPrint();
}
//------------------------------------------------------------------------------
/** %Print msg, any SD error code.
*
* \param[in] msg Message in program space (flash memory) to print.
*/
void SdFat::errorPrint_P(PGM_P msg) {
PgmPrint("error: ");
SerialPrintln_P(msg);
errorPrint();
}
//------------------------------------------------------------------------------
/**
* Test for the existence of a file.
*
* \param[in] name Name of the file to be tested for.
*
* \return true if the file exists else false.
*/
bool SdFat::exists(const char* name) {
return vwd_.exists(name);
}
//------------------------------------------------------------------------------
/**
* Initialize an SdFat object.
*
* Initializes the SD card, SD volume, and root directory.
*
* \param[in] sckRateID value for SPI SCK rate. See Sd2Card::init().
* \param[in] chipSelectPin SD chip select pin. See Sd2Card::init().
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool SdFat::init(uint8_t sckRateID, uint8_t chipSelectPin) {
return card_.init(sckRateID, chipSelectPin) && vol_.init(&card_) && chdir(1);
}
//------------------------------------------------------------------------------
/** %Print error details and halt after SdFat::init() fails. */
void SdFat::initErrorHalt() {
initErrorPrint();
while (1);
}
//------------------------------------------------------------------------------
/**Print message, error details, and halt after SdFat::init() fails.
*
* \param[in] msg Message to print.
*/
void SdFat::initErrorHalt(char const *msg) {
Serial.println(msg);
initErrorHalt();
}
//------------------------------------------------------------------------------
/**Print message, error details, and halt after SdFat::init() fails.
*
* \param[in] msg Message in program space (flash memory) to print.
*/
void SdFat::initErrorHalt_P(PGM_P msg) {
SerialPrintln_P(msg);
initErrorHalt();
}
//------------------------------------------------------------------------------
/** Print error details after SdFat::init() fails. */
void SdFat::initErrorPrint() {
if (card_.errorCode()) {
PgmPrintln("Can't access SD card. Do not reformat.");
if (card_.errorCode() == SD_CARD_ERROR_CMD0) {
PgmPrintln("No card, wrong chip select pin, or SPI problem?");
}
errorPrint();
} else if (vol_.fatType() == 0) {
PgmPrintln("Invalid format, reformat SD.");
} else if (!vwd_.isOpen()) {
PgmPrintln("Can't open root directory.");
} else {
PgmPrintln("No error found.");
}
}
//------------------------------------------------------------------------------
/**Print message and error details and halt after SdFat::init() fails.
*
* \param[in] msg Message to print.
*/
void SdFat::initErrorPrint(char const *msg) {
Serial.println(msg);
initErrorPrint();
}
//------------------------------------------------------------------------------
/**Print message and error details after SdFat::init() fails.
*
* \param[in] msg Message in program space (flash memory) to print.
*/
void SdFat::initErrorPrint_P(PGM_P msg) {
SerialPrintln_P(msg);
initErrorHalt();
}
//------------------------------------------------------------------------------
/** List the directory contents of the volume working directory to Serial.
*
* \param[in] flags The inclusive OR of
*
* LS_DATE - %Print file modification date
*
* LS_SIZE - %Print file size.
*
* LS_R - Recursive list of subdirectories.
*/
void SdFat::ls(uint8_t flags) {
vwd_.ls(&Serial, flags);
}
//------------------------------------------------------------------------------
/** List the directory contents of the volume working directory to Serial.
*
* \param[in] pr Print stream for list.
*
* \param[in] flags The inclusive OR of
*
* LS_DATE - %Print file modification date
*
* LS_SIZE - %Print file size.
*
* LS_R - Recursive list of subdirectories.
*/
void SdFat::ls(Print* pr, uint8_t flags) {
vwd_.ls(pr, flags);
}
//------------------------------------------------------------------------------
/** Make a subdirectory in the volume working directory.
*
* \param[in] path A path with a valid 8.3 DOS name for the subdirectory.
*
* \param[in] pFlag Create missing parent directories if true.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool SdFat::mkdir(const char* path, bool pFlag) {
SdBaseFile sub;
return sub.mkdir(&vwd_, path, pFlag);
}
//------------------------------------------------------------------------------
/** Remove a file from the volume working directory.
*
* \param[in] path A path with a valid 8.3 DOS name for the file.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool SdFat::remove(const char* path) {
return SdBaseFile::remove(&vwd_, path);
}
//------------------------------------------------------------------------------
/** Rename a file or subdirectory.
*
* \param[in] oldPath Path name to the file or subdirectory to be renamed.
*
* \param[in] newPath New path name of the file or subdirectory.
*
* The \a newPath object must not exist before the rename call.
*
* The file to be renamed must not be open. The directory entry may be
* moved and file system corruption could occur if the file is accessed by
* a file object that was opened before the rename() call.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool SdFat::rename(const char *oldPath, const char *newPath) {
SdBaseFile file;
if (!file.open(oldPath, O_READ)) return false;
return file.rename(&vwd_, newPath);
}
//------------------------------------------------------------------------------
/** Remove a subdirectory from the volume's working directory.
*
* \param[in] path A path with a valid 8.3 DOS name for the subdirectory.
*
* The subdirectory file will be removed only if it is empty.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
bool SdFat::rmdir(const char* path) {
SdBaseFile sub;
if (!sub.open(path, O_READ)) return false;
return sub.rmdir();
}
//------------------------------------------------------------------------------
/** Truncate a file to a specified length. The current file position
* will be maintained if it is less than or equal to \a length otherwise
* it will be set to end of file.
*
* \param[in] path A path with a valid 8.3 DOS name for the file.
* \param[in] length The desired length for the file.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
* Reasons for failure include file is read only, file is a directory,
* \a length is greater than the current file size or an I/O error occurs.
*/
bool SdFat::truncate(const char* path, uint32_t length) {
SdBaseFile file;
if (!file.open(path, O_WRITE)) return false;
return file.truncate(length);
}

@ -21,527 +21,56 @@
#define SdFat_h
/**
* \file
* SdFile and SdVolume classes
* \brief SdFat class
*/
#include <avr/pgmspace.h>
#include "Sd2Card.h"
#include "FatStructs.h"
#include "Print.h"
#include "SdFile.h"
//#include <SdStream.h>
//#include <ArduinoStream.h>
//------------------------------------------------------------------------------
/**
* Allow use of deprecated functions if non-zero
*/
#define ALLOW_DEPRECATED_FUNCTIONS 1
//------------------------------------------------------------------------------
// forward declaration since SdVolume is used in SdFile
class SdVolume;
//==============================================================================
// SdFile class
// flags for ls()
/** ls() flag to print modify date */
uint8_t const LS_DATE = 1;
/** ls() flag to print file size */
uint8_t const LS_SIZE = 2;
/** ls() flag for recursive list of subdirectories */
uint8_t const LS_R = 4;
// use the gnu style oflag in open()
/** open() oflag for reading */
uint8_t const O_READ = 0X01;
/** open() oflag - same as O_READ */
uint8_t const O_RDONLY = O_READ;
/** open() oflag for write */
uint8_t const O_WRITE = 0X02;
/** open() oflag - same as O_WRITE */
uint8_t const O_WRONLY = O_WRITE;
/** open() oflag for reading and writing */
uint8_t const O_RDWR = (O_READ | O_WRITE);
/** open() oflag mask for access modes */
uint8_t const O_ACCMODE = (O_READ | O_WRITE);
/** The file offset shall be set to the end of the file prior to each write. */
uint8_t const O_APPEND = 0X04;
/** synchronous writes - call sync() after each write */
uint8_t const O_SYNC = 0X08;
/** create the file if nonexistent */
uint8_t const O_CREAT = 0X10;
/** If O_CREAT and O_EXCL are set, open() shall fail if the file exists */
uint8_t const O_EXCL = 0X20;
/** truncate the file to zero length */
uint8_t const O_TRUNC = 0X40;
// flags for timestamp
/** set the file's last access date */
uint8_t const T_ACCESS = 1;
/** set the file's creation date and time */
uint8_t const T_CREATE = 2;
/** Set the file's write date and time */
uint8_t const T_WRITE = 4;
// values for type_
/** This SdFile has not been opened. */
uint8_t const FAT_FILE_TYPE_CLOSED = 0;
/** SdFile for a file */
uint8_t const FAT_FILE_TYPE_NORMAL = 1;
/** SdFile for a FAT16 root directory */
uint8_t const FAT_FILE_TYPE_ROOT16 = 2;
/** SdFile for a FAT32 root directory */
uint8_t const FAT_FILE_TYPE_ROOT32 = 3;
/** SdFile for a subdirectory */
uint8_t const FAT_FILE_TYPE_SUBDIR = 4;
/** Test value for directory type */
uint8_t const FAT_FILE_TYPE_MIN_DIR = FAT_FILE_TYPE_ROOT16;
/** date field for FAT directory entry */
static inline uint16_t FAT_DATE(uint16_t year, uint8_t month, uint8_t day) {
return (year - 1980) << 9 | month << 5 | day;
}
/** year part of FAT directory date field */
static inline uint16_t FAT_YEAR(uint16_t fatDate) {
return 1980 + (fatDate >> 9);
}
/** month part of FAT directory date field */
static inline uint8_t FAT_MONTH(uint16_t fatDate) {
return (fatDate >> 5) & 0XF;
}
/** day part of FAT directory date field */
static inline uint8_t FAT_DAY(uint16_t fatDate) {
return fatDate & 0X1F;
}
/** time field for FAT directory entry */
static inline uint16_t FAT_TIME(uint8_t hour, uint8_t minute, uint8_t second) {
return hour << 11 | minute << 5 | second >> 1;
}
/** hour part of FAT directory time field */
static inline uint8_t FAT_HOUR(uint16_t fatTime) {
return fatTime >> 11;
}
/** minute part of FAT directory time field */
static inline uint8_t FAT_MINUTE(uint16_t fatTime) {
return(fatTime >> 5) & 0X3F;
}
/** second part of FAT directory time field */
static inline uint8_t FAT_SECOND(uint16_t fatTime) {
return 2*(fatTime & 0X1F);
}
/** Default date for file timestamps is 1 Jan 2000 */
uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | (1 << 5) | 1;
/** Default time for file timestamp is 1 am */
uint16_t const FAT_DEFAULT_TIME = (1 << 11);
/** SdFat version YYYYMMDD */
#define SD_FAT_VERSION 20110902
//------------------------------------------------------------------------------
/**
* \class SdFile
* \brief Access FAT16 and FAT32 files on SD and SDHC cards.
* \class SdFat
* \brief Integration class for the %SdFat library.
*/
class SdFile : public Print {
class SdFat {
public:
/** Create an instance of SdFile. */
SdFile(void) : type_(FAT_FILE_TYPE_CLOSED) {}
/**
* writeError is set to true if an error occurs during a write().
* Set writeError to false before calling print() and/or write() and check
* for true after calls to print() and/or write().
*/
bool writeError;
/**
* Cancel unbuffered reads for this file.
* See setUnbufferedRead()
*/
void clearUnbufferedRead(void) {
flags_ &= ~F_FILE_UNBUFFERED_READ;
}
uint8_t close(void);
uint8_t contiguousRange(uint32_t* bgnBlock, uint32_t* endBlock);
uint8_t createContiguous(SdFile* dirFile,
const char* fileName, uint32_t size);
/** \return The current cluster number for a file or directory. */
uint32_t curCluster(void) const {return curCluster_;}
/** \return The current position for a file or directory. */
uint32_t curPosition(void) const {return curPosition_;}
/**
* Set the date/time callback function
*
* \param[in] dateTime The user's call back function. The callback
* function is of the form:
*
* \code
* void dateTime(uint16_t* date, uint16_t* time) {
* uint16_t year;
* uint8_t month, day, hour, minute, second;
*
* // User gets date and time from GPS or real-time clock here
*
* // return date using FAT_DATE macro to format fields
* *date = FAT_DATE(year, month, day);
*
* // return time using FAT_TIME macro to format fields
* *time = FAT_TIME(hour, minute, second);
* }
* \endcode
*
* Sets the function that is called when a file is created or when
* a file's directory entry is modified by sync(). All timestamps,
* access, creation, and modify, are set when a file is created.
* sync() maintains the last access date and last modify date/time.
*
* See the timestamp() function.
*/
static void dateTimeCallback(
void (*dateTime)(uint16_t* date, uint16_t* time)) {
dateTime_ = dateTime;
}
/**
* Cancel the date/time callback function.
*/
static void dateTimeCallbackCancel(void) {
// use explicit zero since NULL is not defined for Sanguino
dateTime_ = 0;
}
/** \return Address of the block that contains this file's directory. */
uint32_t dirBlock(void) const {return dirBlock_;}
uint8_t dirEntry(dir_t* dir);
/** \return Index of this file's directory in the block dirBlock. */
uint8_t dirIndex(void) const {return dirIndex_;}
static void dirName(const dir_t& dir, char* name);
/** \return The total number of bytes in a file or directory. */
uint32_t fileSize(void) const {return fileSize_;}
/** \return The first cluster number for a file or directory. */
uint32_t firstCluster(void) const {return firstCluster_;}
/** \return True if this is a SdFile for a directory else false. */
uint8_t isDir(void) const {return type_ >= FAT_FILE_TYPE_MIN_DIR;}
/** \return True if this is a SdFile for a file else false. */
uint8_t isFile(void) const {return type_ == FAT_FILE_TYPE_NORMAL;}
/** \return True if this is a SdFile for an open file/directory else false. */
uint8_t isOpen(void) const {return type_ != FAT_FILE_TYPE_CLOSED;}
/** \return True if this is a SdFile for a subdirectory else false. */
uint8_t isSubDir(void) const {return type_ == FAT_FILE_TYPE_SUBDIR;}
/** \return True if this is a SdFile for the root directory. */
uint8_t isRoot(void) const {
return type_ == FAT_FILE_TYPE_ROOT16 || type_ == FAT_FILE_TYPE_ROOT32;
}
void ls(uint8_t flags = 0, uint8_t indent = 0);
uint8_t makeDir(SdFile* dir, const char* dirName);
uint8_t open(SdFile* dirFile, uint16_t index, uint8_t oflag);
uint8_t open(SdFile* dirFile, const char* fileName, uint8_t oflag);
uint8_t openRoot(SdVolume* vol);
static void printDirName(const dir_t& dir, uint8_t width);
static void printFatDate(uint16_t fatDate);
static void printFatTime(uint16_t fatTime);
static void printTwoDigits(uint8_t v);
/**
* Read the next byte from a file.
*
* \return For success read returns the next byte in the file as an int.
* If an error occurs or end of file is reached -1 is returned.
*/
int16_t read(void) {
uint8_t b;
return read(&b, 1) == 1 ? b : -1;
}
int16_t read(void* buf, uint16_t nbyte);
int8_t readDir(dir_t* dir);
static uint8_t remove(SdFile* dirFile, const char* fileName);
uint8_t remove(void);
/** Set the file's current position to zero. */
void rewind(void) {
curPosition_ = curCluster_ = 0;
}
uint8_t rmDir(void);
uint8_t rmRfStar(void);
/** Set the files position to current position + \a pos. See seekSet(). */
uint8_t seekCur(uint32_t pos) {
return seekSet(curPosition_ + pos);
}
/**
* Set the files current position to end of file. Useful to position
* a file for append. See seekSet().
*/
uint8_t seekEnd(void) {return seekSet(fileSize_);}
uint8_t seekSet(uint32_t pos);
/**
* Use unbuffered reads to access this file. Used with Wave
* Shield ISR. Used with Sd2Card::partialBlockRead() in WaveRP.
*
* Not recommended for normal applications.
*/
void setUnbufferedRead(void) {
if (isFile()) flags_ |= F_FILE_UNBUFFERED_READ;
}
uint8_t timestamp(uint8_t flag, uint16_t year, uint8_t month, uint8_t day,
uint8_t hour, uint8_t minute, uint8_t second);
uint8_t sync(void);
/** Type of this SdFile. You should use isFile() or isDir() instead of type()
* if possible.
*
* \return The file or directory type.
*/
uint8_t type(void) const {return type_;}
uint8_t truncate(uint32_t size);
/** \return Unbuffered read flag. */
uint8_t unbufferedRead(void) const {
return flags_ & F_FILE_UNBUFFERED_READ;
}
/** \return SdVolume that contains this file. */
SdVolume* volume(void) const {return vol_;}
void write(uint8_t b);
int16_t write(const void* buf, uint16_t nbyte);
void write(const char* str);
void write_P(PGM_P str);
void writeln_P(PGM_P str);
//------------------------------------------------------------------------------
#if ALLOW_DEPRECATED_FUNCTIONS
// Deprecated functions - suppress cpplint warnings with NOLINT comment
/** \deprecated Use:
* uint8_t SdFile::contiguousRange(uint32_t* bgnBlock, uint32_t* endBlock);
*/
uint8_t contiguousRange(uint32_t& bgnBlock, uint32_t& endBlock) { // NOLINT
return contiguousRange(&bgnBlock, &endBlock);
}
/** \deprecated Use:
* uint8_t SdFile::createContiguous(SdFile* dirFile,
* const char* fileName, uint32_t size)
*/
uint8_t createContiguous(SdFile& dirFile, // NOLINT
const char* fileName, uint32_t size) {
return createContiguous(&dirFile, fileName, size);
}
/**
* \deprecated Use:
* static void SdFile::dateTimeCallback(
* void (*dateTime)(uint16_t* date, uint16_t* time));
*/
static void dateTimeCallback(
void (*dateTime)(uint16_t& date, uint16_t& time)) { // NOLINT
oldDateTime_ = dateTime;
dateTime_ = dateTime ? oldToNew : 0;
}
/** \deprecated Use: uint8_t SdFile::dirEntry(dir_t* dir); */
uint8_t dirEntry(dir_t& dir) {return dirEntry(&dir);} // NOLINT
/** \deprecated Use:
* uint8_t SdFile::makeDir(SdFile* dir, const char* dirName);
*/
uint8_t makeDir(SdFile& dir, const char* dirName) { // NOLINT
return makeDir(&dir, dirName);
}
/** \deprecated Use:
* uint8_t SdFile::open(SdFile* dirFile, const char* fileName, uint8_t oflag);
*/
uint8_t open(SdFile& dirFile, // NOLINT
const char* fileName, uint8_t oflag) {
return open(&dirFile, fileName, oflag);
}
/** \deprecated Do not use in new apps */
uint8_t open(SdFile& dirFile, const char* fileName) { // NOLINT
return open(dirFile, fileName, O_RDWR);
}
/** \deprecated Use:
* uint8_t SdFile::open(SdFile* dirFile, uint16_t index, uint8_t oflag);
*/
uint8_t open(SdFile& dirFile, uint16_t index, uint8_t oflag) { // NOLINT
return open(&dirFile, index, oflag);
}
/** \deprecated Use: uint8_t SdFile::openRoot(SdVolume* vol); */
uint8_t openRoot(SdVolume& vol) {return openRoot(&vol);} // NOLINT
/** \deprecated Use: int8_t SdFile::readDir(dir_t* dir); */
int8_t readDir(dir_t& dir) {return readDir(&dir);} // NOLINT
/** \deprecated Use:
* static uint8_t SdFile::remove(SdFile* dirFile, const char* fileName);
*/
static uint8_t remove(SdFile& dirFile, const char* fileName) { // NOLINT
return remove(&dirFile, fileName);
}
//------------------------------------------------------------------------------
// rest are private
private:
static void (*oldDateTime_)(uint16_t& date, uint16_t& time); // NOLINT
static void oldToNew(uint16_t* date, uint16_t* time) {
uint16_t d;
uint16_t t;
oldDateTime_(d, t);
*date = d;
*time = t;
}
#endif // ALLOW_DEPRECATED_FUNCTIONS
SdFat() {}
/** \return a pointer to the Sd2Card object. */
Sd2Card* card() {return &card_;}
bool chdir(bool set_cwd = false);
bool chdir(const char* path, bool set_cwd = false);
void chvol();
void errorHalt();
void errorHalt_P(PGM_P msg);
void errorHalt(char const *msg);
void errorPrint();
void errorPrint_P(PGM_P msg);
void errorPrint(char const *msg);
bool exists(const char* name);
bool init(uint8_t sckRateID = SPI_FULL_SPEED,
uint8_t chipSelectPin = SD_CHIP_SELECT_PIN);
void initErrorHalt();
void initErrorHalt(char const *msg);
void initErrorHalt_P(PGM_P msg);
void initErrorPrint();
void initErrorPrint(char const *msg);
void initErrorPrint_P(PGM_P msg);
void ls(uint8_t flags = 0);
void ls(Print* pr, uint8_t flags = 0);
bool mkdir(const char* path, bool pFlag = true);
bool remove(const char* path);
bool rename(const char *oldPath, const char *newPath);
bool rmdir(const char* path);
bool truncate(const char* path, uint32_t length);
/** \return a pointer to the SdVolume object. */
SdVolume* vol() {return &vol_;}
/** \return a pointer to the volume working directory. */
SdBaseFile* vwd() {return &vwd_;}
private:
// bits defined in flags_
// should be 0XF
static uint8_t const F_OFLAG = (O_ACCMODE | O_APPEND | O_SYNC);
// available bits
static uint8_t const F_UNUSED = 0X30;
// use unbuffered SD read
static uint8_t const F_FILE_UNBUFFERED_READ = 0X40;
// sync of directory entry required
static uint8_t const F_FILE_DIR_DIRTY = 0X80;
// make sure F_OFLAG is ok
#if ((F_UNUSED | F_FILE_UNBUFFERED_READ | F_FILE_DIR_DIRTY) & F_OFLAG)
#error flags_ bits conflict
#endif // flags_ bits
// private data
uint8_t flags_; // See above for definition of flags_ bits
uint8_t type_; // type of file see above for values
uint32_t curCluster_; // cluster for current file position
uint32_t curPosition_; // current file position in bytes from beginning
uint32_t dirBlock_; // SD block that contains directory entry for file
uint8_t dirIndex_; // index of entry in dirBlock 0 <= dirIndex_ <= 0XF
uint32_t fileSize_; // file size in bytes
uint32_t firstCluster_; // first cluster of file
SdVolume* vol_; // volume where file is located
// private functions
uint8_t addCluster(void);
uint8_t addDirCluster(void);
dir_t* cacheDirEntry(uint8_t action);
static void (*dateTime_)(uint16_t* date, uint16_t* time);
static uint8_t make83Name(const char* str, uint8_t* name);
uint8_t openCachedEntry(uint8_t cacheIndex, uint8_t oflags);
dir_t* readDirCache(void);
};
//==============================================================================
// SdVolume class
/**
* \brief Cache for an SD data block
*/
union cache_t {
/** Used to access cached file data blocks. */
uint8_t data[512];
/** Used to access cached FAT16 entries. */
uint16_t fat16[256];
/** Used to access cached FAT32 entries. */
uint32_t fat32[128];
/** Used to access cached directory entries. */
dir_t dir[16];
/** Used to access a cached MasterBoot Record. */
mbr_t mbr;
/** Used to access to a cached FAT boot sector. */
fbs_t fbs;
};
//------------------------------------------------------------------------------
/**
* \class SdVolume
* \brief Access FAT16 and FAT32 volumes on SD and SDHC cards.
*/
class SdVolume {
public:
/** Create an instance of SdVolume */
SdVolume(void) :allocSearchStart_(2), fatType_(0) {}
/** Clear the cache and returns a pointer to the cache. Used by the WaveRP
* recorder to do raw write to the SD card. Not for normal apps.
*/
static uint8_t* cacheClear(void) {
cacheFlush();
cacheBlockNumber_ = 0XFFFFFFFF;
return cacheBuffer_.data;
}
/**
* Initialize a FAT volume. Try partition one first then try super
* floppy format.
*
* \param[in] dev The Sd2Card where the volume is located.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure. Reasons for
* failure include not finding a valid partition, not finding a valid
* FAT file system or an I/O error.
*/
uint8_t init(Sd2Card* dev) { return init(dev, 1) ? true : init(dev, 0);}
uint8_t init(Sd2Card* dev, uint8_t part);
// inline functions that return volume info
/** \return The volume's cluster size in blocks. */
uint8_t blocksPerCluster(void) const {return blocksPerCluster_;}
/** \return The number of blocks in one FAT. */
uint32_t blocksPerFat(void) const {return blocksPerFat_;}
/** \return The total number of clusters in the volume. */
uint32_t clusterCount(void) const {return clusterCount_;}
/** \return The shift count required to multiply by blocksPerCluster. */
uint8_t clusterSizeShift(void) const {return clusterSizeShift_;}
/** \return The logical block number for the start of file data. */
uint32_t dataStartBlock(void) const {return dataStartBlock_;}
/** \return The number of FAT structures on the volume. */
uint8_t fatCount(void) const {return fatCount_;}
/** \return The logical block number for the start of the first FAT. */
uint32_t fatStartBlock(void) const {return fatStartBlock_;}
/** \return The FAT type of the volume. Values are 12, 16 or 32. */
uint8_t fatType(void) const {return fatType_;}
/** \return The number of entries in the root directory for FAT16 volumes. */
uint32_t rootDirEntryCount(void) const {return rootDirEntryCount_;}
/** \return The logical block number for the start of the root directory
on FAT16 volumes or the first cluster number on FAT32 volumes. */
uint32_t rootDirStart(void) const {return rootDirStart_;}
/** return a pointer to the Sd2Card object for this volume */
static Sd2Card* sdCard(void) {return sdCard_;}
//------------------------------------------------------------------------------
#if ALLOW_DEPRECATED_FUNCTIONS
// Deprecated functions - suppress cpplint warnings with NOLINT comment
/** \deprecated Use: uint8_t SdVolume::init(Sd2Card* dev); */
uint8_t init(Sd2Card& dev) {return init(&dev);} // NOLINT
/** \deprecated Use: uint8_t SdVolume::init(Sd2Card* dev, uint8_t vol); */
uint8_t init(Sd2Card& dev, uint8_t part) { // NOLINT
return init(&dev, part);
}
#endif // ALLOW_DEPRECATED_FUNCTIONS
//------------------------------------------------------------------------------
private:
// Allow SdFile access to SdVolume private data.
friend class SdFile;
// value for action argument in cacheRawBlock to indicate read from cache
static uint8_t const CACHE_FOR_READ = 0;
// value for action argument in cacheRawBlock to indicate cache dirty
static uint8_t const CACHE_FOR_WRITE = 1;
static cache_t cacheBuffer_; // 512 byte cache for device blocks
static uint32_t cacheBlockNumber_; // Logical number of block in the cache
static Sd2Card* sdCard_; // Sd2Card object for cache
static uint8_t cacheDirty_; // cacheFlush() will write block if true
static uint32_t cacheMirrorBlock_; // block number for mirror FAT
//
uint32_t allocSearchStart_; // start cluster for alloc search
uint8_t blocksPerCluster_; // cluster size in blocks
uint32_t blocksPerFat_; // FAT size in blocks
uint32_t clusterCount_; // clusters in one FAT
uint8_t clusterSizeShift_; // shift to convert cluster count to block count
uint32_t dataStartBlock_; // first data block number
uint8_t fatCount_; // number of FATs on volume
uint32_t fatStartBlock_; // start block for first FAT
uint8_t fatType_; // volume type (12, 16, OR 32)
uint16_t rootDirEntryCount_; // number of entries in FAT16 root dir
uint32_t rootDirStart_; // root start block for FAT16, cluster for FAT32
//----------------------------------------------------------------------------
uint8_t allocContiguous(uint32_t count, uint32_t* curCluster);
uint8_t blockOfCluster(uint32_t position) const {
return (position >> 9) & (blocksPerCluster_ - 1);}
uint32_t clusterStartBlock(uint32_t cluster) const {
return dataStartBlock_ + ((cluster - 2) << clusterSizeShift_);}
uint32_t blockNumber(uint32_t cluster, uint32_t position) const {
return clusterStartBlock(cluster) + blockOfCluster(position);}
static uint8_t cacheFlush(void);
static uint8_t cacheRawBlock(uint32_t blockNumber, uint8_t action);
static void cacheSetDirty(void) {cacheDirty_ |= CACHE_FOR_WRITE;}
static uint8_t cacheZeroBlock(uint32_t blockNumber);
uint8_t chainSize(uint32_t beginCluster, uint32_t* size) const;
uint8_t fatGet(uint32_t cluster, uint32_t* value) const;
uint8_t fatPut(uint32_t cluster, uint32_t value);
uint8_t fatPutEOC(uint32_t cluster) {
return fatPut(cluster, 0x0FFFFFFF);
}
uint8_t freeChain(uint32_t cluster);
uint8_t isEOC(uint32_t cluster) const {
return cluster >= (fatType_ == 16 ? FAT16EOC_MIN : FAT32EOC_MIN);
}
uint8_t readBlock(uint32_t block, uint8_t* dst) {
return sdCard_->readBlock(block, dst);}
uint8_t readData(uint32_t block, uint16_t offset,
uint16_t count, uint8_t* dst) {
return sdCard_->readData(block, offset, count, dst);
}
uint8_t writeBlock(uint32_t block, const uint8_t* dst) {
return sdCard_->writeBlock(block, dst);
}
Sd2Card card_;
SdVolume vol_;
SdBaseFile vwd_;
};
#endif // SdFat_h

@ -0,0 +1,108 @@
/* Arduino SdFat Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
/**
* \file
* \brief configuration definitions
*/
#ifndef SdFatConfig_h
#define SdFatConfig_h
#include <stdint.h>
//------------------------------------------------------------------------------
/**
* To use multiple SD cards set USE_MULTIPLE_CARDS nonzero.
*
* Using multiple cards costs 400 - 500 bytes of flash.
*
* Each card requires about 550 bytes of SRAM so use of a Mega is recommended.
*/
#define USE_MULTIPLE_CARDS 0
//------------------------------------------------------------------------------
/**
* Call flush for endl if ENDL_CALLS_FLUSH is nonzero
*
* The standard for iostreams is to call flush. This is very costly for
* SdFat. Each call to flush causes 2048 bytes of I/O to the SD.
*
* SdFat has a single 512 byte buffer for SD I/O so it must write the current
* data block to the SD, read the directory block from the SD, update the
* directory entry, write the directory block to the SD and read the data
* block back into the buffer.
*
* The SD flash memory controller is not designed for this many rewrites
* so performance may be reduced by more than a factor of 100.
*
* If ENDL_CALLS_FLUSH is zero, you must call flush and/or close to force
* all data to be written to the SD.
*/
#define ENDL_CALLS_FLUSH 0
//------------------------------------------------------------------------------
/**
* Allow use of deprecated functions if ALLOW_DEPRECATED_FUNCTIONS is nonzero
*/
#define ALLOW_DEPRECATED_FUNCTIONS 1
//------------------------------------------------------------------------------
/**
* Allow FAT12 volumes if FAT12_SUPPORT is nonzero.
* FAT12 has not been well tested.
*/
#define FAT12_SUPPORT 0
//------------------------------------------------------------------------------
/**
* SPI init rate for SD initialization commands. Must be 5 (F_CPU/64)
* or 6 (F_CPU/128).
*/
#define SPI_SD_INIT_RATE 5
//------------------------------------------------------------------------------
/**
* Set the SS pin high for hardware SPI. If SS is chip select for another SPI
* device this will disable that device during the SD init phase.
*/
#define SET_SPI_SS_HIGH 1
//------------------------------------------------------------------------------
/**
* Define MEGA_SOFT_SPI nonzero to use software SPI on Mega Arduinos.
* Pins used are SS 10, MOSI 11, MISO 12, and SCK 13.
*
* MEGA_SOFT_SPI allows an unmodified Adafruit GPS Shield to be used
* on Mega Arduinos. Software SPI works well with GPS Shield V1.1
* but many SD cards will fail with GPS Shield V1.0.
*/
#define MEGA_SOFT_SPI 0
//------------------------------------------------------------------------------
/**
* Set USE_SOFTWARE_SPI nonzero to always use software SPI.
*/
#define USE_SOFTWARE_SPI 0
// define software SPI pins so Mega can use unmodified 168/328 shields
/** Software SPI chip select pin for the SD */
uint8_t const SOFT_SPI_CS_PIN = 10;
/** Software SPI Master Out Slave In pin */
uint8_t const SOFT_SPI_MOSI_PIN = 11;
/** Software SPI Master In Slave Out pin */
uint8_t const SOFT_SPI_MISO_PIN = 12;
/** Software SPI Clock pin */
uint8_t const SOFT_SPI_SCK_PIN = 13;
//------------------------------------------------------------------------------
/**
* The __cxa_pure_virtual function is an error handler that is invoked when
* a pure virtual function is called.
*/
#define USE_CXA_PURE_VIRTUAL 1
#endif // SdFatConfig_h

File diff suppressed because it is too large Load Diff

@ -0,0 +1,74 @@
/* Arduino SdFat Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include "SdFatUtil.h"
//------------------------------------------------------------------------------
/** Amount of free RAM
* \return The number of free bytes.
*/
int SdFatUtil::FreeRam() {
extern int __bss_end;
extern int* __brkval;
int free_memory;
if (reinterpret_cast<int>(__brkval) == 0) {
// if no heap use from end of bss section
free_memory = reinterpret_cast<int>(&free_memory)
- reinterpret_cast<int>(&__bss_end);
} else {
// use from top of stack to heap
free_memory = reinterpret_cast<int>(&free_memory)
- reinterpret_cast<int>(__brkval);
}
return free_memory;
}
//------------------------------------------------------------------------------
/** %Print a string in flash memory.
*
* \param[in] pr Print object for output.
* \param[in] str Pointer to string stored in flash memory.
*/
void SdFatUtil::print_P(Print* pr, PGM_P str) {
for (uint8_t c; (c = pgm_read_byte(str)); str++) pr->write(c);
}
//------------------------------------------------------------------------------
/** %Print a string in flash memory followed by a CR/LF.
*
* \param[in] pr Print object for output.
* \param[in] str Pointer to string stored in flash memory.
*/
void SdFatUtil::println_P(Print* pr, PGM_P str) {
print_P(pr, str);
pr->println();
}
//------------------------------------------------------------------------------
/** %Print a string in flash memory to Serial.
*
* \param[in] str Pointer to string stored in flash memory.
*/
void SdFatUtil::SerialPrint_P(PGM_P str) {
print_P(&Serial, str);
}
//------------------------------------------------------------------------------
/** %Print a string in flash memory to Serial followed by a CR/LF.
*
* \param[in] str Pointer to string stored in flash memory.
*/
void SdFatUtil::SerialPrintln_P(PGM_P str) {
println_P(&Serial, str);
}

@ -21,50 +21,26 @@
#define SdFatUtil_h
/**
* \file
* Useful utility functions.
* \brief Useful utility functions.
*/
#include <WProgram.h>
#include <avr/pgmspace.h>
#if ARDUINO < 100
#include <WProgram.h>
#else // ARDUINO
#include <Arduino.h>
#endif // ARDUINO
/** Store and print a string in flash memory.*/
#define PgmPrint(x) SerialPrint_P(PSTR(x))
/** Store and print a string in flash memory followed by a CR/LF.*/
#define PgmPrintln(x) SerialPrintln_P(PSTR(x))
/** Defined so doxygen works for function definitions. */
#define NOINLINE __attribute__((noinline))
//------------------------------------------------------------------------------
/** Return the number of bytes currently free in RAM. */
static int FreeRam(void) {
extern int __bss_end;
extern int* __brkval;
int free_memory;
if (reinterpret_cast<int>(__brkval) == 0) {
// if no heap use from end of bss section
free_memory = reinterpret_cast<int>(&free_memory)
- reinterpret_cast<int>(&__bss_end);
} else {
// use from top of stack to heap
free_memory = reinterpret_cast<int>(&free_memory)
- reinterpret_cast<int>(__brkval);
}
return free_memory;
}
//------------------------------------------------------------------------------
/**
* %Print a string in flash memory to the serial port.
*
* \param[in] str Pointer to string stored in flash memory.
*/
static NOINLINE void SerialPrint_P(PGM_P str) {
for (uint8_t c; (c = pgm_read_byte(str)); str++) Serial.print(c);
}
//------------------------------------------------------------------------------
/**
* %Print a string in flash memory followed by a CR/LF.
*
* \param[in] str Pointer to string stored in flash memory.
*/
static NOINLINE void SerialPrintln_P(PGM_P str) {
SerialPrint_P(str);
Serial.println();
namespace SdFatUtil {
int FreeRam();
void print_P(Print* pr, PGM_P str);
void println_P(Print* pr, PGM_P str);
void SerialPrint_P(PGM_P str);
void SerialPrintln_P(PGM_P str);
}
using namespace SdFatUtil; // NOLINT
#endif // #define SdFatUtil_h

@ -1,202 +0,0 @@
/* Arduino SdFat Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
/**
\mainpage Arduino SdFat Library
<CENTER>Copyright &copy; 2009 by William Greiman
</CENTER>
\section Intro Introduction
The Arduino SdFat Library is a minimal implementation of FAT16 and FAT32
file systems on SD flash memory cards. Standard SD and high capacity
SDHC cards are supported.
The SdFat only supports short 8.3 names.
The main classes in SdFat are Sd2Card, SdVolume, and SdFile.
The Sd2Card class supports access to standard SD cards and SDHC cards. Most
applications will only need to call the Sd2Card::init() member function.
The SdVolume class supports FAT16 and FAT32 partitions. Most applications
will only need to call the SdVolume::init() member function.
The SdFile class provides file access functions such as open(), read(),
remove(), write(), close() and sync(). This class supports access to the root
directory and subdirectories.
A number of example are provided in the SdFat/examples folder. These were
developed to test SdFat and illustrate its use.
SdFat was developed for high speed data recording. SdFat was used to implement
an audio record/play class, WaveRP, for the Adafruit Wave Shield. This
application uses special Sd2Card calls to write to contiguous files in raw mode.
These functions reduce write latency so that audio can be recorded with the
small amount of RAM in the Arduino.
\section SDcard SD\SDHC Cards
Arduinos access SD cards using the cards SPI protocol. PCs, Macs, and
most consumer devices use the 4-bit parallel SD protocol. A card that
functions well on A PC or Mac may not work well on the Arduino.
Most cards have good SPI read performance but cards vary widely in SPI
write performance. Write performance is limited by how efficiently the
card manages internal erase/remapping operations. The Arduino cannot
optimize writes to reduce erase operations because of its limit RAM.
SanDisk cards generally have good write performance. They seem to have
more internal RAM buffering than other cards and therefore can limit
the number of flash erase operations that the Arduino forces due to its
limited RAM.
\section Hardware Hardware Configuration
SdFat was developed using an
<A HREF = "http://www.adafruit.com/"> Adafruit Industries</A>
<A HREF = "http://www.ladyada.net/make/waveshield/"> Wave Shield</A>.
The hardware interface to the SD card should not use a resistor based level
shifter. SdFat sets the SPI bus frequency to 8 MHz which results in signal
rise times that are too slow for the edge detectors in many newer SD card
controllers when resistor voltage dividers are used.
The 5 to 3.3 V level shifter for 5 V Arduinos should be IC based like the
74HC4050N based circuit shown in the file SdLevel.png. The Adafruit Wave Shield
uses a 74AHC125N. Gravitech sells SD and MicroSD Card Adapters based on the
74LCX245.
If you are using a resistor based level shifter and are having problems try
setting the SPI bus frequency to 4 MHz. This can be done by using
card.init(SPI_HALF_SPEED) to initialize the SD card.
\section comment Bugs and Comments
If you wish to report bugs or have comments, send email to fat16lib@sbcglobal.net.
\section SdFatClass SdFat Usage
SdFat uses a slightly restricted form of short names.
Only printable ASCII characters are supported. No characters with code point
values greater than 127 are allowed. Space is not allowed even though space
was allowed in the API of early versions of DOS.
Short names are limited to 8 characters followed by an optional period (.)
and extension of up to 3 characters. The characters may be any combination
of letters and digits. The following special characters are also allowed:
$ % ' - _ @ ~ ` ! ( ) { } ^ # &
Short names are always converted to upper case and their original case
value is lost.
\note
The Arduino Print class uses character
at a time writes so it was necessary to use a \link SdFile::sync() sync() \endlink
function to control when data is written to the SD card.
\par
An application which writes to a file using \link Print::print() print()\endlink,
\link Print::println() println() \endlink
or \link SdFile::write write() \endlink must call \link SdFile::sync() sync() \endlink
at the appropriate time to force data and directory information to be written
to the SD Card. Data and directory information are also written to the SD card
when \link SdFile::close() close() \endlink is called.
\par
Applications must use care calling \link SdFile::sync() sync() \endlink
since 2048 bytes of I/O is required to update file and
directory information. This includes writing the current data block, reading
the block that contains the directory entry for update, writing the directory
block back and reading back the current data block.
It is possible to open a file with two or more instances of SdFile. A file may
be corrupted if data is written to the file by more than one instance of SdFile.
\section HowTo How to format SD Cards as FAT Volumes
You should use a freshly formatted SD card for best performance. FAT
file systems become slower if many files have been created and deleted.
This is because the directory entry for a deleted file is marked as deleted,
but is not deleted. When a new file is created, these entries must be scanned
before creating the file, a flaw in the FAT design. Also files can become
fragmented which causes reads and writes to be slower.
Microsoft operating systems support removable media formatted with a
Master Boot Record, MBR, or formatted as a super floppy with a FAT Boot Sector
in block zero.
Microsoft operating systems expect MBR formatted removable media
to have only one partition. The first partition should be used.
Microsoft operating systems do not support partitioning SD flash cards.
If you erase an SD card with a program like KillDisk, Most versions of
Windows will format the card as a super floppy.
The best way to restore an SD card's format is to use SDFormatter
which can be downloaded from:
http://www.sdcard.org/consumers/formatter/
SDFormatter aligns flash erase boundaries with file
system structures which reduces write latency and file system overhead.
SDFormatter does not have an option for FAT type so it may format
small cards as FAT12.
After the MBR is restored by SDFormatter you may need to reformat small
cards that have been formatted FAT12 to force the volume type to be FAT16.
If you reformat the SD card with an OS utility, choose a cluster size that
will result in:
4084 < CountOfClusters && CountOfClusters < 65525
The volume will then be FAT16.
If you are formatting an SD card on OS X or Linux, be sure to use the first
partition. Format this partition with a cluster count in above range.
\section References References
Adafruit Industries:
http://www.adafruit.com/
http://www.ladyada.net/make/waveshield/
The Arduino site:
http://www.arduino.cc/
For more information about FAT file systems see:
http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
For information about using SD cards as SPI devices see:
http://www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
The ATmega328 datasheet:
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf
*/

File diff suppressed because it is too large Load Diff

@ -0,0 +1,42 @@
/* Arduino SdFat Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
/**
* \file
* \brief SdFile class
*/
#include "SdBaseFile.h"
#ifndef SdFile_h
#define SdFile_h
//------------------------------------------------------------------------------
/**
* \class SdFile
* \brief SdBaseFile with Print.
*/
class SdFile : public SdBaseFile, public Print {
public:
SdFile() {}
SdFile(const char* name, uint8_t oflag);
void write(uint8_t b);
int16_t write(const void* buf, uint16_t nbyte);
void write(const char* str);
void write_P(PGM_P str);
void writeln_P(PGM_P str);
};
#endif // SdFile_h

@ -26,10 +26,10 @@
// Part 1
// Physical Layer
// Simplified Specification
// Version 2.00
// September 25, 2006
// Version 3.01
// May 18, 2010
//
// www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
// http://www.sdcard.org/developers/tech/sdcard/pls/simplified_specs
//------------------------------------------------------------------------------
// SD card commands
/** GO_IDLE_STATE - init card in spi mode if CS low */
@ -40,10 +40,14 @@ uint8_t const CMD8 = 0X08;
uint8_t const CMD9 = 0X09;
/** SEND_CID - read the card identification information (CID register) */
uint8_t const CMD10 = 0X0A;
/** STOP_TRANSMISSION - end multiple block read sequence */
uint8_t const CMD12 = 0X0C;
/** SEND_STATUS - read the card status register */
uint8_t const CMD13 = 0X0D;
/** READ_BLOCK - read a single data block from the card */
/** READ_SINGLE_BLOCK - read a single data block from the card */
uint8_t const CMD17 = 0X11;
/** READ_MULTIPLE_BLOCK - read a multiple data blocks from the card */
uint8_t const CMD18 = 0X12;
/** WRITE_BLOCK - write a single data block to the card */
uint8_t const CMD24 = 0X18;
/** WRITE_MULTIPLE_BLOCK - write blocks of data until a STOP_TRANSMISSION */
@ -83,148 +87,187 @@ uint8_t const DATA_RES_MASK = 0X1F;
/** write data accepted token */
uint8_t const DATA_RES_ACCEPTED = 0X05;
//------------------------------------------------------------------------------
/** Card IDentification (CID) register */
typedef struct CID {
// byte 0
uint8_t mid; // Manufacturer ID
/** Manufacturer ID */
unsigned char mid;
// byte 1-2
char oid[2]; // OEM/Application ID
/** OEM/Application ID */
char oid[2];
// byte 3-7
char pnm[5]; // Product name
/** Product name */
char pnm[5];
// byte 8
unsigned prv_m : 4; // Product revision n.m
unsigned prv_n : 4;
/** Product revision least significant digit */
unsigned char prv_m : 4;
/** Product revision most significant digit */
unsigned char prv_n : 4;
// byte 9-12
uint32_t psn; // Product serial number
/** Product serial number */
uint32_t psn;
// byte 13
unsigned mdt_year_high : 4; // Manufacturing date
unsigned reserved : 4;
/** Manufacturing date year low digit */
unsigned char mdt_year_high : 4;
/** not used */
unsigned char reserved : 4;
// byte 14
unsigned mdt_month : 4;
unsigned mdt_year_low :4;
/** Manufacturing date month */
unsigned char mdt_month : 4;
/** Manufacturing date year low digit */
unsigned char mdt_year_low :4;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
/** not used always 1 */
unsigned char always1 : 1;
/** CRC7 checksum */
unsigned char crc : 7;
}cid_t;
//------------------------------------------------------------------------------
// CSD for version 1.00 cards
/** CSD for version 1.00 cards */
typedef struct CSDV1 {
// byte 0
unsigned reserved1 : 6;
unsigned csd_ver : 2;
unsigned char reserved1 : 6;
unsigned char csd_ver : 2;
// byte 1
uint8_t taac;
unsigned char taac;
// byte 2
uint8_t nsac;
unsigned char nsac;
// byte 3
uint8_t tran_speed;
unsigned char tran_speed;
// byte 4
uint8_t ccc_high;
unsigned char ccc_high;
// byte 5
unsigned read_bl_len : 4;
unsigned ccc_low : 4;
unsigned char read_bl_len : 4;
unsigned char ccc_low : 4;
// byte 6
unsigned c_size_high : 2;
unsigned reserved2 : 2;
unsigned dsr_imp : 1;
unsigned read_blk_misalign :1;
unsigned write_blk_misalign : 1;
unsigned read_bl_partial : 1;
unsigned char c_size_high : 2;
unsigned char reserved2 : 2;
unsigned char dsr_imp : 1;
unsigned char read_blk_misalign :1;
unsigned char write_blk_misalign : 1;
unsigned char read_bl_partial : 1;
// byte 7
uint8_t c_size_mid;
unsigned char c_size_mid;
// byte 8
unsigned vdd_r_curr_max : 3;
unsigned vdd_r_curr_min : 3;
unsigned c_size_low :2;
unsigned char vdd_r_curr_max : 3;
unsigned char vdd_r_curr_min : 3;
unsigned char c_size_low :2;
// byte 9
unsigned c_size_mult_high : 2;
unsigned vdd_w_cur_max : 3;
unsigned vdd_w_curr_min : 3;
unsigned char c_size_mult_high : 2;
unsigned char vdd_w_cur_max : 3;
unsigned char vdd_w_curr_min : 3;
// byte 10
unsigned sector_size_high : 6;
unsigned erase_blk_en : 1;
unsigned c_size_mult_low : 1;
unsigned char sector_size_high : 6;
unsigned char erase_blk_en : 1;
unsigned char c_size_mult_low : 1;
// byte 11
unsigned wp_grp_size : 7;
unsigned sector_size_low : 1;
unsigned char wp_grp_size : 7;
unsigned char sector_size_low : 1;
// byte 12
unsigned write_bl_len_high : 2;
unsigned r2w_factor : 3;
unsigned reserved3 : 2;
unsigned wp_grp_enable : 1;
unsigned char write_bl_len_high : 2;
unsigned char r2w_factor : 3;
unsigned char reserved3 : 2;
unsigned char wp_grp_enable : 1;
// byte 13
unsigned reserved4 : 5;
unsigned write_partial : 1;
unsigned write_bl_len_low : 2;
unsigned char reserved4 : 5;
unsigned char write_partial : 1;
unsigned char write_bl_len_low : 2;
// byte 14
unsigned reserved5: 2;
unsigned file_format : 2;
unsigned tmp_write_protect : 1;
unsigned perm_write_protect : 1;
unsigned copy : 1;
unsigned file_format_grp : 1;
unsigned char reserved5: 2;
unsigned char file_format : 2;
unsigned char tmp_write_protect : 1;
unsigned char perm_write_protect : 1;
unsigned char copy : 1;
/** Indicates the file format on the card */
unsigned char file_format_grp : 1;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
unsigned char always1 : 1;
unsigned char crc : 7;
}csd1_t;
//------------------------------------------------------------------------------
// CSD for version 2.00 cards
/** CSD for version 2.00 cards */
typedef struct CSDV2 {
// byte 0
unsigned reserved1 : 6;
unsigned csd_ver : 2;
unsigned char reserved1 : 6;
unsigned char csd_ver : 2;
// byte 1
uint8_t taac;
/** fixed to 0X0E */
unsigned char taac;
// byte 2
uint8_t nsac;
/** fixed to 0 */
unsigned char nsac;
// byte 3
uint8_t tran_speed;
unsigned char tran_speed;
// byte 4
uint8_t ccc_high;
unsigned char ccc_high;
// byte 5
unsigned read_bl_len : 4;
unsigned ccc_low : 4;
/** This field is fixed to 9h, which indicates READ_BL_LEN=512 Byte */
unsigned char read_bl_len : 4;
unsigned char ccc_low : 4;
// byte 6
unsigned reserved2 : 4;
unsigned dsr_imp : 1;
unsigned read_blk_misalign :1;
unsigned write_blk_misalign : 1;
unsigned read_bl_partial : 1;
/** not used */
unsigned char reserved2 : 4;
unsigned char dsr_imp : 1;
/** fixed to 0 */
unsigned char read_blk_misalign :1;
/** fixed to 0 */
unsigned char write_blk_misalign : 1;
/** fixed to 0 - no partial read */
unsigned char read_bl_partial : 1;
// byte 7
unsigned reserved3 : 2;
unsigned c_size_high : 6;
/** not used */
unsigned char reserved3 : 2;
/** high part of card size */
unsigned char c_size_high : 6;
// byte 8
uint8_t c_size_mid;
/** middle part of card size */
unsigned char c_size_mid;
// byte 9
uint8_t c_size_low;
/** low part of card size */
unsigned char c_size_low;
// byte 10
unsigned sector_size_high : 6;
unsigned erase_blk_en : 1;
unsigned reserved4 : 1;
/** sector size is fixed at 64 KB */
unsigned char sector_size_high : 6;
/** fixed to 1 - erase single is supported */
unsigned char erase_blk_en : 1;
/** not used */
unsigned char reserved4 : 1;
// byte 11
unsigned wp_grp_size : 7;
unsigned sector_size_low : 1;
unsigned char wp_grp_size : 7;
/** sector size is fixed at 64 KB */
unsigned char sector_size_low : 1;
// byte 12
unsigned write_bl_len_high : 2;
unsigned r2w_factor : 3;
unsigned reserved5 : 2;
unsigned wp_grp_enable : 1;
/** write_bl_len fixed for 512 byte blocks */
unsigned char write_bl_len_high : 2;
/** fixed value of 2 */
unsigned char r2w_factor : 3;
/** not used */
unsigned char reserved5 : 2;
/** fixed value of 0 - no write protect groups */
unsigned char wp_grp_enable : 1;
// byte 13
unsigned reserved6 : 5;
unsigned write_partial : 1;
unsigned write_bl_len_low : 2;
unsigned char reserved6 : 5;
/** always zero - no partial block read*/
unsigned char write_partial : 1;
/** write_bl_len fixed for 512 byte blocks */
unsigned char write_bl_len_low : 2;
// byte 14
unsigned reserved7: 2;
unsigned file_format : 2;
unsigned tmp_write_protect : 1;
unsigned perm_write_protect : 1;
unsigned copy : 1;
unsigned file_format_grp : 1;
unsigned char reserved7: 2;
/** Do not use always 0 */
unsigned char file_format : 2;
unsigned char tmp_write_protect : 1;
unsigned char perm_write_protect : 1;
unsigned char copy : 1;
/** Do not use always 0 */
unsigned char file_format_grp : 1;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
/** not used always 1 */
unsigned char always1 : 1;
/** checksum */
unsigned char crc : 7;
}csd2_t;
//------------------------------------------------------------------------------
// union of old and new style CSD register
/** union of old and new style CSD register */
union csd_t {
csd1_t v1;
csd2_t v2;

@ -17,23 +17,28 @@
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include "SdFat.h"
#include "SdVolume.h"
//------------------------------------------------------------------------------
#if !USE_MULTIPLE_CARDS
// raw block cache
// init cacheBlockNumber_to invalid SD block number
uint32_t SdVolume::cacheBlockNumber_ = 0XFFFFFFFF;
cache_t SdVolume::cacheBuffer_; // 512 byte cache for Sd2Card
Sd2Card* SdVolume::sdCard_; // pointer to SD card object
uint8_t SdVolume::cacheDirty_ = 0; // cacheFlush() will write block if true
uint32_t SdVolume::cacheMirrorBlock_ = 0; // mirror block for second FAT
uint32_t SdVolume::cacheBlockNumber_; // current block number
cache_t SdVolume::cacheBuffer_; // 512 byte cache for Sd2Card
Sd2Card* SdVolume::sdCard_; // pointer to SD card object
bool SdVolume::cacheDirty_; // cacheFlush() will write block if true
uint32_t SdVolume::cacheMirrorBlock_; // mirror block for second FAT
#endif // USE_MULTIPLE_CARDS
//------------------------------------------------------------------------------
// find a contiguous group of clusters
uint8_t SdVolume::allocContiguous(uint32_t count, uint32_t* curCluster) {
bool SdVolume::allocContiguous(uint32_t count, uint32_t* curCluster) {
// start of group
uint32_t bgnCluster;
// end of group
uint32_t endCluster;
// last cluster of FAT
uint32_t fatEnd = clusterCount_ + 1;
// flag to save place to start next search
uint8_t setStart;
bool setStart;
// set search start cluster
if (*curCluster) {
@ -47,25 +52,22 @@ uint8_t SdVolume::allocContiguous(uint32_t count, uint32_t* curCluster) {
bgnCluster = allocSearchStart_;
// save next search start if one cluster
setStart = 1 == count;
setStart = count == 1;
}
// end of group
uint32_t endCluster = bgnCluster;
// last cluster of FAT
uint32_t fatEnd = clusterCount_ + 1;
endCluster = bgnCluster;
// search the FAT for free clusters
for (uint32_t n = 0;; n++, endCluster++) {
// can't find space checked all clusters
if (n >= clusterCount_) return false;
if (n >= clusterCount_) goto fail;
// past end - start from beginning of FAT
if (endCluster > fatEnd) {
bgnCluster = endCluster = 2;
}
uint32_t f;
if (!fatGet(endCluster, &f)) return false;
if (!fatGet(endCluster, &f)) goto fail;
if (f != 0) {
// cluster in use try next cluster as bgnCluster
@ -76,16 +78,16 @@ uint8_t SdVolume::allocContiguous(uint32_t count, uint32_t* curCluster) {
}
}
// mark end of chain
if (!fatPutEOC(endCluster)) return false;
if (!fatPutEOC(endCluster)) goto fail;
// link clusters
while (endCluster > bgnCluster) {
if (!fatPut(endCluster - 1, endCluster)) return false;
if (!fatPut(endCluster - 1, endCluster)) goto fail;
endCluster--;
}
if (*curCluster != 0) {
// connect chains
if (!fatPut(*curCluster, bgnCluster)) return false;
if (!fatPut(*curCluster, bgnCluster)) goto fail;
}
// return first cluster number to caller
*curCluster = bgnCluster;
@ -94,66 +96,87 @@ uint8_t SdVolume::allocContiguous(uint32_t count, uint32_t* curCluster) {
if (setStart) allocSearchStart_ = bgnCluster + 1;
return true;
fail:
return false;
}
//------------------------------------------------------------------------------
uint8_t SdVolume::cacheFlush(void) {
bool SdVolume::cacheFlush() {
if (cacheDirty_) {
if (!sdCard_->writeBlock(cacheBlockNumber_, cacheBuffer_.data)) {
return false;
goto fail;
}
// mirror FAT tables
if (cacheMirrorBlock_) {
if (!sdCard_->writeBlock(cacheMirrorBlock_, cacheBuffer_.data)) {
return false;
goto fail;
}
cacheMirrorBlock_ = 0;
}
cacheDirty_ = 0;
}
return true;
fail:
return false;
}
//------------------------------------------------------------------------------
uint8_t SdVolume::cacheRawBlock(uint32_t blockNumber, uint8_t action) {
bool SdVolume::cacheRawBlock(uint32_t blockNumber, bool dirty) {
if (cacheBlockNumber_ != blockNumber) {
if (!cacheFlush()) return false;
if (!sdCard_->readBlock(blockNumber, cacheBuffer_.data)) return false;
if (!cacheFlush()) goto fail;
if (!sdCard_->readBlock(blockNumber, cacheBuffer_.data)) goto fail;
cacheBlockNumber_ = blockNumber;
}
cacheDirty_ |= action;
if (dirty) cacheDirty_ = true;
return true;
}
//------------------------------------------------------------------------------
// cache a zero block for blockNumber
uint8_t SdVolume::cacheZeroBlock(uint32_t blockNumber) {
if (!cacheFlush()) return false;
// loop take less flash than memset(cacheBuffer_.data, 0, 512);
for (uint16_t i = 0; i < 512; i++) {
cacheBuffer_.data[i] = 0;
}
cacheBlockNumber_ = blockNumber;
cacheSetDirty();
return true;
fail:
return false;
}
//------------------------------------------------------------------------------
// return the size in bytes of a cluster chain
uint8_t SdVolume::chainSize(uint32_t cluster, uint32_t* size) const {
bool SdVolume::chainSize(uint32_t cluster, uint32_t* size) {
uint32_t s = 0;
do {
if (!fatGet(cluster, &cluster)) return false;
if (!fatGet(cluster, &cluster)) goto fail;
s += 512UL << clusterSizeShift_;
} while (!isEOC(cluster));
*size = s;
return true;
fail:
return false;
}
//------------------------------------------------------------------------------
// Fetch a FAT entry
uint8_t SdVolume::fatGet(uint32_t cluster, uint32_t* value) const {
if (cluster > (clusterCount_ + 1)) return false;
uint32_t lba = fatStartBlock_;
lba += fatType_ == 16 ? cluster >> 8 : cluster >> 7;
bool SdVolume::fatGet(uint32_t cluster, uint32_t* value) {
uint32_t lba;
if (cluster > (clusterCount_ + 1)) goto fail;
if (FAT12_SUPPORT && fatType_ == 12) {
uint16_t index = cluster;
index += index >> 1;
lba = fatStartBlock_ + (index >> 9);
if (!cacheRawBlock(lba, CACHE_FOR_READ)) goto fail;
index &= 0X1FF;
uint16_t tmp = cacheBuffer_.data[index];
index++;
if (index == 512) {
if (!cacheRawBlock(lba + 1, CACHE_FOR_READ)) goto fail;
index = 0;
}
tmp |= cacheBuffer_.data[index] << 8;
*value = cluster & 1 ? tmp >> 4 : tmp & 0XFFF;
return true;
}
if (fatType_ == 16) {
lba = fatStartBlock_ + (cluster >> 8);
} else if (fatType_ == 32) {
lba = fatStartBlock_ + (cluster >> 7);
} else {
goto fail;
}
if (lba != cacheBlockNumber_) {
if (!cacheRawBlock(lba, CACHE_FOR_READ)) return false;
if (!cacheRawBlock(lba, CACHE_FOR_READ)) goto fail;
}
if (fatType_ == 16) {
*value = cacheBuffer_.fat16[cluster & 0XFF];
@ -161,56 +184,127 @@ uint8_t SdVolume::fatGet(uint32_t cluster, uint32_t* value) const {
*value = cacheBuffer_.fat32[cluster & 0X7F] & FAT32MASK;
}
return true;
fail:
return false;
}
//------------------------------------------------------------------------------
// Store a FAT entry
uint8_t SdVolume::fatPut(uint32_t cluster, uint32_t value) {
bool SdVolume::fatPut(uint32_t cluster, uint32_t value) {
uint32_t lba;
// error if reserved cluster
if (cluster < 2) return false;
if (cluster < 2) goto fail;
// error if not in FAT
if (cluster > (clusterCount_ + 1)) return false;
if (cluster > (clusterCount_ + 1)) goto fail;
// calculate block address for entry
uint32_t lba = fatStartBlock_;
lba += fatType_ == 16 ? cluster >> 8 : cluster >> 7;
if (lba != cacheBlockNumber_) {
if (!cacheRawBlock(lba, CACHE_FOR_READ)) return false;
if (FAT12_SUPPORT && fatType_ == 12) {
uint16_t index = cluster;
index += index >> 1;
lba = fatStartBlock_ + (index >> 9);
if (!cacheRawBlock(lba, CACHE_FOR_WRITE)) goto fail;
// mirror second FAT
if (fatCount_ > 1) cacheMirrorBlock_ = lba + blocksPerFat_;
index &= 0X1FF;
uint8_t tmp = value;
if (cluster & 1) {
tmp = (cacheBuffer_.data[index] & 0XF) | tmp << 4;
}
cacheBuffer_.data[index] = tmp;
index++;
if (index == 512) {
lba++;
index = 0;
if (!cacheRawBlock(lba, CACHE_FOR_WRITE)) goto fail;
// mirror second FAT
if (fatCount_ > 1) cacheMirrorBlock_ = lba + blocksPerFat_;
}
tmp = value >> 4;
if (!(cluster & 1)) {
tmp = ((cacheBuffer_.data[index] & 0XF0)) | tmp >> 4;
}
cacheBuffer_.data[index] = tmp;
return true;
}
if (fatType_ == 16) {
lba = fatStartBlock_ + (cluster >> 8);
} else if (fatType_ == 32) {
lba = fatStartBlock_ + (cluster >> 7);
} else {
goto fail;
}
if (!cacheRawBlock(lba, CACHE_FOR_WRITE)) goto fail;
// store entry
if (fatType_ == 16) {
cacheBuffer_.fat16[cluster & 0XFF] = value;
} else {
cacheBuffer_.fat32[cluster & 0X7F] = value;
}
cacheSetDirty();
// mirror second FAT
if (fatCount_ > 1) cacheMirrorBlock_ = lba + blocksPerFat_;
return true;
fail:
return false;
}
//------------------------------------------------------------------------------
// free a cluster chain
uint8_t SdVolume::freeChain(uint32_t cluster) {
bool SdVolume::freeChain(uint32_t cluster) {
uint32_t next;
// clear free cluster location
allocSearchStart_ = 2;
do {
uint32_t next;
if (!fatGet(cluster, &next)) return false;
if (!fatGet(cluster, &next)) goto fail;
// free cluster
if (!fatPut(cluster, 0)) return false;
if (!fatPut(cluster, 0)) goto fail;
cluster = next;
} while (!isEOC(cluster));
return true;
fail:
return false;
}
//------------------------------------------------------------------------------
/** Volume free space in clusters.
*
* \return Count of free clusters for success or -1 if an error occurs.
*/
int32_t SdVolume::freeClusterCount() {
uint32_t free = 0;
uint16_t n;
uint32_t todo = clusterCount_ + 2;
if (fatType_ == 16) {
n = 256;
} else if (fatType_ == 32) {
n = 128;
} else {
// put FAT12 here
return -1;
}
for (uint32_t lba = fatStartBlock_; todo; todo -= n, lba++) {
if (!cacheRawBlock(lba, CACHE_FOR_READ)) return -1;
if (todo < n) n = todo;
if (fatType_ == 16) {
for (uint16_t i = 0; i < n; i++) {
if (cacheBuffer_.fat16[i] == 0) free++;
}
} else {
for (uint16_t i = 0; i < n; i++) {
if (cacheBuffer_.fat32[i] == 0) free++;
}
}
}
return free;
}
//------------------------------------------------------------------------------
/**
* Initialize a FAT volume.
/** Initialize a FAT volume.
*
* \param[in] dev The SD card where the volume is located.
*
@ -224,58 +318,66 @@ uint8_t SdVolume::freeChain(uint32_t cluster) {
* failure include not finding a valid partition, not finding a valid
* FAT file system in the specified partition or an I/O error.
*/
uint8_t SdVolume::init(Sd2Card* dev, uint8_t part) {
bool SdVolume::init(Sd2Card* dev, uint8_t part) {
uint32_t totalBlocks;
uint32_t volumeStartBlock = 0;
fat32_boot_t* fbs;
sdCard_ = dev;
fatType_ = 0;
allocSearchStart_ = 2;
cacheDirty_ = 0; // cacheFlush() will write block if true
cacheMirrorBlock_ = 0;
cacheBlockNumber_ = 0XFFFFFFFF;
// if part == 0 assume super floppy with FAT boot sector in block zero
// if part > 0 assume mbr volume with partition table
if (part) {
if (part > 4)return false;
if (!cacheRawBlock(volumeStartBlock, CACHE_FOR_READ)) return false;
if (part > 4)goto fail;
if (!cacheRawBlock(volumeStartBlock, CACHE_FOR_READ)) goto fail;
part_t* p = &cacheBuffer_.mbr.part[part-1];
if ((p->boot & 0X7F) !=0 ||
p->totalSectors < 100 ||
p->firstSector == 0) {
// not a valid partition
return false;
goto fail;
}
volumeStartBlock = p->firstSector;
}
if (!cacheRawBlock(volumeStartBlock, CACHE_FOR_READ)) return false;
bpb_t* bpb = &cacheBuffer_.fbs.bpb;
if (bpb->bytesPerSector != 512 ||
bpb->fatCount == 0 ||
bpb->reservedSectorCount == 0 ||
bpb->sectorsPerCluster == 0) {
if (!cacheRawBlock(volumeStartBlock, CACHE_FOR_READ)) goto fail;
fbs = &cacheBuffer_.fbs32;
if (fbs->bytesPerSector != 512 ||
fbs->fatCount == 0 ||
fbs->reservedSectorCount == 0 ||
fbs->sectorsPerCluster == 0) {
// not valid FAT volume
return false;
goto fail;
}
fatCount_ = bpb->fatCount;
blocksPerCluster_ = bpb->sectorsPerCluster;
fatCount_ = fbs->fatCount;
blocksPerCluster_ = fbs->sectorsPerCluster;
// determine shift that is same as multiply by blocksPerCluster_
clusterSizeShift_ = 0;
while (blocksPerCluster_ != (1 << clusterSizeShift_)) {
// error if not power of 2
if (clusterSizeShift_++ > 7) return false;
if (clusterSizeShift_++ > 7) goto fail;
}
blocksPerFat_ = bpb->sectorsPerFat16 ?
bpb->sectorsPerFat16 : bpb->sectorsPerFat32;
blocksPerFat_ = fbs->sectorsPerFat16 ?
fbs->sectorsPerFat16 : fbs->sectorsPerFat32;
fatStartBlock_ = volumeStartBlock + bpb->reservedSectorCount;
fatStartBlock_ = volumeStartBlock + fbs->reservedSectorCount;
// count for FAT16 zero for FAT32
rootDirEntryCount_ = bpb->rootDirEntryCount;
rootDirEntryCount_ = fbs->rootDirEntryCount;
// directory start for FAT16 dataStart for FAT32
rootDirStart_ = fatStartBlock_ + bpb->fatCount * blocksPerFat_;
rootDirStart_ = fatStartBlock_ + fbs->fatCount * blocksPerFat_;
// data start for FAT16 and FAT32
dataStartBlock_ = rootDirStart_ + ((32 * bpb->rootDirEntryCount + 511)/512);
dataStartBlock_ = rootDirStart_ + ((32 * fbs->rootDirEntryCount + 511)/512);
// total blocks for FAT16 or FAT32
uint32_t totalBlocks = bpb->totalSectors16 ?
bpb->totalSectors16 : bpb->totalSectors32;
totalBlocks = fbs->totalSectors16 ?
fbs->totalSectors16 : fbs->totalSectors32;
// total data blocks
clusterCount_ = totalBlocks - (dataStartBlock_ - volumeStartBlock);
@ -285,11 +387,15 @@ uint8_t SdVolume::init(Sd2Card* dev, uint8_t part) {
// FAT type is determined by cluster count
if (clusterCount_ < 4085) {
fatType_ = 12;
if (!FAT12_SUPPORT) goto fail;
} else if (clusterCount_ < 65525) {
fatType_ = 16;
} else {
rootDirStart_ = bpb->fat32RootCluster;
rootDirStart_ = fbs->fat32RootCluster;
fatType_ = 32;
}
return true;
fail:
return false;
}

@ -0,0 +1,211 @@
/* Arduino SdFat Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef SdVolume_h
#define SdVolume_h
/**
* \file
* \brief SdVolume class
*/
#include "SdFatConfig.h"
#include "Sd2Card.h"
#include "SdFatStructs.h"
//==============================================================================
// SdVolume class
/**
* \brief Cache for an SD data block
*/
union cache_t {
/** Used to access cached file data blocks. */
uint8_t data[512];
/** Used to access cached FAT16 entries. */
uint16_t fat16[256];
/** Used to access cached FAT32 entries. */
uint32_t fat32[128];
/** Used to access cached directory entries. */
dir_t dir[16];
/** Used to access a cached Master Boot Record. */
mbr_t mbr;
/** Used to access to a cached FAT boot sector. */
fat_boot_t fbs;
/** Used to access to a cached FAT32 boot sector. */
fat32_boot_t fbs32;
/** Used to access to a cached FAT32 FSINFO sector. */
fat32_fsinfo_t fsinfo;
};
//------------------------------------------------------------------------------
/**
* \class SdVolume
* \brief Access FAT16 and FAT32 volumes on SD and SDHC cards.
*/
class SdVolume {
public:
/** Create an instance of SdVolume */
SdVolume() : fatType_(0) {}
/** Clear the cache and returns a pointer to the cache. Used by the WaveRP
* recorder to do raw write to the SD card. Not for normal apps.
* \return A pointer to the cache buffer or zero if an error occurs.
*/
cache_t* cacheClear() {
if (!cacheFlush()) return 0;
cacheBlockNumber_ = 0XFFFFFFFF;
return &cacheBuffer_;
}
/** Initialize a FAT volume. Try partition one first then try super
* floppy format.
*
* \param[in] dev The Sd2Card where the volume is located.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure. Reasons for
* failure include not finding a valid partition, not finding a valid
* FAT file system or an I/O error.
*/
bool init(Sd2Card* dev) { return init(dev, 1) ? true : init(dev, 0);}
bool init(Sd2Card* dev, uint8_t part);
// inline functions that return volume info
/** \return The volume's cluster size in blocks. */
uint8_t blocksPerCluster() const {return blocksPerCluster_;}
/** \return The number of blocks in one FAT. */
uint32_t blocksPerFat() const {return blocksPerFat_;}
/** \return The total number of clusters in the volume. */
uint32_t clusterCount() const {return clusterCount_;}
/** \return The shift count required to multiply by blocksPerCluster. */
uint8_t clusterSizeShift() const {return clusterSizeShift_;}
/** \return The logical block number for the start of file data. */
uint32_t dataStartBlock() const {return dataStartBlock_;}
/** \return The number of FAT structures on the volume. */
uint8_t fatCount() const {return fatCount_;}
/** \return The logical block number for the start of the first FAT. */
uint32_t fatStartBlock() const {return fatStartBlock_;}
/** \return The FAT type of the volume. Values are 12, 16 or 32. */
uint8_t fatType() const {return fatType_;}
int32_t freeClusterCount();
/** \return The number of entries in the root directory for FAT16 volumes. */
uint32_t rootDirEntryCount() const {return rootDirEntryCount_;}
/** \return The logical block number for the start of the root directory
on FAT16 volumes or the first cluster number on FAT32 volumes. */
uint32_t rootDirStart() const {return rootDirStart_;}
/** Sd2Card object for this volume
* \return pointer to Sd2Card object.
*/
Sd2Card* sdCard() {return sdCard_;}
/** Debug access to FAT table
*
* \param[in] n cluster number.
* \param[out] v value of entry
* \return true for success or false for failure
*/
bool dbgFat(uint32_t n, uint32_t* v) {return fatGet(n, v);}
//------------------------------------------------------------------------------
private:
// Allow SdBaseFile access to SdVolume private data.
friend class SdBaseFile;
// value for dirty argument in cacheRawBlock to indicate read from cache
static bool const CACHE_FOR_READ = false;
// value for dirty argument in cacheRawBlock to indicate write to cache
static bool const CACHE_FOR_WRITE = true;
#if USE_MULTIPLE_CARDS
cache_t cacheBuffer_; // 512 byte cache for device blocks
uint32_t cacheBlockNumber_; // Logical number of block in the cache
Sd2Card* sdCard_; // Sd2Card object for cache
bool cacheDirty_; // cacheFlush() will write block if true
uint32_t cacheMirrorBlock_; // block number for mirror FAT
#else // USE_MULTIPLE_CARDS
static cache_t cacheBuffer_; // 512 byte cache for device blocks
static uint32_t cacheBlockNumber_; // Logical number of block in the cache
static Sd2Card* sdCard_; // Sd2Card object for cache
static bool cacheDirty_; // cacheFlush() will write block if true
static uint32_t cacheMirrorBlock_; // block number for mirror FAT
#endif // USE_MULTIPLE_CARDS
uint32_t allocSearchStart_; // start cluster for alloc search
uint8_t blocksPerCluster_; // cluster size in blocks
uint32_t blocksPerFat_; // FAT size in blocks
uint32_t clusterCount_; // clusters in one FAT
uint8_t clusterSizeShift_; // shift to convert cluster count to block count
uint32_t dataStartBlock_; // first data block number
uint8_t fatCount_; // number of FATs on volume
uint32_t fatStartBlock_; // start block for first FAT
uint8_t fatType_; // volume type (12, 16, OR 32)
uint16_t rootDirEntryCount_; // number of entries in FAT16 root dir
uint32_t rootDirStart_; // root start block for FAT16, cluster for FAT32
//----------------------------------------------------------------------------
bool allocContiguous(uint32_t count, uint32_t* curCluster);
uint8_t blockOfCluster(uint32_t position) const {
return (position >> 9) & (blocksPerCluster_ - 1);}
uint32_t clusterStartBlock(uint32_t cluster) const {
return dataStartBlock_ + ((cluster - 2) << clusterSizeShift_);}
uint32_t blockNumber(uint32_t cluster, uint32_t position) const {
return clusterStartBlock(cluster) + blockOfCluster(position);}
cache_t *cache() {return &cacheBuffer_;}
uint32_t cacheBlockNumber() {return cacheBlockNumber_;}
#if USE_MULTIPLE_CARDS
bool cacheFlush();
bool cacheRawBlock(uint32_t blockNumber, bool dirty);
#else // USE_MULTIPLE_CARDS
static bool cacheFlush();
static bool cacheRawBlock(uint32_t blockNumber, bool dirty);
#endif // USE_MULTIPLE_CARDS
// used by SdBaseFile write to assign cache to SD location
void cacheSetBlockNumber(uint32_t blockNumber, bool dirty) {
cacheDirty_ = dirty;
cacheBlockNumber_ = blockNumber;
}
void cacheSetDirty() {cacheDirty_ |= CACHE_FOR_WRITE;}
bool chainSize(uint32_t beginCluster, uint32_t* size);
bool fatGet(uint32_t cluster, uint32_t* value);
bool fatPut(uint32_t cluster, uint32_t value);
bool fatPutEOC(uint32_t cluster) {
return fatPut(cluster, 0x0FFFFFFF);
}
bool freeChain(uint32_t cluster);
bool isEOC(uint32_t cluster) const {
if (FAT12_SUPPORT && fatType_ == 12) return cluster >= FAT12EOC_MIN;
if (fatType_ == 16) return cluster >= FAT16EOC_MIN;
return cluster >= FAT32EOC_MIN;
}
bool readBlock(uint32_t block, uint8_t* dst) {
return sdCard_->readBlock(block, dst);}
bool writeBlock(uint32_t block, const uint8_t* dst) {
return sdCard_->writeBlock(block, dst);
}
//------------------------------------------------------------------------------
// Deprecated functions - suppress cpplint warnings with NOLINT comment
#if ALLOW_DEPRECATED_FUNCTIONS && !defined(DOXYGEN)
public:
/** \deprecated Use: bool SdVolume::init(Sd2Card* dev);
* \param[in] dev The SD card where the volume is located.
* \return true for success or false for failure.
*/
bool init(Sd2Card& dev) {return init(&dev);} // NOLINT
/** \deprecated Use: bool SdVolume::init(Sd2Card* dev, uint8_t vol);
* \param[in] dev The SD card where the volume is located.
* \param[in] part The partition to be used.
* \return true for success or false for failure.
*/
bool init(Sd2Card& dev, uint8_t part) { // NOLINT
return init(&dev, part);
}
#endif // ALLOW_DEPRECATED_FUNCTIONS
};
#endif // SdVolume

@ -3,6 +3,7 @@
#ifdef SDSUPPORT
#include "SdFat.h"
class CardReader

@ -1,58 +0,0 @@
files to compare manually:
planner.cpp
stepper.cpp
temperature.cpp
---
things that changed:
* planner.cpp
estimate_acc_distance now works with floats.
in calculate_trapezoid:for_block
long acceleration_rate=(long)((float)acceleration*8.388608) is gone
so is block_>acceleration_rate
void planner_reverse_pass:
some stuff I don't understand right now changed
in planner_forward_pass:
done: BLOCK_BUFFER_SIZE is now necessarily power of 2 (aka 8 16, 32). Inportant to document this somewhere.
no more inline in void plan_discard_current_block()
no more inline in plan_get_current_block()
in plan_buffer_line(...)
the long target[4]; and calculations of thoose should go after the while(block_buffer_tail==..). if the axis_steps_per_unit are changed from the gcode (M92) the calculation for the currently planned buffer move will be corrupt, because Target is calculated with one value, and the stuff afterwards with another. At least this solved the problem I had with the M92 E* changes in the code. Very sure about this, I took me 20min to find this as the solution for the bug I was hunting.
around if(feed_rate<minimumfeedrate) this only should be done if it is not a pure extrusion. I think there is a bug right now.
~line 447 blockcount=
not sure if this also works if the difference is negative, as it would happen if the ringbuffer runs over the end and start at 0.
~line 507 tmp_aceleration. not sure whats going on, but a lot changed.
* stepper.cpp
~214: if (busy) should be a echoln, maybe
~331: great, The Z_M_PIN checks are in :)
*temperature.cpp
done: enum for heater, bed,
manage_heater() is seriously different.
done: if tem_meas_ready ==true->!true+return?
done #define K1 0.95 maybe in the configuration.h?
semi-done: PID-C checking needed. Untested but added.
----
still needed to finish the merge, before testin!
manage_heater
ISR
movement planner
TODO:
remove traveling at maxpseed
remove Simplelcd
remove DEBUG_STEPS?
block_t
pid_dt ->0.1 whats the changes to the PID, checking needed
----
second merge saturday morning:
done: PID_dt->0.1
Loading…
Cancel
Save